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Abstract—Dynamic dependence analysis monitors information
flow between instructions in a program at runtime. Strength-
based dynamic dependence analysis quantifies the strength of
each dependence chain by a measure computed based on the
values induced at the source and target of the chain. To the
best of our knowledge, there is currently no tool available that
implements strength-based dynamic information flow analysis for
x86.

This paper presents DITTANY, tool support for strength-
based dynamic dependence analysis and experimental evidence
of its effectiveness on the x86 platform. It involves two main
components: 1) a Pin-based profiler that identifies dynamic
dependences in a binary executable and records the associated
values induced at their sources and targets, and 2) an analysis
tool that computes the strengths of the identified dependences
using information theoretic and statistical metrics applied on their
associated values. We also study the relation between dynamic
dependences and measurable information flow, and the usage of
zero strength flows to enhance performance.

DITTANY is a building block that can be used in different
contexts. We show its usage in data value and indirect branch
predictions. Future work will use it in countermeasures against
transient execution attacks and in the context of approximate
computing.

Keywords—binary analysis, dynamic information flow analysis,
dynamic slicing, information flow strength, data value prediction,
indirect branch prediction.

I. INTRODUCTION

Information flow analysis is a technique that analyzes the
flow of information between program objects during execution.
It has a wide variety of applications that range from making
systems more secure by tracking the dissemination of data
inside a system and ensuring some security properties, to
helping developers and analysts better understand the code that
systems are executing. There exist two types of information
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flow: static [11], [13], [39] and dynamic [16]. We hereby
consider dynamic information flow analysis.

Information flow between objects in a program is crucial
to its security since it might reveal tampering or leakage of
sensitive information. Security policies can specify the set of
objects between which information can flow in a program.
Information flow is also important in testing, debugging and
maintenance of programs.

In this paper, we present DITTANY, a strength-based dy-
namic information flow analysis (DIFA) tool that instruments
x86 binaries and does not require the availability of the
source code. The tool is intended to be generic in a manner
to allow several techniques to make use of it. By default,
the tool obtains the dependences between all instructions;
however, the user can selectively specify which instructions to
consider based on their types, instruction pointer (IP), and/or
the routines that include them. The tool provides several other
options for the user such as considering data dependence only
or both data and control dependences. The tool also computes
the strengths of the identified dependences. It quantifies infor-
mation flow in a non-binary manner, and distinguishes between
linear and non-linear association, which enables its usage in
non-traditional applications such as approximate computing.
To the best of our knowledge, currently there is no tool that
accomplishes the previously mentioned roles.

DITTANY is a building block that can be used in different
contexts. We show its usage in data value and indirect branch
predictions. We will use it in future work in countermeasures
against transient execution attacks and in the context of ap-
proximate computing.

In this paper, we make the following contributions:

• We build a Pin-based dynamic information flow analysis
tool that identifies dynamic dependences in a binary
executable and records the associated values induced at
their sources and targets (Sections IV and VI-A).

• We present an analysis tool that computes the strengths
of the identified dependences using information theoretic
and statistical metrics applied on their associated values
(Sections V and VI-B).

• We use normalized mutual information to identify max-
imum flow of information from source to target (Sec-
tion V-A3), show that the existence of data dependence
from a source to a target instruction is not a sufficient
condition for the flow of information from the source to
the target (Sections VII-A and VII-B), and shed light on

Workshop on Binary Analysis Research (BAR) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-76-2
https://dx.doi.org/10.14722/bar.2022.23002
www.ndss-symposium.org



exploiting paths that have zero strength flow to increase
the effective instruction level parallelism (Section VII-C).

• We introduce dynamic information flow analysis as a tool
to study the nature of data and control correlations in
programs and to improve the accuracy of instructions
outcomes prediction. We present the potential usage of
the proposed tool for data value and indirect branch
predictions (Section VIII).

II. BACKGROUND

A. Information Flow

Information flows from a source object x to a target object
y whenever information stored in x is passed directly or indi-
rectly to object y [13]. A given program statement designates
a specific flow f if executing the statement could result in
the flow f . Flows can be either direct or indirect. Direct
information flow is due to the propagation of information
as a result of data dependence. Source variable is directly
involved in the computation of the target variable value. The
occurrence of a direct flow is independent of the value of its
source object. Assignment, I/O statements, and value-returning
procedure calls are examples of statements that result in direct
flow. Indirect information flow is due to control dependence.
Source object indirectly affects the value of the target object.
A statement t is data-dependent on a statement s if t uses a
variable that is defined in s. A statement t is control-dependent
on a statement s if s decides via branches it controls whether
t is executed or not [17], [33], [34].

B. Program Slicing

A program slice is the set of program statements that may
affect the values at some point of interest. A static slice is a set
of program statements which may affect the value assigned to
a variable v at a specific statement S. A dynamic slice is a set
of program statements that actually affect the value assigned to
a variable v at a specific statement S for a particular execution
of the program. We define an assembly dynamic slice (ADS)
as the set of assembly instructions that actually affect the
value assigned to a register or memory location at a specific
instruction ins for a particular execution of the program.

