
icLibFuzzer: Isolated-context libFuzzer for
Improving Fuzzer Comparability

Yu-Chuan Liang
National Taiwan University

jasonliang30115@gmail.com

Hsu-Chun Hsiao
National Taiwan University

hchsiao@csie.ntu.edu.tw

AFL [20] and libFuzzer [14] are two of the most successful
fuzzers with different design goals and have been evolving
separately for several years. AFL aims to continuously fuzz
executables, while libFuzzer targets library functions and stops
whenever hitting a crash. As a result, fuzzers in the AFL
and libFuzzer families mainly consider the code-coverage and
time-to-first-crash metrics, respectively. It is challenging to
compare them directly with each other over the same metrics.

This comparability issue is solved partially by enabling
the ignore-crash mode in libFuzzer. The ignore-crash mode
spawns multiple fuzzer instances and fuzzes a target exe-
cutable in different processes parallelly. Whenever a fuzzer
instance exits or finds a crash, libFuzzer will restart the fuzzer
instance. Although libFuzzer in the ignore-crash mode can
fuzz continuously and restart after a crash, the fuzzing results
may be incorrect when previous non-crash runs pollute the
global context because of libFuzzer’s in-process infrastructure.
Therefore, most fuzzers were compared with libFuzzer only
on few manually tuned datasets (e.g., fuzzer-test-suite [9]) that
allow both fuzzer families to operate correctly.

Due to the lack of comparability, the advances in libFuzzer
seem to be left unnoticed in the state-of-the-art academic pa-
pers, which predominantly consider the code-coverage metric.
For example, libFuzzer has integrated advanced instrumen-
tation features such as CMP tracing since 2017, but similar
features were unavailable in AFL-based fuzzers until 2019 in
RedQueen [2] (which is later integrated into AFL++ [7]). To
this end, we believe a bridge between these two fuzzer families
is needed to foster knowledge accumulation and sharing in the
community.

In this work, we present isolated-context libFuzzer (icLib-
Fuzzer), a new libFuzzer mode that bridges the two fuzzer
families and allows them to be compared over commonly
seen metrics on arbitrary programs. To solve the context
pollution problem, icLibFuzzer runs in the AFL-like forkserver
architecture and correctly manages the global context between
executions. As speed is a crucial requirement of fuzzers, we
further optimize icLibFuzzer’s implementation via structure
packing, achieving similar performance to other forkserver-
based implementation while preserving libFuzzer’s advanced
instrumentation features.

To demonstrate that icLibFuzzer improves fuzzer compa-
rability, we compare icLibFuzzer with four state-of-the-art
fuzzers (AFL, Angora, Honggfuzz, and QSYM) using the

Abstract—libFuzzer is a powerful fuzzer that has helped find 
thousands of bugs in real-world programs. However, fuzzers 
that seek to compare with libFuzzer and its variants face two 
significant limitations. First, they are restricted to use the time-to-
first-crash metric rather than the code-coverage metric because 
libFuzzer will abort whenever the fuzzing target crashes. Second, 
even if libFuzzer in the ignore-crash mode can continue after 
finding a crash, it may produce wrong results for programs 
expecting a clean global context. Thus, fuzzers wishing to 
compare with libFuzzer are restricted to use carefully modified 
programs or programs without global-context dependency. To 
solve this context pollution problem and enhance comparability 
between libFuzzer and other fuzzers, we present a new libFuzzer 
mode called isolated-context mode (icLibFuzzer) that isolates the 
contexts of each fuzzer instance and fuzzing target, allowing 
to reinitialize the fuzzing target’s context after each execution 
efficiently. To implement icLibFuzzer, we modify libFuzzer’s in-
process infrastructure into a lightweight forkserver infrastruc-
ture inspired by AFL’s design and propose structure packing, 
which speeds up the fuzzing speed by about 2x. We compare 
icLibFuzzer with four state-of-the-art fuzzers (AFL, Angora, 
QSYM, and Honggfuzz) using several real-world programs. The 
experiment result shows that icLibFuzzer outperforms these four 
fuzzers in most target programs after 24 hours of fuzzing and 
maintains the lead from 24 to 72 hours. To demonstrate that 
we can easily keep up with libFuzzer’s updates, we upgrade 
icLibFuzzer to using the latest libFuzzer (from LLVM9 to 
LLVM11) with no change to our code base. Our preliminary 
evaluation hints at icLibFuzzer-LLVM11’s promising improve-
ment compared with icLibFuzzer-LLVM9 and AFL++, one of 
the latest fuzzers in the AFL family. We hope icLibFuzzer can 
serve as another baseline for fuzzing research. Our source code 
is available at GitHub.

I. INTRODUCTION

Fuzzing is a popular technique for automatically finding
bugs. To fuzz a computer program, which can be a standalone
executable or a library function, a fuzzing tool (called a fuzzer)
feeds random inputs into the program and reports inputs
that cause unexpected behaviors such as hangs or crashes.
These interesting inputs can further help uncover bugs in the
program.

Workshop on Binary Analysis Research (BAR) 2021
21 February 2021, Virtual
ISBN 1-891562-69-X
https://dx.doi.org/10.14722/bar.2021.23013
www.ndss-symposium.org



code-coverage metric on several real-world programs. icLib-
Fuzzer outperforms all of the tested fuzzers in most target
programs after 24 hours of fuzzing. Moreover, icLibFuzzer
maintains the lead and continues to increase the code coverage
from 24 to 72 hours1.

To incentivize adoption, we provide a compiler wrapper to
compile standalone programs without modifying the source
code. As libFuzzer is under active development and new
features may appear in the future, we also provide a guideline
for adding its new features into icLibFuzzer. To demonstrate
that we can easily keep up with libFuzzer’s updates, we up-
grade icLibFuzzer to using the latest libFuzzer (i.e., upgrading
from LLVM9 to LLVM11) with no change to our code base.
Our preliminary evaluation hints at icLibFuzzer-LLVM11’s
promising improvement compared with icLibFuzzer-LLVM9
and AFL++, one of the latest fuzzers in the AFL family that
integrates multiple enhanced techniques.

