
Declarative Demand-Driven Reverse Engineering
Yihao Sun∗, Jeffrey Ching†, and Kristopher Micinski‡

Department of Electical Engineering and Computer Science, Syracuse University
Email: ∗ysun67@syr.edu, †cching01@syr.edu, ‡kkmicins@syr.edu

interactively, via a GUI or CLI) in a variety of ways. For
example, a reverse engineer looking for a time bomb may
first search for calls to the system’s time function, and then
walk backwards to understand whether each call is associated
with legitimate or malicious behavior. In doing so, the RE
may need to reason about, e.g., indirect control flow, or even
identify the time function (in a stripped binary). Because REs
are expert users, and often skilled programmers, RE tools
provide programmatic interfaces that enable REs to system-
atize reasoning tasks via extensions. A broad range of popular
extensions exist for several tools which perform such tasks as
loading the results of static analyses [7], [8], interacting with
debuggers [9], and identifying common cryptographic-relevant
code [10].

In this paper, we argue that deductive databases (e.g., Data-
log) serve as a natural abstraction boundary between RE tools
and logical inference tasks over binaries. We envision a future
in which a reverse engineer interactively explores a binary
using an RE tool while simultaneously querying arbitrarily-
complex logical properties written in a terse declarative style.
We call this Declarative Demand-Driven Reverse Engineering
(henceforth D3RE). In D3RE, an RE interacts with a deductive
database by giving inputs (e.g., the currently highlighted
address) to a rule-based deductive inference system written
in a declarative language such as Datalog. Rules inductively
compute relations over facts about the binary. As an example,
consider a relation direct call ∈ Addr × Addr which relates
callsite addresses (offsets within the binary) to procedure
invocation target addresses. In our vision, D3RE allows REs to
interactively compute with and visualize the results of queries
over these deductive rules.

We see D3RE as a natural extension of several observations
about the state of the start. First, many existing RE tools
assemble databases to index various properties (e.g., addresses,
symbols, etc...) of binaries for quick exploration. Deduc-
tive databases further allow REs to write arbitrary logical
queries which are computed maximally efficiently via, e.g.,
compilation to relational algebra kernels as done in Soufflé.
Deductive databases have also enabled several recent advances
in binary analysis demonstrating both efficiency and robust-
ness over conventional techniques. For example, the Datalog-
based disassembler ddisasm achieves both faster and more-
precise disassembly than other state-of-the-art disassemblers,
and OOAnalyzer uses Prolog to enable declarative recovery of
classes from compiled C++ code.

In this short paper we describe our progress in implementing
a prototype tool, d3re, which we are building to realize the

Abstract—Binary reverse engineering is a challenging task 
because it often necessitates reasoning using both domain-specific 
knowledge (e.g., understanding entrypoint idioms common to an 
ABI) and logical inference (e.g., reconstructing interprocedural 
control flow). To help perform these tasks, reverse engineers 
often use toolkits (such as IDA Pro or Ghidra) that allow them 
to interactively explicate properties of binaries. We argue that 
deductive databases serve as a natural abstraction for interfacing 
between visualization-based binary analysis tools and high-
performance logical inference engines that compute facts about 
binaries. In this paper, we present a vision for the future in which 
reverse engineers use a visualization-based tool to understand 
binaries while simultaneously querying a logical-inference engine 
to perform arbitrarily-complex deductive inference tasks. We 
call our vision declarative demand-driven reverse engineering 
(D3RE for short), and sketch a formal semantics whose goal is 
to mediate interaction between a logical-inference engine (such 
Soufflé) and a reverse engineering tool. We describe a prototype 
tool, d3re, which are using to explore the D3RE vision. While 
still a prototype, we have used d3re to reimplement several 
common querying tasks on binaries. Our evaluation demonstrates 
that d3re enables both better performance and more succinct 
implementation of these common RE tasks.