C. Indirect Branch Prediction

An indirect branch specifies where the address of the next
instruction to execute is located, rather than specifying the
address itself, as in a direct branch. Indirect branches can
depend on the value of a register or memory location. The
target address is not known until the instruction is executed.
A single indirect branch can have multiple targets.

Indirect branches implement common programming con-
structs such as switch statements, virtual function calls and
calls through function pointers. Correctly predicting the target
addresses of indirect branches can significantly enhance the
performance of programs that make a lot of use of the
programming features that result in indirect branches.

Most existing indirect branch prediction techniques can be
classified as either history-based [9], [14], [15], [23], [29], [24]
or precomputation-based [37].

History-based techniques predict the target of an indirect
instruction based on its previous history and/or history of
previously executed indirect branch instructions. The branch
target buffer (BTB) is used to predict the target of the branch
as the last taken target [28]. This works well for branches
that usually jump to the same target, which are often known
as monomorphic indirect branches. However in the case of
indirect branches which jump to many different targets, known
as polymorphic indirect branches, the prediction accuracy is
usually poor.

In this paper, we present a simple profiling-based correla-
tion indirect branch prediction technique that employs dynamic
information flow analysis.

D. Value Prediction

Value prediction [30], [32], [48] is a technique to increase
parallelism by attempting to overcome serialization constraints
caused by true data dependences. By predicting the outcome
of an instruction before it executes, value prediction allows
data dependent instructions to issue and execute speculatively,
hence increasing parallelism when the prediction is correct.
In case of a misprediction, the execution is redone with
the corrected value. If the benefit from increased parallelism
outweighs the misprediction recovery penalty, overall per-
formance could be improved. Enhancing performance with
value prediction therefore requires highly accurate prediction
methods. Most existing general value prediction techniques are
local, i.e., future outputs of an instruction are predicted based
on outputs from previous executions of the same instruction.
Local value prediction methods can be either computational
or context based [48]. A computational predictor yields a
predicted next value by performing an operation on previous
values such as last value (LV) predictor [32] and stride value
(STR) predictor [49]. A 2-δ stride predictor keeps track of two
stride values (s1 and s2) [35]. A context based predictor makes
value prediction based on its observation of previous patterns.
An order k Finite Context Method (FCM) predictor uses
k preceding values [40]. Differential Finite Context Method
(DFCM) hashes recent history of strides rather than values
and looks up a stride in the hashtable to make a prediction.
DFCM has the potential to be more space efficient and faster
to warm up than FCM [6].

III. RELATED WORK

Lampson initiated the research on information flow anal-
ysis and listed a number of possible information leaks [27].
Fenton introduced an abstract machine, named Data Mark
Machine, that supports dynamic checking of information flows
[16]. Jones and Lipton presented a similar mechanism [22].
Zimmerman et al. showed an intrusion detection model that
employs runtime enforcement of an information flow policy
that dictates which information flows are allowable in a given
system [53], [52]. Their model focus on information flow
between entire objects. Haldar et al. extended the Java Virtual
Machine (JVM) to enforce information flow policies at the
granularity of objects without considering control dependences
[21].

Static information flow analysis techniques are less precise
than dynamic techniques since they consider all control flows
as executable [13].
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Algorithm 1: Data dependence analysis
1 Get the sets of dependences of the source operands;
2 Unify the sets obtained in step 1;
3 Unify the set obtained in step 2 with the address of

the executed instruction;
4 Clear the dependence sets of the target operands and

assign to it the set obtained in step 3;
5 Set the dependence set of the executed instruction to

its union with the set obtained in step 2;

Program slicing was originally introduced by Weiser [47]
who proposed the first static slicing algorithm to help de-
bugging programs. Afterward, Korel and Laski [25] proposed
dynamic slicing that considers runtime information when se-
lecting the set of statements that affects a specific program
variable. The previously mentioned algorithms use backward
analysis, which requires the a priori availability of the execu-
tion trace. Korel and Yalamanchili were the first to propose
a forward-computing algorithm for dynamic slicing [26]. Tip
[42] presented a survey of both static and dynamic program
slicing techniques. Program slicing has been explored for Web
applications [31], [43], [36] and for Android [51], [50], [5],
[2].

DynFlow is a tool that supports strength-based dependence
analysis of Java programs [45]. It calculates flow strength
at the bytecode level whereas we are interested in obtaining
the results the tool provides at the assembly level for C
and C++ programs. Forward computing dynamic slicing and
information flow analysis algorithms, which we use in this
paper, do not need the a priori availability of the execution
trace.

IV. DYNAMIC DEPENDENCE IMPLEMENTATION

In this section, we describe our approach to dynamic
dependence analysis.

A. Data Dependence Analysis

We define instruction target operands as the instruction
destination operand and any implicit operand whose value
might change when the instruction executes and instruction
source operands as the explicit and/or implicit source operands
of the instruction. We also define a mapping function to each
instruction opcode. After the dynamic execution of each as-
sembly instruction, we calculate the assembly dynamic slice of
the target operands, by using instruction-type related mapping
function that takes as inputs the assembly dynamic slices of
the source operands of the instruction. The instruction itself is
added to the dynamic slices of its target operands. The new
set of dependences of the executed instruction is obtained as
the union of its existing set with those of its source operands.
Algorithm 1 summarizes the steps.