This paper makes the following contributions:
1) We design and implement icLibFuzzer, a new libFuzzer

mode that isolates the contexts of each fuzzing target and
fuzzer instance, enabling continuous fuzzing on arbitrary
programs while inheriting libFuzzer’s advanced instru-
mentation features and analysis techniques.

2) We propose the structure packing technique to improve
the running speed of icLibFuzzer by roughly 2x.

3) We evaluate icLibFuzzer using several real-world pro-
grams and find that icLibFuzzer outperforms all of the
tested fuzzers in most target programs, implying that
icLibFuzzer is a competitive fuzzing tool and may serve
as another evaluation baseline for fuzzing research.

4) We release our source code at https://github.com/
csienslab/icLibFuzzer.

II. BACKGROUND

libFuzzer supports several advanced instrumentation fea-
tures that have not been fully adopted by other fuzzers, but it
is challenging to compare libFuzzer with others due to its in-
process design. We briefly introduce libFuzzer in this section
and explain the comparability issues in the next section.

A. libFuzzer Overview

Similar to AFL, libFuzzer is a coverage-guided fuzzer,
which collects coverage information through instrumentation,
selects interesting inputs (called seeds) based on the collected
information, and mutates seeds to generate new inputs.

For example, to collect program branches covered by inputs,
code-coverage instrumentation inserts instructions to the target
binary to record the current program counter right after each
conditional branch, exemplified by the following C code:

1 if (a > 0) {
2 bitmap[current_program_ctr] += 1;
3 if (b > 0) {
4 bitmap[current_program_ctr] += 1;
5 do_something();

172 hours is the longest time budget that we can afford in our experiments.

6 }
7 }

After the program terminates, the bitmap array records the
branches reached by the input. Thus, given a set of inputs,
we can measure a fuzzer’s branch coverage (a type of code-
coverage metrics) by accumulating the information recorded
in the bitmap.

While AFL mainly collects code-coverage information and
keeps coverage-increasing inputs as seeds, libFuzzer collects
additional information such as the branch condition via in-
strumentation and keeps inputs that make a variety kinds of
“progress” (e.g., closer to pass a conditional branch), as we
will see in the next subsection.

B. libFuzzer’s Advanced Instrumentation Features
libFuzzer supports several advanced instrumentation fea-

tures to assist fuzzing. Some of these features are unavailable
in other fuzzers or appear years later. For example, libFuzzer
implemented CMP tracing in 2017, but similar ideas were
unavailable in other fuzzers until 2019 in RedQueen [2].

Below we choose and describe four advanced instrumenta-
tion features in libFuzzer which may impact code coverage
significantly, and have also been ported to our icLibFuzzer:
CMP tracing, value profiling, compare function, and dataflow
trace. We also provide a guideline in Section VII to port new
libFuzzer features to icLibFuzzer.

1) CMP tracing: Due to their random nature, fuzzers
often struggle to discover inputs satisfying complex branch
conditions, such as x==65536 or pwd=="secr3t". Instead
of random guessing, libFuzzer supports a salient feature called
CMP tracing, which hooks all of the CMP instructions (in the
LLVM IR instruction set) at compile time and stores the two
operands, indexed by their xored value. Take the following C
code snippet as an example:

1 short int magic;
2 read(0, &magic, sizeof(short int));
3 if (magic == 0x1234)
4 bug();

The if branch in Line 3 will be compiled into a CMP
instruction, so libFuzzer inserts instrumentation code to save
the compared targets:

1 short int magic;
2 read(0, &magic, sizeof(short int));
3 save_compared_arguments();
4 if (magic == 0x1234)
5 bug();

When executing Line 3, the instrumentation code will store
magic and 0x1234, both indexed by magic ⊕ 0x1234. These
values will then be used when mutating seeds into new inputs,
such as replacing magic in input into 0x1234.

2) Value profiling: When value profiling is enabled, lib-
Fuzzer collects additional information to quantify the progress
made toward passing each branch condition at runtime. Take
the following code as an example:

2



initialize();
while TRUE do

input = mutate();
LLVMFuzzerTestOneInput(input, inputSize); . User

should implement this function.
end

Fig. 1: libFuzzer’s in-process fuzzing

initialize

generate
input

call
fuzzing
target

Fig. 2: libFuzzer’s in-process fuzzing workflow

1 short int magic;
2 read(0, &magic, sizeof(short int));
3 if (magic == 0x1234)
4 bug();

In this example, though all magic values except 0x1234
will fail the branch condition at Line 3, some values are closer
to passing the condition than others. Finding an input closer to
passing the condition should be considered progress and saved
as a new seed. For example, assuming that distance between
two values is defined as the number of different bits, then if
we mutate magic from 0x1237 to 0x1235, 0x1235 should
be saved as a seed because 0x1235 differs from the target
(0x1234) by one bit, while 0x1237 has a two-bit difference.

When enabling value profiling, libFuzzer uses the program
counter as an index to store the distance information calculated
based on the xored value of the compared operands. For
example, the distance can be defined as the number of zero
bits in the xored value. If the distance indexed by the same
program counter reduces, which means that we are closer to
solving the branch, the input will become a new seed.

3) Compare function: Besides CMP tracing for the CMP
instruction, libFuzzer also hooks functions related to string
comparison (e.g., strstr, memcmp, and strncasecmp), and
stores the function parameters for mutation later.

4) Dataflow trace: Hooking the compare instruction and
string comparison functions allows libFuzzer to retrieve the
compared values, but does not reveal the relationship between
the input bits and the bits of the compared value. Dataflow
trace taints an input to uncover the mapping between the input
and compared value by checking the taint label.