I. INTRODUCTION

Binary reverse engineering (henceforth RE) is the process
by which we start with some input binary (sequence of
bytes) and employ various reasoning principles to explicate
its behavior when executed as code. While RE tasks are often
partially automated (e.g., via decompilation), full automation
is often impossible: the extreme semantic expressivity af-
forded to binaries (including encrypted code, stripped symbol
tables, etc..) often necessitates open-ended exploration and
case-specific reasoning. Recent literature suggests that many
practicioners follow an iterative approach involving several
rounds of hypothesis formation and validation/falsification,
often assisated via a combination of static and dynamic
analysis [1]–[3].

To rapidly interact with a binary, RE practicioners often use
reverse engineering tools such as Ghidra [4], IDA Pro [5],
or Radare2 [6]. The goal of these tools is to allow an
RE1 to quickly explore the binary and visualize it (typically

1When unambiguous, we will use the term RE both to mean the process 
of reverse engineering and a reverse engineering practicioner

Network and Distributed Systems Security (NDSS) Symposium 2021
21 February 2021, Virtual
ISBN 1-891562-69-X
https://dx.doi.org/10.14722/bar.2021.23011
www.ndss-symposium.org



D3RE vision. d3re allows REs to interactively define and
calculate queries of arbitrary complexity over large production
binaries and then visualize their results using Ghidra. To
implement d3re we have designed an interface, which we call
the mediator, that sits between a traditional Datalog solver and
an RE tool. We briefly formalize this interaction between the
RE tool and logic solver in Section III, and go on to describe
our prototype Ghidra extension that enables visualizing the
results of binary analyses in our tool. Using this formalism,
we describe how d3re readily enables a broad range of binary
analyses and sketch a vision for how we believe D3RE will
prove to be a natural ergonomic for reverse engineering.

We have measured the robustness of d3re in several ways.
First, we wanted to know whether d3re could truly live up
to our vision of being a natural replacement for the kinds
of scripts REs already use in their day-to-day work. To
evaluate this, we reimplemented a set of currently-existing
Ghidra scripts. We happily observed that d3re was not only
an ergonomic advantage (allowing us to write succinct but
obviously-correct queries) but also a performance advantage.
For example, many Ghidra scripts play tricks to avoid un-
necessarily complexity that would arise in a straightforward
implementation, e.g., iterating over a set of functions in a loop
to check a property resulting in super-linear complexity. In
d3re, the Datalog solver was naturally able to compile and
organize work in an optimal way. We discuss this and other
results in Section IV. We conclude with a brief overview of
related work and our outlook on future directions in Section V

Specifically, we claim the following three contributions:

• A formalization of our metadatabase as a database of
databases used to optimize subsequent invocations of the
Datalog solver (Section III).

• A prototype tool, d3re, consisting of a server which
wraps ddisasm with logic to enable chaining multiple
subsequent calls via the metadatabase. Also included in
d3re is an extension to the Ghidra RE toolkit to enable
visualizing results computed using d3re.

• An evaluation of d3re on a set of benchmarks demon-
strating positive initial results indicating that d3re could
replace present-day binary analysis infrastructure (e.g.,
Ghidra scripts) and directly enable more efficient and
succinct implementation.

II. OVERVIEW

In this section, we demonstrate the vision and application of
D3RE by illustrating how a reverse engineer might explicate
a vulnerability due to an uninitialized global variable. We
consider a particular binary, CROMU_00038, from DARPA’s
Cyber Grand Challenge which contains a function pointer
which is uninitialized when an invalid flag is set in the
metadata portion of an input file [11], [12]. We demonstrate
how our prototype tool, d3re, can be used to build a declar-
ative query to find uninitialized function entry points and
visualize them within Ghidra. We do not claim that d3re can
immediately or automatically discover vulnerabilities—in this

1 // swap_short and swap_word only initialized
within if

2 if (tiff_hdr->Byte_Order == 0x4949) {
3 printf("Intel formatted integers\n");
4 swap_word = intel_swap_word;
5 }
6 else if (tiff_hdr->Byte_Order == 0x4d4d) {
7 printf("Motorola formatted integers\n");
8 swap_word = motorola_swap_word;
9 }

10 #ifdef PATCHED
11 else {
12 printf("Invalid header values\n");
13 _terminate(-1);
14 }
15 #endif
16 // might cause an uninitialized variable bug here
17 offset = swap_word(tiff_hdr->Offset_to_IFD);

Fig. 1: Uninitialized variable vulnerability in CROMU0038
source code

>>> load dl/use_def_global.dl
>>> run dl/use_def_global.dl
>>> load dl/uninitialized.dl
>>> run dl/uninitialized.dl
>>> highlight
>>> comment
>>> query use_before_def_global
00004feb 0000a180 swap_short
00005017 0000a188 swap_word
...
0000515e 0000a180 swap_short

Fig. 2: d3re REPL session used in this overview.

section we try to focus on how its declarative reasoning instead
enables rapidly exploring a binary to uncover some property.