We mean by unify the union operation of two or more
sets. In set theory, the union of a collection of sets is the
set of all elements in the collection. According to the opcode
of the executed instruction, we identify the set of source and
the set of target operands. We obtain the set of dependences
of each of the source operands and unify the obtained set

Algorithm 2: Control dependence analysis
1 When a conditional branch instruction bc is executed,

its set of dependences depend is computed, and bc is
pushed on controlDepStack ;

2 When the immediate post-dominator ipdom of bc is
executed, bc is popped off controlDepStack ;

3 When an instruction ins is executed, Top of Stack
(TOS ) and its dependences are added to the sets of
dependences of ins and its target operands;

4 Pop TOS off controlDepStack when a branch
instruction with the same ipdom is reached. This
ensures that the stack size is bounded;

of dependences. We name the obtained set SourceDepSet.
We unify SourceDepSet with the address of the executed
instruction and assign the result to a set that we name DepSet.
We clear the dependence sets of the target operands and assign
to it DepSet. We set the dependence set of the executed
instruction to its union with SourceDepSet.

B. Control Dependence Analysis

A Control Flow Graph (CFG) is a directed graph aug-
mented with two specials nodes entry and exit with no prede-
cessors and no successors, respectively. A node of the graph
corresponds to a basic block, i.e., a single-entry single-exit
sequence of instructions, while an edge represents the potential
flow of control from one basic block to another, branches or
fall-through execution. A CFG node n post-dominates another
node m (n pdom m or pdom(m) = n) if every path from m to
exit goes through n. Node n is the immediate post-dominator
of node m (n ipdom m or ipdom(m) = n) iff m 6= n; n pdom
m; ∀d 6= m, d pdom m → d pdom n. Every node has a
unique immediate post-dominator.

A node n of a CFG is control-dependent on a node c if (1)
there exists an edge e1 coming out of c that definitely causes
n to execute, and (2) there exists some edge e2 coming out
of c that is the start of some path that avoids the execution
of n. The decision made at c affects whether n gets executed.
Formally, n is control-dependent on c if: (1) n 6= c, (2) n does
not post-dominate c, and (3) there exists a path from c to n
such that n post-dominates every node in the path except c
[3], [4], [17].

To track control flow-based dependences, we use an ap-
proach similar to the one originated in [44], [45]. The outcome
of a conditional branch dictates whether the instructions that
depend on it are executed or not. The values of operands
that affect the branch outcome may affect the dependent
instructions target operands values. Thus, we need to add
the set of dependences of the source operands of the branch
instruction to the set of dependences of the targets operands of
the branch dependent instructions. To achieve this, we leverage
dynamic slicing and static post-dominance information using
Algorithm 2.

The algorithm uses a stack, denoted controlDepStack,
which holds pointers to branch instructions whose dynamic
control scope is still active. The dynamic control scope of a
branch instruction terminates when its ipdom is executed, at
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which time, the branch instruction is popped off controlDep-
Stack. To ensure that the stack size is bounded, when a newly
encountered branch instruction has the same ipdom as that of
the branch instruction at the top of the stack controlDepStack,
denoted TOS, we pop TOS off controlDepStack. This is ac-
ceptable as explained in [45].

C. Recording Values

We determine the assembly dynamic slices for selected
or all executed instructions in a program. We are interested
in quantifying the amount of flow from a source instruction
to a target instruction. To achieve this for non-branch source
instructions, we first need to log pairs of values corresponding
to consecutive dynamic executions of both instructions. When
the source of a flow is a branch, we store the status of the
branch, taken or non-taken, for each occurrence of the flow.

We use a map structure to associate with each instruction
the outcome of its last execution. We create a ValuePairs
class that holds pair of values corresponding to consecutive
dynamic execution of source and target instructions. We create
another class, Depend, that is instantiated for each pair of de-
pendent instructions – dependence does not have to be strictly
between distinct instructions, it can be from the instruction
to itself. After the dynamic execution of each instruction, we
update its corresponding Depend instance with pairs of values
of its last outcome and the last outcomes of instructions on
which it depends during its current execution. In fact, the
dependences of an instruction may change from an execution
to another.

V. DEPENDENCE STRENGTH

Informally, information flow occurs from an instruction
ins1 to an instruction ins2 during execution of a program if
observing the outcome of ins2 at some point reduces one’s
uncertainty about the outcome of ins1 at an earlier point,
which indicates that ins2 is probabilistically dependent on
ins1. The strength of dependences measures the amount of
information they propagate. We follow an approach similar to
[46] to calculate the strength of dependences.

We use three techniques to measure information flow
strength. The first employs entropy, conditional entropy and
mutual information. The other two are correlation-based; one
employs standard r and the other, eta coefficient. Standard r
measures linear relations only; however, information theoretic
and eta coefficient measure both linear and non-linear relations.
Therefore, we can identify and separate linear and non-linear
correlations.