C. libFuzzer’s in-process infrastructure
libFuzzer adopts an in-process infrastructure for achieving

high fuzzing speed (i.e., executions per second). In an in-
process infrastructure, the fuzzer instance (libFuzzer) and the
fuzzing target (LLVMFuzzerTestOneInput) work in the same
context and share the same virtual memory space, as shown
in Figure 1 and Figure 2. By contrast, AFL uses a forkserver
infrastructure, in which each fuzzer instance and fuzzing target
has an isolated context.

Despite the higher speed, the in-process infrastructure is
more fragile and subject to the context pollution problem

because the fuzzer instance may behave incorrectly due to
bugs triggered in the fuzzing target, and the fuzzing target may
behave incorrectly due to global context polluted in previous
runs of fuzzing target.

The original libFuzzer can tolerate context pollution for
two main reasons. First, it targets library functions (such
as png_sig_cmp in libpng), and the fragility amplifies
the impact of silent, non-crash bugs (e.g., memory leak),
which are fatal in library functions.2 Second, the impact of
polluted context is limited because libFuzzer stops whenever
encountering a crash, and the libFuzzer user is expected to fix
the bug before finding the next one.

III. COMPARABILITY ISSUES

This section highlights two comparability issues when prior
work compares libFuzzer with other fuzzers and explains why
existing solutions are insufficient. These issues motivate our
design and implementation of icLibFuzzer.

A. Lack support of common evaluation metrics

Fuzzers are often evaluated by how much code they covered
in a fixed time, how many bugs they found in a fixed time,
and how fast they found all intended bugs. However, it is
hard to measure libFuzzer’s progress using these metrics on
arbitrary programs because libFuzzer terminates immediately
whenever the fuzzing target crashes. Moreover, the crash may
be triggered by a polluted global context rather than the
program’s bug. Thus, previous work is either limited to using
the time-to-first-crash metric [21], compared on fine-tuned
datasets [1], [9], or has to enable libFuzzer’s ignore-crash
mode, which restarts the fuzzer right after each crash [5].

Enabling the ignore-crash mode solves this comparability
issue partially but also introduces additional problems. First,
restarting a fuzzer is time-consuming, thus slowing down the
fuzzing process. Worst yet, restarts may frequently happen
because fuzzing often triggers the same crash repeatedly.
Second, the context pollution problem is less tolerable when
we are interested in metrics such as code coverage and the
number of bugs found because the polluted context may result

2A memory leak bug may be tolerable in a standalone program with a
short lifetime because the operating system will handle memory leaks after
the program terminates. However, a memory leak is fatal in library functions
since the memory leak will persist and exhaust memory eventually.

3



in an incorrect measurement of these metrics. Simply restarting
the fuzzer after a crash is insufficient to avoid a broken context
caused by non-crash bugs, which we will explain in the next
subsection.

Some fuzzers [6], [21] avoid the context pollution problem
by limiting their comparisons to a small set of manually
crafted targets (e.g., Google’s fuzzer-test-suite) or programs
without global-context dependency, but again this limits the
comparison scope.

B. Incorrect results due to context pollution

Even if libFuzzer in the ignore-crash mode can continue
after finding a crash input to the fuzzing target, it may produce
wrong results for targets expecting a clean global context. We
identify two cases in which the ignore-crash mode may behave
wrongly during fuzzing due to context pollution.

a) Programs depending on global variables: The first
case is fuzzing from a main function that assumes correctly-
initialized global variables before being called.

A C/C++ program can safely assume that global variables
with no initial value will be set to zero. However, when fuzzing
such a program, libFuzzer treats and calls the fuzzing target
like a function, so the global variables are not reinitialized
when libFuzzer fuzzes the target again. Thus, if the fuzzing
target modifies these global variables during its execution, the
fuzzing target may act incorrectly after running a few times.

For example, getopt is a widely used function parsing
the command-line arguments. It relies on a global variable
optind, which indicates the next element’s index in the
command-line arguments:

1 int getopt(int argc, char *const argv[],
2 const char *optstring);
3 extern char *optarg;
4 extern int optind, opterr, optopt;

If the fuzzing target calls getopt and libFuzzer fuzzes the
fuzzing target twice without reinitializing the global variable
optind, getopt may behave unpredictably.

LibKluzzer [12] proposes to solve this problem by mem-
orizing and replacing global variables every time the fuzzing
target reruns. However, shared contexts other than the global
variables, e.g., heap, are still polluted and will not be reset.
Also, since their tool is not publicly available, it is unclear
how LibKluzzer handles every possible global variable initial-
ization, including some that can only be correctly reinitialized
by calling the corresponding functions. Take the following C
code as an example:

1 class Foo {
2 public:
3 Foo() {x = new char[10];}
4 ˜Foo() {delete[] x;}
5 char *x;
6 };
7
8 Foo bar;
9

10 int LLVMFuzzerTestOneInput(uint8_t *data,

11 size_t size) {
12 memcpy(bar.x, data, 10);
13 parse(bar.x);
14 delete bar;
15 }

bar is a global variable. When LibKluzzer resets bar

according to the previous snapshot after the function
LLVMFuzzerTestOneInput exits, bar.x will be reinitialized
to a memory address that has already been freed at line 14.
Moreover, LibKluzzer cannot handle programs with memory
leak, explained below.

b) Programs with memory leak: Another form of context
pollution occurs when fuzzing programs that have memory
leak bugs. Since the fuzzing target runs in the same context
as the fuzzer instance, if the fuzzing target contains a memory
leak, the memory leak will persist and keep consuming the
memory until libFuzzer crashes and restarts.