The vulnerable segment of code is a use-before-definition
bug shown in Figure 1. The swap word function is initialized
inside of the main function based on a value parsed in a TIFF
header—if the flag does not match 0x4949 or 0x4d4d the
function is left uninitialized and the call on line 17 crashes.

Loading the binary: To begin an analysis of a binary, an
RE will load the binary into a reverse engineering tool. In our
current implementation of d3re, a user opens two processes
silmultaneously: a GUI-based instance of Ghidra, and a ter-
minal running d3re’s REPL. The user can explore the binary
using all of the normal features of Ghidra and use all of its
conventional analyses (e.g., to recover entrypoints). However,
d3re’s REPL communicates with Ghidra so that when d3re’s
analysis finishes Ghidra’s views update as appropriate.

Initial processing: It is conventional that reverse engi-
neering tools will apply a set of analyses to a binary to
disassemble it and index various items such as entrypoints
and callsites In d3re, the user builds queries in Datalog
starting from a large initial set of Datalog rules that build
on top of ddisasm, a Datalog-based disassembly engine [13].
Analogously to the indexing and analysis operations provided
by Ghidra (and other RE tools), d3re invokes ddisasm once

2



def_global(EA,dest) :-
code(EA), instruction_get_dest_op(EA,Index,_),
pc_relative_operand(EA,Index,dest),
defined_symbol(dest,_,"OBJECT","GLOBAL",_,_).

used_global(EA,dest,Index) :-
code(EA), instruction_get_src_op(EA,Index,_),
pc_relative_operand(EA,Index,dest),
defined_symbol(dest,_,"OBJECT","GLOBAL",_,_).

def_used_global(EA_def,GA,EA_used,Index) :-
used_global(EA_used,GA,Index),
block_last_def_global(EA_used,EA_def,GA).

def_used_global(EA_def,GA, EA_used, Index) :-
last_def_global(Block,EA_def,GA),
code_in_block(EA_used, Block),
used_global(EA_used, GA, Index),
!block_last_def_global(EA_used,_,GA),.

Fig. 3: Global Var Use-Def analysis

to build an initial database.
Building on top of ddisasm was initially a strategic

choice—ddisasm already includes facilities to parse object
files and transform them into input databases in the style
required by Soufflé. Initially, we extended ddisasm’s set of
rules with additional user-specific queries—a slow process, as
ddisasm can take several minutes to run on large binaries.
This was at odds with our goal of enabling rapid real-time
feedback to users of d3re.

D3RE builds upon a key observation that we have found
crucial to enable efficient interactive binary analyses in prac-
tice: because Datalog is monotonic, we can evaluate an
extended program (i.e., a program extended with a set of
additional rules or queries) by using the database resulting
from the calculation of the previous program. Thus, running
ddisasm once allows pre-populating a large set of inferred
relations for a wide range of interesting facts about binaries,
including intraprocedural reachability and calling conventions.

When a binary is loaded, d3re invokes ddisasm with one
slight modification: every Datalog relation in ddisasm’s rule
database (used by ddisasm to build a disassembly) is modified
to be an output relation. In ddisasm, only dissassembly-
relevant relations are output, rather than internal relations (e.g.,
those that relate to intraprocedural reachability). By marking
all ddisasm’s relations as output relations, d3re provides
them to the user as primitives with which to build queries
over binaries2. After the binary is loaded, all rules declared
in ddisasm will be available for querying. Additionally,
ddisasm will be run only once, even if the user uploads
the same binary several times. All facts generated in this step
will be stored in a temporary folder on disk managed by the
metadatabase (described in Section III).