A. Entropy-Based Technique

1) Entropy: Entropy is a measure of the uncertainty of a
random variable. It explicitly quantifies the information content
in a given source of data. The entropy of a discrete random
variable X is defined as [12]:

H(X) = −
∑
i

P (X = xi) log2 P (X = xi).

Conditional entropy of a random variable X , given that the
random variable Y is known, measures the remaining uncer-
tainty about the value of X after knowing the value of Y . It

is defined as:

H(X|Y ) = −
∑
j

P (Y = yj)×∑
i

P (X = xi|Y = yj) log2 P (X = xi|Y = yj).

H(X|Y ) = 0 if and only if the value of X is completely
determined by the value of Y . H(X|Y ) = H(X) if and only
if X and Y are independent random variables.

2) Mutual Information: Mutual information is a measure
of the amount of information one random variable contains
about another. The mutual information between two discrete
random variables X and Y is given by:

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(x) +H(Y )−H(X,Y ),

where H(X,Y ) is the joint entropy. Mutual information is
always non-negative. The mutual information I(X,Y ) is the
reduction in the uncertainty of X due to the knowledge of Y .
Mutual information is symmetric, I(X;Y ) = I(Y ;X). Thus
X says as much about Y as Y says about X .

Mutual information can detect arbitrary non-linear rela-
tionships between X and Y . I(X;Y ) can be normalized to a
value between 0 and 1:

NMI(X;Y ) =
H(X)−H(X|Y )

H(X)
=
H(Y )−H(Y |X)

H(Y )

NMI(X;Y ) =

{
1 for H(X|Y ) = 0,

0 for H(X|Y ) = H(X).

3) Entropy-Based Strength of Flow: Following the analysis
presented in [46], the amount of information transferred from
x (in state σ) to y (in state τ ) is:

StrengthFlowEntropy(x, y) = H(Xσ)−H(Xσ|Yτ )

StrengthFlowEntropy(x, y) will be zero if no measurable
flow occurred between x and y, and it will be greater than
zero otherwise. The value that results from this equation does
not have a range limit.

We employ normalized mutual information as a technique
to measure the strength of flow, since it results in a value
between 0 and 1, where 0 indicates no flow of information,
and 1 indicates maximum flow of information. Maximum flow
of information implies that if the value of the source variable
is known, we can definitely deduce the value of the target
variable (no uncertainty remains about the value of the target
variable knowing the value of the source variable).

StrengthFlowEntropyDITTANY (x, y) =

H(Xσ)−H(Xσ|Yτ )
H(Xσ)

Normalized mutual information allows us to identify cases
where there is maximum flow of information from source
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to target. Previous work [46] only reasons about weak and
strong flow, with no additional interpretation of the values
obtained for measured strengths of flows. Moreover, it does
not provide a criteria to classify a strength of flow (either weak
or strong), and does not address the issue of maximum flow
of information.

B. Correlation-Based Techniques

We now provide some information about correlation-based
strength of flow techniques we use in our tool.

1) Standard r: The Pearson product moment correlation
coefficient, which is also known as Pearson’s r or standard
r, measures the strength of the correlation (linear dependence)
between two variables. It ranges between −1 and +1 and is
defined as [38]:

r =
Cov(x, y)

σxσy

where Cov(x, y) is the covariance of x and y, σx is the
standard deviation of x, and σy is the standard deviation of
y. r2 is called the coefficient of determination or proportion
of explained variance.

When two variables have a nonlinear relationship, stan-
dard r will underestimate the strength of the relationship.
StrengthFlowr(x, y) is the absolute value of standard r.

2) Eta Coefficient: The correlation ratio or eta coefficient
provides the same value as standard r for linearly related
variables and a greater value for non-linearly related variables.
The difference between eta and r presents a measure of the
non-linearity of the relation between two variables. The eta
coefficient is defined as:

eta =
σy
σy

where y is the mean of the category that y belongs to, σy is
the standard deviation of y, and σy is the standard deviation
of y [41], [10].

In the case that either x or y is constant,
StrengthFlowr(x, y) is defined to be zero, because there
is no linear association between x and y. Similarly, in the
case that y is constant, StrengthFloweta(x, y) is defined to
be zero, because there is no linear or nonlinear association
between the variables.

VI. DITTANY

We implement our approach to dynamic dependence anal-
ysis in a tool that we call DITTANY1. The tool leverages Pin
dynamic instrumentation tool.

A. Information Flow Analysis

Figure 1 presents an overview of DITTANY mode of op-
eration for dynamic information flow analysis. By default, the
tool tracks flow of information among all dynamically executed

1Dittany can refer to three different plants: White Dittany (Dictamnus
Albus), Dittany of Crete (Origanum Dictamnus), and Common Dittany (Cunila
Mariana). DITTANY: Dynamic Information and TainTing flow ANalYsis tool.
We have implemented the strength based information flow analysis phase, and
we still have the tainting part.
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instructions. We provide several command line options that
enable the user to obtain flow of information along data
dependences only or along both data and control dependences,
select a particular routine to instrument, specify the routine
at which instrumentation starts and the routine at which it
terminates, indicate the number of instructions to skip before
starting instrumentation, choose a particular path of interest,
mention an upper limit on the number of instructions to
instrument, etc.