IV. ICLIBFUZZER

This section presents icLibFuzzer’s design and implementa-
tion. icLibFuzzer resolves the two comparability issues while
achieving speed comparable to AFL. The key idea is to isolate
each run of the fuzzing target and the fuzzer instance and
implement this context isolation efficiently by changing lib-
Fuzzer’s in-process infrastructure into a forkserver infrastruc-
ture. Additionally, we propose structure packing to improve
fuzzing speed, set CPU affinity to ensure comparability, and
provide a compiler wrapper to compile a standalone program
without implementing the LLVMFuzzerTestOneInput func-
tion.

A. Efficient context isolation

There are two possible approaches to isolate context be-
tween each run of fuzzing target and fuzzing instance.

1) Naive forkserver: A straightforward yet expensive ap-
proach to ensuring a clean context would be forking from
the fuzzer instance and running the fuzzing target every
time. Since the fork call will spawn another process,
the global context between each run of fuzzing target
and fuzzing instance will be separated. However, this
approach will introduce unnecessary overhead because
many complicated logic and data structures in the fuzzer
instance are unnecessary for the fuzzing target, and the
main memory size impacts the forking speed significantly
according to our experiment in Section V-D.

2) Lightweight forkserer: Inspired by AFL’s infrastructure,
instead of forking directly from the fuzzer instance,
we can first fork and execve to create a forkserver,
and fork from the forkserver. Because this approach
requires less writable memory, it is faster than the native
forkserver approach. The speed comparison is shown in
Table V in Section V-C

Thus, we take the lightweight forkserver approach and sepa-
rate the fuzzer instance into two components—main controller
and forkserver. The pseudocode in Figure 3 and Figure 4

4



fork();
if inChild then

execv(forkserver);
end
while TRUE do

input = mutate();
tellForkServer(input);

waitForForkServer();

end

Fig. 3: icLibFuzzer:
main controller

while TRUE do
input =

FromMainCon-
troller();

fork();
if inChild then

call(fuzzingTarget,
input);

exit(0);
else

waitForChild();
end
tellMainController();

end

Fig. 4: icLibFuzzer:
forkserver

initialize main controller

generate input

give input to forkserver

wait to collect
information from
forkserver

initialize forkserver

wait for input

fork
(child process)
run fuzzing target

(parent process)
wait for child
to exit

tell main controller

IPC

SIGCHLD

IPC

Fig. 5: icLibFuzzer’s workflow.
The dashed lines represent the communication channel.

represent the main controller and forkserver, respectively, and
Figure 5 illustrates how icLibFuzzer works.

The forkserver is spawned (execve after fork) from
the main controller, and they communicate with each other
through Inter-Process Communication (IPC). The main con-
troller component is responsible for analyzing information
collected from the instrumented program and generating inputs
according to the collected information. For each input received
from the main controller, the forkserver forks a child process to
run the fuzzing target and collects instrumentation information.
This design ensures that the fuzzing target always starts
running from a clean context, free from the pollution of the
previous runs, and is much faster than forking directly from
fuzzing instance.

Moreover, we use shared memory as a fast IPC approach to
pass instrumentation information back to the main controller
from the forkserver. To achieve this, we move the data
structure that stores instrumentation information into shared
memory.

B. Structure Packing

Although this forkserver infrastructure is faster than forking
directly from the main controller, it is still much slower than
the original libFuzzer due to the resource-consuming fork
procedure.

We observe that a primary factor affecting the forking speed
is the writable memory size—the memory space that may
be written to in the fuzzing target. Therefore, we propose
structure packing to reduce the memory size and increase the
forking speed.

The idea of structure packing is to pack all data collected
from instrumentation into one compact structure to minimize
the wasted space. For example, the following code snippet
shows several data structures used in libFuzzer to store instru-
mentation data. The arrays MemMemWords and Table store the

fuzzing target’s information, collected through instrumentation
at runtime.

1 template<size_t kMaxSize>
2 class FixedWord {
3 public:
4 ...
5 private:
6 uint8_t Size = 0;
7 uint8_t Data[kMaxSize];
8 };
9 typedef FixedWord<64> Word;

10 struct Pair {
11 Word A, B;
12 };
13 Word MemMemWords[1024];
14 struct Pair Table[32];

As these data structures store instrumentation information,
they may be modified during the fuzzing target’s execution.
Instead of allocating space to them separately, icLibFuzzer
packs all data into a compact structure in the shared memory
to minimize the unused space:

1 Total = mmap(...);
2 MemMemWords = Total;
3 // ensure MemMemWords and Table
4 // don’t overlap
5 Table = Total + Offset;

As shown in Section V-D, structure packing can double the
running speed in several real-world binaries as we minimize
the total memory pages that may be written to in the fuzzing
target, allowing icLibFuzzer to fuzz at speed comparable to
AFL.

This structure packing technique can be applied to speed
up other forkserver-based fuzzers that use multiple data struc-
tures to pass information between the forkserver and main

5



controller.

C. Set CPU Affinity

We set CPU affinity to each icLibFuzzer instance. Namely,
we bind each fuzzer instance to a CPU/core. There are three
reasons for doing this. First, binding a process to one CPU
will improve cache locality and reduce cache miss for better
performance. Second, since AFL binds its process to one
CPU, most of its successors and family members do this too.
Therefore, we eliminate a potential variation when comparing
icLibFuzzer with fuzzers in the AFL family by following
this convention. Third, binding a process to a CPU reduces
interference between different fuzzing instances. Since one
fuzzer instance can use at most one CPU, a fuzzer instance
consisting of several processes (e.g., icLibFuzzer) will not
interfere with other instances if we want to fuzz in parallel.

D. Compiler wrapper

icLibFuzzer comes with a compiler wrapper to automati-
cally compile a standalone program for icLibFuzzer.

Recall that libFuzzer requires users to implement a
LLVMFuzzerTestOneInput function as a callback in the
fuzzer instance to identify the fuzzing target. This task can be
laborious because users have to find out every input function
in the fuzzing target and may accidentally introduce additional
bugs. It is even more challenging when the fuzzing target reads
inputs through non-standard methods or performs complex
operations.