Designing a query to explicate use-before-define: In the
D3RE approach, REs interactively build queries to highlight
various portions of the program that match certain properties.

2A relevant analogy might be that ddisasm is the standard library of d3re

use_before_def_global(EA_used,GA,Name) :-
used_global(EA_used,GA,Index),
!def_used_global(_,GA,EA_used,_),
defined_symbol(GA,_,"OBJECT","GLOBAL",_,Name).

use_before_def_global(EA_used,GA,Name) :-
used_global(EA_used,GA,Index),
def_used_global(EA_def,GA,EA_used,_),
!def_null_global(EA_def,GA),
defined_symbol(GA,_,"OBJECT","GLOBAL",_,Name).

Fig. 4: uninitialized variables

They then manually inspect the results of their queries and
use their intuition to build subsequent queries. Along the way,
the RE may choose to add comments to various instructions,
functions, or other forms and browse those instructions in
Ghidra. In d3re, the communication between the logical rules
and the state of the RE tool is reconciled by input and output
tables—RE users can write queries that consume the state of
the RE tool (such as currentAddress, the currently-selected
address) as input relations, perform logical inference, and leave
their output in relations such as comment(addr,“vuln”).

Like ddisasm, d3re uses the Soufflé Datalog engine to
perform logical inference over binaries. Users of d3re can
incrementally build up more rules in the interactive REPL
(shown in Figure 2). Currently, our REPL allows loading rules
by loading new files—we plan on adding direct support for
new rules, along with error-reporting feedback soon.

Knowing there was an uninitialized global function pointer
being used, a user of d3re might first define a set
of relations to build up def-use-chains of global vari-
ables. Datalog code to implement these queries is illus-
trated in Figure 3. The last two rules build up a rela-
tion def used global(EA def,GA,EA used,Index), which
infers that at address EA def, the global variable (at address
GA) is defined and used at address EA used at operand index
Index. While this is a relatively coarse query, we envision the
user could run the query on the binary to visualize a large
answer set. In our setting, this can be done using the highlight
or comment commands, which display the data marked to be
highlighted by the most recent result computation.

Based on our definitions in Figure 3, we can define a relation
for variables which are possibly used before they are defined.
We demonstrate this in Figure 4. In the first rule, we say that
if there is some usage of a global variable at some address,
but in that address, we can’t find any definition related to
it, then we will consider variable there as an uninitialized
variable; The second clause says that for some usage of a
global variable even if it has some definition associated with
it, if that definition is nullptr, we will still consider that there
is a use-before-def vulnerability here.

Refining the query: In d3re, users can easily access
the result of the rule and all facts generated by ddisasm
through the GUI by writing into output tables using d3re
rules. Unfortunately, our above query produces over 50

3



possible results—checking each occurrence would still
be a timely endeavor. Next, we narrow down the query
space to the range of just the main function. We use
an auxiliary predicate, code in range, which we seed
with constants for the beginning and end of the main
function we gain from inspecting the binary in Ghidra.

code_in_range(19490,21704).
use_before_def_global(EA_used, GA, Name) :-
code_in_range(from, to), EA_used >= from,

EA_used < to,
used_global(EA_used,GA,Index),
!def_used_global(_,GA,EA_used,_),
defined_symbol(GA,_,"OBJECT","GLOBAL",_,Name).

After new rules are applied, the output of the program
becomes empty: however, this does not specify the program
is free from the vulnerability. First, because of our constraint,
only the main function is searched, bugs may still hide in
other functions. Secondly, if all usage of a variable is before
it’s definition, null pointer error can still appear: programmers
may initialize a variable to NULL and use several non-
total branches to initialize the pointer, leaving the pointer
uninitialized at the join point when no switch fires. We modify
our rules to account for this:

def_null_global(EA,GA) :-
def_global(EA,GA), instruction_get_src_op(EA,_,

Op),
op_immediate(Op,offset), offset=0.

use_before_def_global(EA_used, GA, Name) :-
code_in_range(from,to),
EA_used >= from, EA_used < to,
used_global(EA_used,GA,Index),
def_used_global(EA_def,GA,EA_used,_),
!def_null_global(EA_def,GA),
defined_symbol(GA,_,"OBJECT","GLOBAL",_,Name).