When the user specifies the types of instructions to in-
strument, Step 5 of Algorithm 1 is only executed for the
specified instructions. For non-specified instructions, Step 3
of Algorithm 2 only updates their target operands without
updating their sets of dependences. Taking into consideration
the user selection, the tool instruments the input executable
which is run to produce profiles that capture the induced
information flows along with their respective source and target
values.

B. Strength Calculation

Figure 2 presents an overview of DITTANY mode of
operation for the strength of flow computation. We parse the
information flows obtained to determine source and target
instructions, and calculate the strength of flow from source
to target using information theory, standard r and eta coeffi-
cient. The tool also identifies instructions which outcomes are
constant during all executions. The flows can be categorized
according to their strength using one or more of the used
strength measuring schemes.

VII. DYNAMIC DEPENDENCE AND INFORMATION FLOW

We address in this section the relation between depen-
dences and measurable information flow, and the usage of zero
strength flows to enhance performance. The work explored in
Sections VII-A and VII-B below, was addressed in different
context in [46].

A. Dependences and Measurable Information Flow

We answer in this section the following question: Are
dynamic dependences generally indicative of measurable in-
formation flow?
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1 for (int x=0; x<20; x++){
2 a = x − x%5;
3 y = a + 1;
4 }

Listing 1. C++ example 1.

1 movl $0, −12(%rbp)
2 jmp .L2
3 .L3:
4 movl −12(%rbp), %ecx : (ins1), x value
5 movl $1717986919, −36(%rbp)
6 movl −36(%rbp), %eax
7 imull %ecx
8 sarl %edx
9 movl %ecx, %eax

10 sarl $31, %eax
11 movl %edx, %ebx
12 subl %eax, %ebx
13 movl %ebx, −28(%rbp)
14 movl −28(%rbp), %eax
15 sall $2, %eax
16 addl −28(%rbp), %eax
17 movl %ecx, %edx
18 subl %eax, %edx
19 movl %edx, −28(%rbp)
20 movl −12(%rbp), %eax
21 subl −28(%rbp), %eax
22 movl %eax, −24(%rbp) : (ins2), a value
23 movl −24(%rbp), %eax
24 addl $1, %eax
25 movl %eax, −16(%rbp) : (ins3), y value
26 addl $1, −12(%rbp) : x++
27 .L2:
28 cmpl $19, −12(%rbp)
29 jle .L3
30 movl $0, %eax
31 popq %rbx
32 leave
33 ret

Listing 2. x86 assembly of example 1.

Consider Listing 1 and its corresponding assembly code
Listing 2. It represents a for loop that contains two statements.
The first statement assigns to a variable a the result of the
subtraction of x modulus 5 from x. The second statement
assigns a+ 1 to variable y.

The outcomes of the instructions labeled ins1, ins2
and ins3 correspond to the values of x, a, and y in the
source code respectively. Both instructions ins2 and ins3 are
data-dependent on instruction ins1. Instruction ins3 is data-
dependent on instruction ins2.

When executing the program, the following (ins1, ins2,
ins3) value triplets result:

(0, 0, 1), (1, 0, 1), (2, 0, 1), (3, 0, 1), (4, 0, 1), (5, 5, 6),
(6, 5, 6), (7, 5, 6), (8, 5, 6), (9, 5, 6), (10, 10, 11),
(11, 10, 11), (12, 10, 11), (13, 10, 11), (14, 10, 11),
(15, 15, 16), (16, 15, 16), (17, 15, 16), (18, 15, 16),
(19, 15, 16).

Computing the strength of flows (ins1, ins2), (ins1, ins3)
and (ins2, ins3) using normalized mutual information yields
0.46, 0.46 and 1.0 respectively. The low value of the strength
of flow (ins1, ins2) is expected since by learning that the

1 for (int x=0; x<20; x++){
2 a = x − x∗5;
3 y = a + 1;
4 }

Listing 3. C++ example 2.

1 movl $0, −4(%rbp)
2 jmp .L2
3 .L3:
4 movl −4(%rbp), %edx
5 movl %edx, %eax
6 sall $2, %eax
7 leal (%rax,%rdx), %edx
8 movl −4(%rbp), %eax
9 subl %edx, %eax

10 movl %eax, −16(%rbp) : (ins2), a value
11 movl −16(%rbp), %eax
12 addl $1, %eax
13 movl %eax, −8(%rbp) : (ins3), y value
14 addl $1, −4(%rbp) : (ins1), x++ value
15 .L2:
16 cmpl $19, −4(%rbp)
17 jle .L3
18 movl $0, %eax
19 leave
20 ret

Listing 4. x86 assembly of example 2.

outcome of ins2 is 0, an observer is not certain of the outcome
of ins1, which could be 0, 1, 2, 3 or 4. Similarly for the
strength of flow (ins1, ins3). The strong value of the strength
of flow (ins2, ins3) is justified by the fact that learning the
outcome of ins3, we can infer the outcome of ins2 with 100%
certainty.