Take the following code snippet as an example:

1 read(0, buf1, size1);
2 read(0, buf2, size2);

One may implement the desired LLVMFuzzerTestOneInput

function as follows.

1 int LLVMFuzzerTestOneInput(uint8_t*
2 Data, size_t Size) {
3 if (Size >= size1) {
4 memcpy(buf1, Data, size1);
5 if (Size >= size1 + size2)
6 memcpy(buf2, Data + size1,
7 size2);
8 else
9 memcpy(buf2, Data + size1,

10 Size - size1);
11 }
12 else
13 memcpy(buf1, Data, Size)
14 }

As the fuzzing target becomes more complex, the im-
plementation of LLVMFuzzerTestOneInput may become
harder and human errors may occur occasionally.

To simplify the procedure and avoid human errors, we pro-
vide a clang wrapper, clang-fast, which handles everything—
just like afl-clang-fast in AFL. All a user needs to do is
compile the target project using clang-fast; no need to modify
any source code manually.

TABLE I: Fuzzers used in the evaluation and their versions

version (or last-commit date)
AFL 2.52b (5 Nov 2017)

Angora 25 May 2019
Honggfuzz 22 May 2019

libFuzzer-LLVM9 LLVM 9 (22 April 2019)
libFuzzer-LLVM11 LLVM 11 (27 Sep 2020)

QSYM 15 October 2019
AFL++ 11 Dec 2020

icLibFuzzer-LLVM9/11 follow libFuzzer-LLVM9/11

V. EVALUATION

To demonstrate that icLibFuzzer improves fuzzer compa-
rability, we compare icLibFuzzer with state-of-the-art fuzzers
based on code coverage in real-world programs. The results
will unveil how effective libFuzzer’s advanced features are
in comparison with other fuzzers. We also investigate icLib-
Fuzzer’s speed: how much is traded for comparability and
how much we gain back by infrastructural and implementation
optimizations.

Specifically, we ask the following three research questions:
RQ-1: Code-coverage comparison. Can icLibFuzzer achieve

better code coverage compared with other state-of-the-
art fuzzers?

RQ-2: Execution speed difference. What is icLibFuzzer’s
execution speed compared with AFL, libFuzzer, and a
naive forkserver implementation?

RQ-3: The effectiveness of optimization. Does structure
packing improve fuzzing speed, and by how much?

A. Settings

a) Fuzzers: Table I lists the fuzzers and their versions
used in our experiments. We choose AFL and Honggfuzz
because they are the core fuzzers (in addition to libFuzzer)
used in OSS-Fuzz [16]. Speaking more specifically, we utilize
the afl-clang-fast instead of afl-gcc as the execution
speed of binaries compiled by afl-clang-fast is much
faster. We also choose two strong fuzzers, QSYM and Angora,
released in 2019. QSYM is a hybrid fuzzer that defeats AFL
and previous hybrid fuzzers. It uncovers bugs in ffmpeg
which has already been fuzzed by OSS-Fuzz for years. Angora
uses multiple techniques, including taint tracking, to solve
branch conditions without using symbolic execution. It shows
notable improvement over AFL.

Our icLibFuzzer uses the same LLVM version as lib-
Fuzzer. Throughout the evaluation, we use LLVM9 by default
(i.e., icLibFuzzer-LLVM9) unless specified otherwise. We
include icLibFuzzer-LLVM11 (released in late 2020) mainly
to demonstrate that one can effortlessly update icLibFuzzer
whenever newer versions of LLVM and libFuzzer are avail-
able. Additionally, we include AFL++, whose latest version
was released in December 2020. AFL++ assembles multiple
optimization techniques and integrates them into the latest
AFL. It shows a significant performance boost compared with
the original AFL after enabling multiple optimizations simul-
taneously. However, due to the limited time before the sub-

6



Fig. 6: Comparison between fuzzers. All the legend color mappings are the same as labeled in xmlwf.

Fig. 7: Comparison among latest icLibFuzzer-LLVM11, state-of-the-art AFL++ and icLibFuzzer-LLVM9.

mission, we only compare icLibFuzzer-LLVM9, icLibFuzzer-
LLVM11, and AFL++ with each other, not with the other
fuzzers.

b) Datasets: We use two datasets: one contains real-
world programs (objdump-2.35, readelf-2.35, nm-new-2.35,
tcpdump-4.9.2, xmlwf-2.2.9, nasm-2.16rc0) and the other is
the fuzzer-test-suite. The real-world program dataset is for
coverage and speed comparison with icLibFuzzer, while the
fuzzer-test-suite is only used for speed comparison with lib-
Fuzzer.

c) Time budget: We run every binary eight times and
each for 72 hours, which is the longest we can do given our
resource budget. We report the average code coverage and
standard deviation. Because fuzzing in the real world often
lasts long (e.g., more than one month), investigating the trend
after 24 hours of fuzzing can hint at the fuzzer’s ability to find
new code coverage continuously.

d) Fuzzer configuration: To ensure fair comparisons, we
assign no initial seeds to fuzzers because initial seeds may
have a significant impact on fuzzing [11]. We discuss the
effect of initial seeds in discussion section. We run all fuzzers
with two threads to ensure a fair comparison with QSYM
(which needs at least two threads). To further normalize the
fuzzer’s result, we calculate all the code coverage results using
clang’s source-based code coverage feature from interesting
seeds reported by each fuzzers. We run our experiment on a
machine with one AMD Ryzen Threadripper 2990WX 32-
Core Processor and 64GB memory, running Ubuntu 18.04
LTS.

In our evaluation, we enable the first three advanced instru-
mentation features introduced in Section II but not dataflow
trace because dataflow trace requires manual function labeling
and may provide an unfair advantage to icLibFuzzer in our
comparative evaluation.