This change results in 19 addresses to search, and com-
bining these results with use-def information in the previous
step and intra-procedural control-flow graph in Ghidra, we
can fairly easily infer that the global variable swap_word
is initialized to 0 at address 0x4c2a, that both conditional
jumps 0x4f80 and 0x4fb8 fail, and observe a subsequent
usage of swap_word at 0x5017 which will trigger a crash.
At any stage in our process, we can sync Ghidra’s UI with the
current database using several REPL commands (an example
is shown in Figure 5). In a fully-fledged implementation of
d3re, we hope to have UI gadgets (or templates) to help users
interactively build queries. For example, we may allow the
user to select a region of the binary and build a rule that
applies only to that region, or right-click on a function and
build a rule specific to callers of that function. We believe this
will need to be informed by a combination of interviews with
expert users, participatory design, and (perhaps) user studies.
This is work we plan to undertake now that we have proven
initial success to ourselves with d3re.

We conclude this section by remarking upon the nature of
our analyses. Our analyses would be considered naı̈ve by the
standards of industrial static analyses. Indeed, our reasoning is

not even sound—we can restrict ourselves to looking at results
for only one function or ignore complex behavior. Still, we
believe that this iterative ad-hoc reasoning is a technique many
reverse engineers already employ—the vision of D3RE is
to harmoniously leverage state-of-the-art deductive reasoning
engines while performing human-guided RE tasks.

III. DESIGN AND IMPLEMENTATION

In this section, we present both a formal semantics for
D3RE and describe our implementation of d3re. The high-
level architecture of d3re is outlined in Figure 6. Conceptually,
the key idea of our semantics is to maintain a metadatabase
to allow efficient incremental reuse of previously-computed
databases. In d3re, this metadatabase takes the form of a
server which accepts Datalog programs to run to a fixed-point.

The metadatabase (server) interacts with both the REPL
process and Ghidra to render output databases into view
annotations (e.g., highlights or comments) in the Ghidra UI
based on REPL commands. Our visualization is currently
limited to printing to Ghidra’s console, highlighting a set of
lines (typically some output relation), or annotating a line with
a comment (whose contents may be dynamically determined
via a Datalog query). We plan to investigate adding comments
to other Ghidra UI elements (such as inferred classes) and
other visual integration as future work.

A. Formal semantics of D3RE

Due to space restrictions, we present only a sketch of a
formal semantics for D3RE. Semantics of Datalog programs
are typically phrased in terms of an extensional database
(EDB), an extensionally-enumerated set of ground facts, and
intensional database (IDB), the set of rules defining the pro-
gram [14]. Datalog’s semantics is given by a least-fixed-point
of an “immediate consequence” operator over the rules for
the program. Because Datalog programs have a finite Herbrand

Fig. 5: Ghidra with highlights and comments declaratively
specified to output results inferred via d3re for our example.

4



Fig. 6: High-level components and their interactions in d3re.

base (sets of atoms), this fixed-point necessarily exists (though
in practice Datalog engines allow extra-logical behavior such
as arithmetic). Datalog’s conventional semantics is monotonic,
in the sense that strictly more facts are accumulated as the
fixed-point computation evolves—negation is allowed only
when it may be stratified.

We define an EDB metadatabase as a graph of EDBs with
labeled edges, (∆,

P→), where ∆ is a set of EDBs, each EDB
enumerating tuples for a given set of relations, and P→ is a
relation in ∆ × Rules ×∆. When we process a program, P ,
using an input EDB, we traverse the graph (∆,

P→) to find the
most optimal, compatible EDB to start execution of P . Aided
by Datalog’s monotonicity, we define an EDB as compatible
if it was produced by a subset of rules (or facts) from the
input program / EDB. We conclude our formalism sketch by
remarking that (∆,

P→), given our usage, also forms a lattice.

B. Implementation of d3re

d3re is implemented in two parts: a REPL that communi-
cates with Ghidra’s GUI and a background service to manage
the metadatabase and run the Datalog engine. The REPL
currently communicates with Ghidra via a third-party exten-
sion named ghidra bridge [15], which we plan to replace
imminently with an extension using protocol buffers.