Listing 3 is another example with its corresponding assem-
bly code Listing 4. The only difference between this example
and the previous one is the usage of multiplication instead of
modulus. Computing the strength of flows (ins1, ins2), (ins1,
ins3) and (ins2, ins3) using normalized mutual information
yields 1.0 for all of them.

We can conclude from the above two examples that the
presence of dynamic dependence between two instructions is
not a sufficient condition for the strong flow of information
between them. Other program constructs and constraints are
beyond the scope of this paper.

B. Zero Strength Flows Interpretations and Analyses

Zero strength flows are dependences where there are no
correlation between the values of the source and those of the
target. The strength of a zero strength flow measured using
eta coefficient, normalized mutual information and standard r
equals to 0.

We evaluate our metrics on the SPEC CINT2006, i.e.,
SPEC CPU 2006 integer benchmarks [1] described in Table
III in Appendix. We use all CINT2006 benchmarks except
bzip2 due to a bug.

We define self flow as the flow from and instruction into
itself. Figure 3 shows that Self Zero Strength r, Self Zero
Strength ETA and Self Zero Strength Entropy accounts for
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Fig. 3. Percentage of zero strength flows of the total dynamic flows from
instructions into themselves.
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Fig. 4. Percentage of zero strength flows of the total dynamic flows between
distinct instructions.

33.877% of the total dynamic flows from instructions into
themselves. More than third of the self flows have strength
exactly equal to zero.

We define distinct flow as the flow from an instruction
into another distinct instruction. Figure 4 shows that Distinct
Zero Strength r, Distinct Zero Strength ETA and Distinct Zero
Strength Entropy accounts for 90.94%, 90.927% and 90.917%
of the total dynamic flows between distinct instructions. More
than 90% of the distinct flows have strength exactly equal to
zero.

It is proven in [33], [34] that a required condition for a
change of the outcome computed by statement s1 to impact
the execution behavior of statement s2 is the existence of static
program dependences between s1 and s2.

The results presented in this section imply that the exis-
tence of dynamic dependences between two statements s1 and
s2 is not a sufficient condition for the outcome produced by
s1 to influence the outcome produced by s2.

In addition, these results imply a detected insecure infor-
mation flow is highly probable to be benign due to the fact
that no quantified information is transmitted.

C. Zero Strength Flows and Instruction Level Parallelism

In this section, we answer the following question: Can
we exploit paths that have zero strength flow to increase the
effective instruction level parallelism (ILP)?

To answer this question, we do the following: (1) use
DITTANY to identify the apparent information flows that
occurred during the execution of several programs, (2) compute
the strength of the identified flows, i.e., measure the amount
of information they propagated, (3) select zero strength flows
between distinct instructions where the source of flows are load

instructions, and (4) analyze the predictability of the values of
the source and the target of the selected flows.

For SPEC CPU 2006 integer benchmarks [1], we measure
the prediction accuracy and coverage of the source and the
target of flows using last value [32], 2-δ stride [35] and DFCM
[6] predictors. Prediction accuracy is the number of successful
predictions over the total number of attempted predictions.
Prediction coverage is the number of an instruction predictions
over the total number of an instruction updates.

Figure 5 shows that the target instructions are predictable
on average with 100%, 95.477% and 97.455% accuracies using
last value, 2-δ stride and DFCM predictors respectively. The
prediction coverages achieved on average using last value, 2-δ
stride and DFCM predictors are 67.2%, 70.53% and 86.77%
respectively.

Figure 6 shows that 40.04% of the selected source load
instructions are selected for confident predictions, and 86%
of the selected target instructions are selected for confident
predictions. We use confidence counters to guide when to use
the prediction information.

Figure 7 shows that the selected load instructions and
target instructions account on average for 0.705% and 3.58%
respectively of the total number of dynamically executed
instructions.

We can conclude from our results that 86% of the target of
zero strength flows, with load instructions as the source of the
flows, are predictable with very high accuracy using local pre-
diction techniques, and that they account for around 3.08% of
the totally dynamically executed instructions. We also observe
that the prediction accuracies of the source and target of the
same zero strength flow are not generally correlated. Holding
a highly predictable target instruction from execution since it
is connected via zero strength flow with a non-predictable load
instruction can negatively impact the execution performance.
We can attribute the results we obtained to the following:

• The results are related to zero strength flows, i.e. flows
that have zero strength using all the three schemes used.

• Neither linear nor non-linear association exists between
the source and target values.

• Highly predictable target instructions have strong self
linear flow, which results in being highly predictable using
local prediction techniques.

Data dependence occurs when an instruction reads a regis-
ter or a memory location whose values depend on the execution
of a previous instruction. Data dependence presents a limiting
factor on ILP. We show that the existence of data dependence
from a source to a target instruction is not a sufficient condition
for the flow of information from the source to the target.
Further work is required to check the possibility of exploiting
paths that have zero flow strength to increase the effectiveness
of ILP. Such paths are dependences where the source variables
do not matter in the computation of the target variables values,
thus making them irrelevant dependences to the execution.