7



TABLE II: Comparing each fuzzer’s average speed (exe-
cutions per second) on real-world programs after running
72 hours.

readelf nm-new objdump tcpdump nasm xmlwf
icLibFuzzer 1701 1667 1030 1603 359 2349
AFL 1708 1906 1032 2438 337 2983
qsym 1380 2990 1174 3087 430 4917
angora 1300 681 684 1068 419 1157
honggfuzz 86 96 116 108 76 126

TABLE III: Effect of structure packing. We run for 30
minutes in each cases to obtain a stable execution speed.
RSS (Resident Set Size) is the RAM size consumed by
the process, and exec/s stands for executions of fuzzing
target per second.

exec/s RSS (Bytes)
no pack pack no pack pack

objdump 1992 3740 7260K 3636K
readelf 2404 4426 7672K 3356K
nm-new 2083 3991 7544K 3324K
tcpdump 2168 4103 7504K 3492K

TABLE IV: Comparing each fuzzer’s speed (executions per
second) on the fuzzer-test-suite dataset. Version of libFuzzer
and icLibFuzzer here is LLVM9. We run for 30 minutes in
each case to get to a relatively stable execution speed.

libFuzzer icLibFuzzer AFL naive
forkserver

boringssl-2016-02-12 26707 1722 1201 136
freetype2-2017 9210 927 1038 128
libpng-1.2.56 8707 2556 3340 69
openssl-1.1.0c 22460 512 560 164

sqlite-2016-11-14 20587 1112 881 63

TABLE V: Comparing naive forkserver with lightweight fork-
server. We run for 30 minutes in each case to get to a
relatively stable execution speed. RSS (Resident Set Size) is
the RAM size consumed by the process, and exec/s stands
for executions of fuzzing target per second.

Benchmark light-weight forkserver naive forkserver
exec/s RSS (bytes) exec/s RSS (bytes)

boringssl-2016-02-12 1722 9M 136 335M
freetype2-2017 927 9M 128 388M
libpng-1.2.56 2556 6M 69 353M
openssl-1.1.0c 512 11M 164 276M

sqlite-2016-11-14 1112 6M 63 340M

B. RQ-1

To answer this question, we evaluate icLibFuzzer’s code
coverage on the real-world program dataset and compare
the results with four state-of-the-art fuzzers (AFL [20], An-
gora [4], QSYM [19], and Honggfuzz [17]). Note that AFL,
Honggfuzz, and libFuzzer have only been compared in the
in-process mode (also called the persistent mode in AFL and
Honggfuzz) in previous work. With icLibFuzzer, these three
fuzzers can compare with each other on arbitrary programs.

Code coverage As shown in Figure 6, icLibFuzzer outper-
forms other fuzzers in most binaries.

We observe two interesting phenomena from the results.
1) Bad performance of Angora: Angora shows better per-

formance than AFL in its original paper. However, we can
see that Angora does not perform well in our experiment.
One plausible reason may be that Angora highly relies
on initial seeds, at least for these six programs we tested.
Other fuzzers in our experiment seem to work reasonably
despite an empty initial seed. It needs further investigation
on selecting seeds wisely for Angora.

2) Code coverage after 24 hours: As suggested in [11], we
should run fuzzers for 24 hours for a fair comparison. We
can also see many papers [5], [7], [8] running experiments
less than or equal to 24 hours. However, according to
our experiment results, icLibFuzzer can still find new
code coverage steadily after 24 hours, indicating that
fuzzing results within 24 hours may still be insufficient to
represent a fuzzer’s capability to find new bugs or cover
additional code.

Upgrade and compare with the latest fuzzers. To demon-
strate that icLibFuzzer can easily update to incorporate newer
libFuzzer versions, we update icLibFuzzer to LLVM 11 and
compare it with icLibFuzzer-LLVM9 and a state-of-the-art
fuzzer, AFL++ [7], released in late 2020.

As Figure 7 shows, icLibFuzzer-LLVM11 has competitive
performance compared with AFL++. icLibFuzzer-LLVM11
performs better than icLibFuzzer-LLVM9 and AFL++ on
nm-new. All three have similar code coverage on readelf,
and AFL++ catches up after 24 hours on nasm. Due to
our time budget, we can only run three binaries two times
and 72 hours for each without initial seeds with these three
fuzzers. We continue to run these experiments to evaluate the
performance of the latest icLibFuzzer.

C. RQ-2

To answer this question, we run libFuzzer, icLibFuzzer, and
AFL on the fuzzer-test-suite dataset and measure the number
of executions per second. Using this dataset ensures libFuzzer
can behave correctly.

As Table IV shows, icLibFuzzer is 4x to 50x slower than
libFuzzer. However, when we compare icLibFuzzer with AFL,
they run at almost the same speed even though icLibFuzzer
supports more instrumentation than AFL.

We also compare the execution speed and main memory
size of the naive forkserver and lightweight forkserver in Ta-
ble V, as mentioned in Section IV. Since the naive forkserver
approach forks directly from the fuzzer instance, it inherits the
large memory space, slowing down the fork procedure and
fuzzing target, thus the total execution speed of the fuzzer is
3x to 37x slower compared with icLibFuzzer.

D. RQ-3

As mentioned in Section IV, structure packing reduces the
memory size in the forkserver and increases the speed. We

8



evaluate the execution number per second with and without
structure packing on four binaries, and Table III summarizes
the results. On average, structure packing halves the memory
usage and doubles the execution speed of icLibFuzzer.

VI. DISCUSSION

This section discusses two crucial factors that influence the
fuzzing results: initial seeds and the number of fuzzing threads.
We view them as control variables in the evaluation to ensure
fair comparison among fuzzers. Further investigation is needed
to understand their impact on fuzzing.