To execute a Datalog program P, d3re analyzes the file
using the logic sketched in the above section to determine an
optimal compatible EDB to use. In the common case, a user
will gradually accumulate a stream of programs P , P ′, P ′′′

consisting of a mix of rules and assumptions. In the future, we
envision that certain assumptions (e.g., about calling conven-
tions) may be implemented as GUI extensions rather than, e.g.,
manually-enumerated facts. After each run, the metadatabase
will index the output facts and associate them with the program
P , establishing an edge in the aforementioned graph. In our
experiments, we refer to this as “caching.”

IV. EVALUATION

We evaluated d3re both qualitatively, by implementing sev-
eral queries, and quantitatively by measuring its performance
in benchmarks. While d3re is still a work in progress, we

TABLE I: Script size (lines of code) of Ghidra script (Python)
vs. d3re Datalog

Ghidra Python d3re Datalog

non-xor 33 8
basicblk 37 4
overflow 60 18
findcrypto 166 45

TABLE II: Running time of Ghidra scripts vs. equivalent
implementation in d3re (all numbers in seconds).

bison souffle gzip re2c redis rsync

non-xor Ghidra 3.569 107.5 2.205 3.903 10.52 3.050
non-xor d3re 0.518 6.515 0.097 0.756 1.306 0.486

overflow Ghidra 0.370 0.247 0.600 0.240 0.760 0.180
overflow d3re 0.617 0.319 0.051 0.094 0.095 0.044

basicblk Ghidra 340.6 – 4.664 472.1 1806 107.4
basicblk d3re 0.539 7.13 0.094 0.812 1.433 0.571

findcrypt Ghidra 0.207 1.033 0.224 0.214 0.475 0.289
findcrypt d3re 1.287 14.53 0.224 1.701 2.938 1.186

had several hypotheses we aimed to test as we designed and
conducted these experiments. First, we wanted to understand
whether d3re provided the necessary building blocks to enable
replacing currently-existing Ghidra scripts. Second, we wanted
to understand whether d3re could offer performance compet-
itive with the kinds of Ghidra scripts that reverse engineers
typically use. Last, we wanted to understand the performance
of Ghidra for performing several repeated queries that might
mirror a realistic end-to-end workload using d3re.

Ghidra Script Replication Study: we wanted to determine
whether d3re could realistically be used to accomplish the
kinds of tasks that reverse engineers face on a day-to-day
basis. This is an admittedly challenging question, which we
plan to eventually evaluate in several ways including user
studies. However, as initial work in this direction we arbitrarily
selected four Ghidra scripts listed in the awesome-ghidra
GitHub repository [16]. The scripts we chose are listed in
Table I, along with their corresponding lines of code in Python
/ Datalog. While Ghidra scripts may consist of a mix of
Python and Java, our experience is that most scripts use a
small subset of the Python API. The first three are relatively
small and find instructions that match a specific template, e.g.,
non-xor finds xor instructions that aren’t zeroing registers,
and overflow heuristically searches for potential overflows in
calls to common functions such as strcpy. Our largest was
findcrypto, which looks for common cryptographic constants.

Qualitative Results of our Replication Study: Our experi-
ence using d3re to replace Ghidra scripts must be understood
in the context that we are expert users and the developers of
d3re. However, we are pleasantly surprised that d3re enabled
us to succinctly write equivalent implementations of each
Ghidra script: we rewrote each script in substantially less
Datalog code. This is because the declarative nature of Datalog

5



TABLE III: Runtime of successive invocations to d3re with
(C) and without (S) rule caching.