VIII. APPLICATIONS

In this section we describe the application of DITTANY in
data value and indirect branch predictions.
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Fig. 5. Prediction accuracy and coverage of selected distinct instructions related via zero strength flows.
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Fig. 6. Distributions of predictability of source and target instructions related
via zero strength flows.
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Fig. 7. Selected instructions out of the total dynamically executed instruc-
tions.

A. Application to Indirect Branch Prediction

We use DITTANY to identify the last instruction that
updates the source operand of an indirect branch. We call this
instruction the source instruction of the indirect branch. For an
indirect branch instruction that is not highly predictable using
the regular BTB technique [28], we predict its target address
by accessing the prediction table using a value obtained by
hashing the instruction pointer of the predicted indirect branch
instruction with the outcome of its source instruction. We
refer to this technique as BTBSrc. Our hybrid (BTB, BTBSrc)
predictor is a combined predictor that remembers which of the
predictors has made the best predictions in the past.

a) Benchmarks Characteristics: Table I presents the
characteristics of indirect branch instructions in SPEC CPU

2006 benchmarks. We report the number of static instructions
and static indirect branch instructions as well as the percentage
of static indirect branch instructions with respect to the total
number of static instructions. In addition, we present the
percentage of dynamic indirect branch instructions with respect
to the total number of dynamically executed instructions. We
notice that indirect branch instructions account for 0.16% and
0.089% of the total static and dynamic instructions respec-
tively.

b) Prediction Accuracy: Table II presents the predic-
tion accuracy of indirect branch instructions using BTB and
hybrid (BTB, BTBSrc). We use 16K tables for both BTB
and BTBSrc. BTB prediction accuracy is 84.28%, while the
hybrid (BTB, BTBSrc) achieves 95.46% prediction accuracy
on average. BTBSrc alone with unlimited table size achieves
100% accuracy.

B. Application to Data Value Prediction

Using DITTANY, we select all instructions that have flows
into them characterized by |r| = 1. We categorize the flows
as follows: (i) flow from the instruction to itself, or (ii) flow
from a source instruction into a target instruction. We define
self linear relation type as the set of instructions that satisfy
criterion (i) with strength of flow measured using standard
r equals to 1, and distinct linear relation type as the set of
instructions that satisfy criterion (ii) and |r| = 1.

Using DITTANY, instructions are classified as either con-
stant outcome instructions, or variable outcome instructions.
Constant outcome instruction is an instruction that always
produces the same value. Constant outcome instructions can be
predicted with high accuracy using local last value predictor.
For variable outcome instructions, we select instructions that
exhibit (i) linear flow from the instruction to itself, and (ii)
linear flow from a source instruction into the instruction of
interest. For the instructions that satisfy criteria (i), we employ
several local prediction techniques. For the instructions that
satisfy criteria (ii), we predict the value y of the instruction of
interest, knowing the value x of the source instruction using
the linear equation y = ax + b. We use this technique when
the instruction of interest neither follow a linear nor a FCM

8



TABLE I. CHARACTERISTICS OF SPEC CPU 2006 EVALUATED BENCHMARKS.

astar gcc gobmk hmmer h264ref libquantum mcf omnetpp perlbench sjeng xalancbmk
Total Static Instr. 12224 848132 234509 89025 166161 10215 3389 152468 298936 32012 962864
Static Indir. Br. 26 571 66 93 59 30 22 122 200 57 237
%Static Indir. / Total
Static Instr.

2.13× 10−1 6.73× 10−2 2.8× 10−2 1.044× 10−1 3.55× 10−2 2.93× 10−1 6.5× 10−1 8× 10−2 6.7× 10−2 1.78× 10−1 2.46× 10−2

%Dynamic Indir. /
Total Dynamic Instr.

7.32× 10−4 2.3× 10−3 4× 10−3 6.8× 10−3 7.22× 10−3 1.9× 10−3 2.86× 10−4 9.45× 10−2 6.4× 10−1 2.05× 10−1 2.31× 10−2

TABLE II. PREDICTION ACCURACY USING BTB AND HYBRID (BTB, BTBSRC).

astar gcc gobmk hmmer h264ref libquantum mcf omnetpp perlbench sjeng xalancbmk average
BTB 90.76% 65% 89.05% 92.93% 91.05% 96.54% 83.33% 90.52% 74.29% 70.56% 83.06% 84.28%
Hybrid(BTB, BTBSrc) 90.76% 87.6% 100% 92.93% 100% 96.54% 83.33% 100% 98.95% 100% 100% 95.46%

0

25

50

75

100

astar gcc gobmk hmmer h264ref libquantum mcf omnetpp perlbench sjeng xalancbmk Average

LV accuracy

L_linear accuracy

2‐δ Stride accuracy

DFCM accuracy

LV coverage

L_linear coverage

2‐δ Stride coverage

DFCM coverage

% Load instr / Selected Instr

Load instr coverage using linear pred

% (dynamic) Selected Instr / Toal 

Fig. 8. Self linear relation type instructions measurements.
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Fig. 9. Constant outcome instructions measurements.