A. Initial seed selection

Prior work shows that initial seeds may affect the fuzzing
result drastically [11] and recommends that it may also be a
good idea to assign no initial seed (i.e., starting a fuzzer with
an empty seed pool). It hypothesizes that if one fuzzer can
perform well across various programs without initial seeds, it
is likely that this fuzzer can also perform well on other datasets
without initial seeds. Therefore, in our experiments, we fuzz
these real-world programs without assigning any initial seeds.
Our experiment results on real-world programs conforms with
this hypothesis, but we leave choosing initial seeds wisely and
fairly, and evaluating fuzzing with these initial seeds for future
work.

B. The number of fuzzing threads

Several fuzzers [4], [5], [7], [13], [14] support parallelism to
utilize processing power better. Additionally, when conducting
fuzzing experiments, one might run multiple fuzzer instances
parallelly and compute the averaged results to reduce random-
ness.

However, we observe from our experiment that when run-
ning multiple fuzzers in parallel, the number of concurrent
fuzzing threads affects the fuzzing speed. The reason might
be that due to the Linux kernel’s design nature, some system
calls cannot run in parallel, which limits the scalability of
parallel fuzzing.

Figure 8 provides an example, showing how AFL’s execu-
tion speed decrease as number of fuzzer instances increases.

This observation coincides with the results reported in prior
work [18] that AFL and LibFuzzer have little performance gain
when using more cores in parallel fuzzing; the total execution
time per second does not increase linearly with the number of
cores used.

Hence, fuzzing experiments should control the number of
fuzzer instances running simultaneously. For example, if we
would like to run icLibFuzzer on objdump for 30 times and
compute the average code coverage, we cannot split the ex-
periment into 10 plus 20 times; otherwise, the execution speed
will differ significantly, making the average value meaningless.

C. Case Study

Due to our time budget, we did not fuzz many real-world
programs to find bugs (e.g., enabling the address sanitizer).
Among those we tested, we found one crash on nasm after
fuzzing it with icLibFuzzer for 15 hours.

0 10 20 30 40 50 60
Simultaneous fuzzing threads

1000

2000

3000

4000

5000

Ex
ec

ut
io
n 
sp

ee
d 
pe

r t
hr
ea

d 
(e
xe

c/
s)

Fig. 8: Running multiple AFL fuzzer instances simultaneously.
We run AFL on readelf with 1 to 64 fuzzer instances simul-
taneously. We spend 30 minutes in each case to wait for the
execution speed to become rather stable and report the average
speed.

The crash happens in the paste_tokens function:

1 p = buf = nasm_malloc(len + 1);
2 while (tok != next) {
3 p = mempcpy(p, tok_text(tok), tok->len);
4 tok = delete_Token(tok);
5 }
6 *p = ’\0’;
7 *prev_next = tok = t = tokenize(buf);
8 nasm_free(buf);
9

10 /*
11 * Connect pasted into original stream,
12 * ie A -> new-tokens -> B
13 */
14 while (t->next) {
15 t = t->next;
16 }

The object t returned by tokenize in line 7 is a link list, and
in lines 14-16 it tries to find the tail of this link list. However,
it fails to check if t is NULL or not. If buf in line 13 is NULL,
then the returned t will be NULL, causing line 14 to crash as
it tries to dereference a NULL pointer.

VII. GUIDELINE FOR UPGRADING TO NEWER LIBFUZZER

As libFuzzer evolves actively, we design icLibFuzzer to
be generic enough to work with future libFuzzer updates
and provide a guideline to port libFuzzer’s new features to
icLibFuzzer quickly.

1) Non-instrumentation features: Because the change we
made in libFuzzer mainly affects how the fuzzer handles
data structure that stores instrumentation information,
libFuzzer updates that are irrelevant to instrumentation
should work seamlessly without any modification to
icLibFuzzer.

9



2) Instrumentation features: icLibFuzzer separates the
fuzzer instance’s context and fuzzing target’s context, and
we use shared memory to pass the information collected
from instrumentation to the main controller. To add new
data structure that stores instrumentation information,
simply follow the two steps below:

a) Increase the allocated memory size: The first step
is increasing the allocated memory size to incorporate
the new instrumentation information, but the increase
should be as small as possible to minimize the impact
on fuzzing speed. The member method Initialize

in structure TracePC in FuzzerTracePC.h will
allocate several contiguous shared memory pages stor-
ing every data structure related to instrumentation in
order to share information between main controller and
forkserver, One should try to minimize the required
amount of increased memory because the memory size
dominates icLibFuzzer’s execution speed, as shown in
Section V.

b) Map data structure to shared memory: After allo-
cating additional shared memory, we point the newly
allocated shared memory to the data structure storing
information collected from instrumentation. When the
instrumentation code in the fuzzing target gathers new
information, it will be passed to the main controller by
the newly added data structure on the shared memory.

VIII. RELATED WORK

Our work aims to improve comparability between libFuzzer-
based fuzzers and other fuzzers in AFL family. In this section,
we review related work that enhances, integrates, or compares
with libFuzzer.

A. Enhancing libFuzzer

Several projects aim to improve libFuzzer [14], [15]. Parme-
San [21] implements sanitizer-oriented fuzzing on top of lib-
Fuzzer, aiming to optimize for bug coverage. FuzzerGym [6]
applies reinforcement learning to improve seed mutation, im-
plements the idea by combining OpenAI Gym with libFuzzer,
and evaluates using the fuzzer-test-suite dataset.

Entropic [3] improves libFuzzer’s seed scheduling algo-
rithm. It quantifies the amount of information gained by each
seed and chooses which seed to mutate first according to this
value. Entropic is available in the latest libFuzzer (included
in LLVM11, released in September 2020). As we show in
the evaluation, icLibFuzzer can support this new libFuzzer
feature easily, demonstrating the strength of our fuzzer. More-
over, icLibFuzzer-LLVM11 (using the latest libFuzzer) has
competitive performance with AFL++ (v3), a powerful AFL-
based fuzzer released in December 2020; this reconfirms the
need to bridge the libFuzzer and AFL families, allowing new
techniques to be shared transparently.