ddisasm stack var heap var static var unl static

souffle C 170 11.88 58.35 5.008 0.039
souffle S 170 11.79 66.02 67.00 66.52

bison C 7 0.932 1.409 0.545 0.022
bison S 7 0.934 1.916 2.122 2.075

re2c C 9 1.457 4.417 0.704 0.025
re2c S 9 1.494 5.257 5.449 5.458

redis C 11 1.918 2.544 1.302 0.025
redis S 11 1.919 3.525 3.712 3.726

rsync C 8 0.766 0.908 0.481 0.028
rsync S 8 0.783 1.325 1.423 1.384

eliminates the need for much of the conventional ceremony
around, e.g., looping over instructions and checking against a
type that we found in our evaluation scripts. Key to D3RE’s
success, we believe, is its ability to directly use relations from
ddisasm: we found that much of the necessary work of, e.g.,
filtering instructions by their type or operand was very useful
at achieving succinct Datalog in practice. We are in the initial
planning stages of developing a reverse engineering tutorial
(or mini-course) around d3re, and are hoping to use this to
recruit developers to get more realistic assessment of d3re’s
usability by professional REs.

Quantitative Results of our Replication Study: We hoped
that d3re, being based on a high-performance Datalog solver,
would offer performance competitive with Ghidra’s current
scripts. Each of our evaluation scripts processed the entire
binary and would highlight or label certain instructions. To test
the Ghidra scripts, we used Python’s standard time function
before and after the script’s work finished. We evaluated the
corresponding Datalog program by using Soufflé’s internal
performance timers. We then benchmark Ghidra vs. d3re on
a corpus of six binaries (all sized less than 10MB), five from
ddisasm’s test suite and Soufflé, shown at the top of Table II.
We used the latest versions of each pre-built in the latest Arch
Linux, but we used a pre-built version of Soufflé. For each
script, we waited for all of Ghidra’s typical analyses to finish,
and similarly we ran ddisasm to build up the initial input
database for d3re.

The body of Table II compares the runtime of each Ghidra
script versus its corresponding implementation in d3re. The
single occurrence of – indicates that Ghidra did not finish
within an hour. Broadly, we found that d3re outperformed
Ghidra for each of the scripts in our replication study. As we
had hoped, d3re’s design allowed us to leverage useful rela-
tions from ddisasm. We found that many scripts do things like
naive loops over sets of functions or symbols to locate some
property. By contrast, the declarative style of d3re allowed us
to write these not only more succinctly (e.g., Datalog naturally
aggregates results) but also more efficiently—Soufflé opti-
mally compiles input programs to efficient relational algebra
kernels that loop only when necessary. We did observe various
ways in which d3re’s limitations could cause performance

issues. For example, the findcrypto script scans the binary
for 256-segments of code. d3re is built on Soufflé, which
supports 64-bit primitive ints, but not 256-byte sequences.
Thus, we had to build up sequences via a set of Datalog rules,
causing inefficient memory representation due to the necessary
duplication due to representing subsequences as Datalog facts.

Evaluating End-to-End Behavior in Subsequent Invoca-
tions: To understand the effect of caching via repeated calls
to d3re, we ran four subsequent analysis queries in a row
using both our caching-based approach and without caching
(wherein we started only with the results of ddisasm). Our
results are shown in Table III: the time of the cached run
(C) is shown above the time for the correspond sequential
run (S). As each query builds on the previous, we expect
caching to reduce the amount of work and commensurately
reduce the runtime. stack var finds stack-allocated variables,
while heap var calculates stack variables holding pointers to
heap values based on stack var. static var and unl static
attempt to find uninitialized global variables. Overall, we
found rule caching was especially important on larger binaries
versus sequential runs, justifying our choice to structure the
metadatabase as a graph.

V. RELATED WORK AND CONCLUSION

We conclude with a brief discussion of proximately-related
work that lies at the synthesis of reverse engineering and static
/ dynamic analysis, and contextualize this work in terms of our
aspirations for the future of D3RE. There has been extensive
work using logic programming, and in particular Datalog, for
static analysis of higher-level langauges such as Java [17]–
[19]. The success of the Soufflé Datalog engine has inspired re-
cent adoption of logic programming within the binary analysis
community. For example, Datalog Disassembly uses Soufflé
to achieve both faster and more-precise disassembly than the
state-of-the-art disassembler Ramblr [13]. Similarly, OOAna-
lyzer uses XSB-Prolog, a version of Prolog implemented as
a library [20]. We are currently reimplementing OOAnalyzer
in d3re targeting C++ Linux binaries. We feel particularly
excited about this direction because we believe Soufflé will
be immediately more scalable than XSB-Prolog.