pattern, e.g., it is not predictable using any local prediction
technique.

a) Value Prediction Pintool: We develop a pintool that
implements last value, local linear, 2-δ stride, DFCM, and
global linear predictors. A local linear predictor is a predictor
that implements the linear relation, y = ax+ b, to predict the
outcome of an instruction from its previous value [18], [20].
A global linear predictor is similar to a local linear predictor
except that it uses the value of a source instruction that has
a strong linear information flow into the target instruction to
predict the outcome of the target instruction [18], [20].

b) Empirical Results: We now report empirical results
obtained from applying DIFA directed value prediction to the
CINT2006 benchmarks. We select the instructions to predict
using DITTANY and use the pintool described above. Unlim-
ited table size is assumed for the results reported in Figures 8,
9 and 10.
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Fig. 10. Distinct linear relation type instructions measurements.

Figure 9 shows that the last value predictor (LV) achieves
on average 100% and 84.84% prediction accuracy and predic-
tion coverage respectively for the selected constant outcomes
instructions. These instructions account for 7.9% on average of
the totally dynamically executed value producing instructions.
Loads constitute 72.46% on average of these instructions.

Figure 8 shows that the instructions of the self linear
relation type are highly predictable using local value prediction
techniques. The local linear, 2-δ stride and DFCM predictors
achieve on average 100%, 99.2%, and 90.56% prediction
accuracy, and 90.81%, 96.7% and 73.6% prediction coverage
respectively. Loads constitute 52.37% on average of these
instructions.

Figure 10 shows that the global linear predictor achieves
98.98% prediction accuracy and 89.47% prediction coverage
on average for instructions of the distinct linear relation type.
It significantly outperforms all local predictors for this set

9



of instructions. Instructions of this category present 6.1% on
average of the totally dynamically executed value producing
instructions. Loads constitute 88% on average of these instruc-
tions.

We have previously employed DITTANY in our work on
value prediction [18].

IX. FUTURE WORK

Modern processors employ branch prediction and specu-
lative executions to improve their performance, which have
been shown to be prone to transient execution attacks [8].
In future work, we plan to use DITTANY to introduce new
countermeasures using the information collected by the tool
to prevent miss-training of prediction tables, and to introduce
safe prediction techniques that are robust against existing side
channels attacks. We will introduce approximate prediction
techniques by leveraging our strength-based approach to quan-
tify information flow in a non-binary manner. In addition,
we will port DITTANY to DynamoRIO [7] since it supports
IA-32, AMD64, ARM, and AArch64. Furthermore, we will
implement dynamic information flow analysis in hardware, so
that we can integrate our proposed techniques in real designs.

X. CONCLUSION

We described a Pin-based dynamic information flow anal-
ysis tool that identifies dynamic dependences in a binary
executable and records the associated values induced at their
sources and targets. We also computed the strengths of the
identified dependences using information theoretic and statis-
tical metrics applied on their associated values. We showed
that the existence of data dependence from a source to a
target instruction is not a sufficient condition for the flow
of information from the source to the target. We presented
and evaluated the usage of the proposed tool in data value
and indirect branch predictions using SPEC CPU 2006 integer
benchmarks.

Availability. The tool is publicly available with a detailed
user guide under GNU GPLv3 at DITTANY repository.
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[53] J. Zimmermann, L. Mé, and C. Bidan, “An improved reference flow
control model for policy-based intrusion detection,” in European Sym-
posium on Research in Computer Security. Springer, 2003, pp. 291–
308.

APPENDIX

A. SPEC CPU 2006 Benchmarks

Table III describes the SPEC CPU integer benchmarks we
use.
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TABLE III. CINT2006 BENCHMARKS.

Benchmark Application Area Description

astar Path-finding Algorithms Pathfinding library for 2D maps, including the well known A* algorithm.
bzip2 Compression Julian Seward’s bzip2 version 1.0.3, modified to do most work in memory,

rather than doing I/O.
gcc Compiler Based on gcc Version 3.2, generates code for Opteron.
gobmk Artificial Intelligence: Go Plays the game of Go, a simply described but deeply complex game.
hmmer Search Gene Sequence Protein sequence analysis using profile hidden Markov models (profile

HMMs).
h264ref Video Compression A reference implementation of H.264AVC, encodes a videostream using

2 parameter sets. The H.264AVC standard is expected to replace MPEG2.
libquantum Physics, Quantum Computing Simulates a quantum computer, running Shor’s polynomial-time factoriza-

tion algorithm.
mcf Combinatorial Optimization Vehicle scheduling. Uses a network simplex algorithm (which is also used

in commercial products) to schedule public transport.
omnetpp Discrete Event Simulation Uses the OMNet++ discrete event simulator to model a large Ethernet

campus network.
perlbench Programming Language The workload includes SpamAssassin, MHonArc (an email indexer), and

specdiff (SPEC’s tool that checks benchmark outputs).
sjeng Artificial Intelligence: chess A highly-ranked chess program that also plays several chess variants.
xalancbmk XML Processing A modified version of Xalan-C++, which transforms XML documents to

other document types.
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