LibKluzzer [12] uses libFuzzer as a part of its hybrid fuzzer
engine. To mitigate the context pollution problem, it identifies
global variables, snapshots these global variables, and reinitial-
izes these global variables in every fuzzing iteration. However,

this approach may face several problems as mentioned in
Section IV.

Our work differs from previous work in that we aim to
improve libFuzzer’s comparability with other fuzzers over a
wide range of programs. Thus, we focus on solving the context
pollution problem and reducing the manual efforts in modify-
ing the target code. We also pay attention to implementation
details to preserve libFuzzer’s performance advantage.

B. Integrating or Comparing with libFuzzer

EnFuzz [5] combines fuzzers with diverse capabilities to
increase overall code coverage, and one of the included fuzzers
is libFuzzer. EnFuzz implements a monitor thread to restart
libFuzzer whenever it crashes, which is similar to enabling
the ignore-crash mode in libFuzzer. However, as mentioned
in Section IV, EnFuzz’s approach does not fully solve the
comparability issue because the context may still be polluted
and produce incorrect results.

OSS-Fuzz [16] is developed to find bugs in real-world pro-
grams and employs libFuzzer as one of its components. Instead
of modifying libFuzzer, OSS-Fuzz modifies the fuzzing target
to ensure libFuzzer works correctly.

IX. CONCLUSION

Although libFuzzer is under active development and sup-
ports advanced techniques such as CMP tracing and value
profiling, its progress and success have not been thoroughly
compared against other fuzzing tools.

In this work, we propose and implement icLibFuzzer, a
new libFuzzer mode that can fuzz programs not designed to
run continuously, including many real-world programs, with-
out manually modifying them. icLibFuzzer achieves higher
code coverage than several state-of-the-art fuzzers on most of
the real-world programs we tested. Additionally, we design
icLibFuzzer to be compatible with new features added in the
future. We envision icLibFuzzer can serve as another baseline
in fuzzing research.

We are currently working on integrating our compiler
wrapper with FuzzGen [10], an automated tool to generate
LLVMFuzzerTestOneInput for a library function, so that we
can run icLibFuzzer not only on standalone programs but also
library functions.

We are interested in three future research directions: (1)
investigating factors critical to fuzzer comparability, such
as initial seed selection; (2) improving icLibFuzzer’s speed
via infrastructural and implementation optimizations; and (3)
exploring cache-aware structure packing to eliminate misalign-
ment, a potential side-effect of structure packing.

ACKNOWLEDGMENT

This research was supported in part by the Ministry of
Science and Technology of Taiwan (MOST 110-2628-E-002-
002) and Delta Electronics. We gratefully thank Chun-Ying
Huang, Shih-Kun Huang, Wei-Loon Mow, and Che-Yu Wu for
seeding the idea and providing insightful feedback throughout
the project execution.

10



REFERENCES

[1] (2020) FuzzBench - Fuzzer benchmarking as a service. [Online].
Available: https://github.com/google/fuzzbench

[2] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” in Symposium
on Network and Distributed System Security (NDSS), 2019.

[3] M. Böhme, V. J. Manès, and S. K. Cha, “Boosting fuzzer efficiency: An
information theoretic perspective,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 678–689.

[4] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 711–
725.

[5] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao,
and Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 1967–1983. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/chen-yuanliang

[6] W. Drozd and M. Wagner, “Fuzzergym: A competitive framework for
fuzzing and learning,” 07 2018.

[7] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi

[8] V. Herdt, D. Große, J. Wloka, T. Güneysu, and R. Drechsler, “Verifica-
tion of embedded binaries using coverage-guided fuzzing with systemc-
based virtual prototypes,” in GLSVLSI, 2020.

[9] G. Inc. (2016) A set of tests (benchmarks) for fuzzing engines (fuzzers).
[Online]. Available: https://github.com/google/fuzzer-test-suite/

[10] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen:
Automatic fuzzer generation,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
2271–2287. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/ispoglou

[11] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 2123–2138.
[Online]. Available: https://doi.org/10.1145/3243734.3243804

[12] H. Le, LLVM-based Hybrid Fuzzing with LibKluzzer (Competition
Contribution), 04 2020, pp. 535–539.

[13] J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou, and J. Sun, “Pafl:
Extend fuzzing optimizations of single mode to industrial parallel
mode,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
809–814. [Online]. Available: https://doi.org/10.1145/3236024.3275525

[14] libfuzzer@googlegroups.com. (2019) LibFuzzer – a library for
coverage-guided fuzz testing. [Online]. Available: http://llvm.org/docs/
LibFuzzer.html

[15] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,”
in 2016 IEEE Cybersecurity Development (SecDev), 2016, pp. 157–157.

[16] K. Serebryany, “Oss-fuzz - google’s continuous fuzzing service for open
source software.” Vancouver, BC: USENIX Association, Aug. 2017.

[17] R. Swiecki, “Honggfuzz: A general-purpose, easy-to-use fuzzer
with interesting analysis options,” 2017. [Online]. Available: https:
//github.com/google/honggfuzz

[18] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2313–2328. [Online]. Available:
https://doi.org/10.1145/3133956.3134046

[19] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A
practical concolic execution engine tailored for hybrid fuzzing,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[20] M. Zalewski. American Fuzzy Lop (AFL). [Online]. Available:
http://lcamtuf.coredump.cx/afl/

[21] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan:
Sanitizer-guided Greybox Fuzzing,” in USENIX Security, Aug. 2020.
[Online]. Available: Paper=https://download.vusec.net/papers/parmesan
sec20.pdf Code=https://github.com/vusec/parmesan

11