While there are a broad range of plugins for Ghidra and
IDA Pro to load the results of static analyses, we believe
d3re is the first to focus on the combination of open-ended
deductive logical inference and rapid interactivity (enabled by
our metadatabase). We believe the most closely related work is
Ponce [21], which enables GUI-based symbolic execution. We
plan to integrate symbolic execution into d3re as a long-term
goal, inspired by the recent work of Formulog [22].

Our goal in this work was to introduce a new vision
for reverse engineering, D3RE, wherein expert users rapidly
query high-performance logical inference engines to help
them accomplish their day-to-day work in RE, vulnerability
construction, and penetration testing. Visualization-based tools
such as Ghidra are of immense value in understanding a binary,
but have fundamentally different design considerations than
high-performance logical inference enginges (such as Soufflé).

6



Recent work in compiling Datalog to parallel relational algebra
(e.g., Gilray et al. [23]) has enabled a new frontier in scale
of Datalog-based analyses. We hope that developments such
as these will someday enable realizing fully the vision of
D3RE to help reverse engineers perform powerful static binary
analyses at unprecedented scale.

REFERENCES

[1] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, “An
observational investigation of reverse engineers’ processes,” in USENIX
Security 2020, pp. 1875–1892, 2020.

[2] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. Richter Lipford,
“Questions developers ask while diagnosing potential security vulnera-
bilities with static analysis,” pp. 248–259, 08 2015.

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?,” pp. 672–681,
05 2013.

[4] “Ghidra released by national security agency.” https://ghidra-sre.org/.
[5] Hexray, Hex-rays:The IDA Pro disassembler and debugger.
[6] “Radare2.” https://github.com/radareorg/radare2.
[7] E. Schulte, J. Dorn, A. Flores-Montoya, A. Ballman, and T. Johnson,

“Gtirb: Intermediate representation for binaries,” 07 2019.
[8] Grammatech, “Gtirb.” https://github.com/GrammaTech/

gtirb-ghidra-plugin.
[9] “ret-sync.” https://github.com/bootleg/ret-sync.

[10] “py-findcrypt-ghidra.” https://github.com/AllsafeCyberSecurity/
py-findcrypt-ghidra.

[11] “Grammatech’s cyber grand challenge program repository.” https://
github.com/GrammaTech/cgc-cbs. Accessed: 2020-01-10.

[12] “Qualifier challenge - cromu 00038.” https://github.com/GrammaTech/
cgc-cbs/tree/master/cqe-challenges/CROMU 00038. Accessed: 2020-
01-10.

[13] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[14] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, 1989.

[15] “Ghidra bridge.” https://github.com/justfoxing/ghidra bridge. Accessed:
2020-01-10.

[16] “Awesome ghidra.” https://github.com/AllsafeCyberSecurity/
awesome-ghidra.

[17] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analy-
sis: context-sensitivity, across the board,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 485–495, 2014.

[18] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in International Conference on Computer Aided Verification,
pp. 422–430, Springer, 2016.

[19] B. Scholz, H. Jordan, P. Subotić, and T. Westmann, “On fast large-scale
program analysis in datalog,” in Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, (New York, NY, USA),
pp. 196–206, Association for Computing Machinery, 2016.

[20] E. J. Schwartz, C. F. Cohen, M. Duggan, J. Gennari, J. S. Havrilla,
and C. Hines, “Using logic programming to recover c++ classes and
methods from compiled executables,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’18, (New York, NY, USA), pp. 426–441, Association for Computing
Machinery, 2018.

[21] “Ponce (ida pro plugin).” https://github.com/illera88/Ponce. Accessed:
2020-01-10.

[22] A. Bembenek, M. Greenberg, and S. Chong, “Formulog: Datalog for
smt-based static analysis,” Proc. ACM Program. Lang., vol. 4, Nov.
2020.

[23] T. Gilray and S. Kumar, “Distributed relational algebra at scale,” in 2019
IEEE 26th International Conference on High Performance Computing,
Data, and Analytics (HiPC), pp. 12–22, 2019.

7


