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Abstract—The complexity and functionality of malware is
ever-increasing. Obfuscation is used to hide the malicious intent
from virus scanners and increase the time it takes to reverse
engineer the binary. One way to minimize this effort is function
clone detection. Detecting whether a function is already known, or
similar to an existing function, can reduce analysis effort. Outside
of malware, the same function clone detection mechanism can be
used to find vulnerable versions of functions in binaries, making
it a powerful technique.

This work introduces a slim approach for the identification
of obfuscated function clones, called OFCI, building on recent
advances in machine learning based function clone detection.
To tackle the issue of obfuscation, OFCI analyzes the effect of
known function calls on function similarity. Furthermore, we
investigate function similarity classification on code obfuscated
through virtualization by applying function clone detection on
execution traces. While not working adequately, it nevertheless
provides insight into potential future directions.

Using the ALBERT transformer OFCI can achieve an 83%
model size reduction in comparison to state-of-the-art approaches,
while only causing an average 7% decrease in the ROC-AUC
scores of function pair similarity classification. However, the
reduction in model size comes at the cost of precision for function
clone search. We discuss the reasons for this as well as other
pitfalls of building function similarity detection tooling.

I. INTRODUCTION

Binary similarity analysis is a valuable tool for security
analysis. It can assist in finding vulnerable code in software
corpora, as well as reduce the complexity for reversing soft-
ware and malware. One reason for this is the practice of code
reuse for similar tasks, also prevalent among malware [42],
[59]. The problem intensifies with the use of statically linked
binaries, which will not only include the interesting parts of the
code, but bundle library functions as well. A notable example
is Go [56], since it defaults to static linking. The number of
Go related malware has increased by a staggering amount [6],
potentially sharing a large amount of code with other applica-
tions or contain parts of standard library or utility functions.
While binaries can include debug information like function
names, those are usually stripped before distribution or might
even be harmful when analyzing malicious binaries [45].

Function clone detection is one approach to identify
code reuse across binaries. The idea is to identify re-use of
known functions (e.g. from libraries) in binaries without sym-
bol/debug information, to re-assign names or identify known
vulnerabilities in unknown binaries. The focus of function
clone detection lies in first generating a database of function
signatures and then comparing unidentified functions with the
database to identify code re-use. Numerous approaches for
this exist, with machine learning techniques gaining popular-
ity [13], [39], [20]. Machine learning based on binary features
is well suited for this task, as it is inherently fuzzy in its nature.
As function clone detection is intended to find functions that
might not be exact matches, learning similarity of functions
allows matching functions that share certain features. This is
backed by a recent survey on binary similarity [22], showing
that approaches based on machine learning performed well
in comparison to others. Additionally to searching for similar
functions in a dataset, such tools can be used to perform
function similarity classification, i.e. determining if two func-
tions are equal. However, such approaches also have their
drawbacks. Current function clone detection approaches have
shortcomings when dealing with obfuscation. Additionally,
training the models takes a significant amount of time and
resources. This might not be a problem for e.g. language
processing, where a model can be trained once and then be
reused. But when we are dealing with function clone detection,
specifically for the case of obfuscation, we are lacking the
corpus to train one model that fits all applications. Therefore
models might need re-training more often to be adapted to
specific use-cases.

The aim of this work is to improve upon existing capabili-
ties of identifying function clones in obfuscated binaries, while
simultaneously decreasing the model size to allow training and
execution with lower requirements for computing resources.
The main contributions of this paper are:

• Development of an end-to-end function clone iden-
tification framework. Existing approaches have not
published their whole data processing pipeline, or rely
on commercial tools, like IDA Pro [24], for feature
extraction. This paper presents OFCI, an open source1

end-to-end framework, built from publicly accessible
and open source tools.

• A reduced and improved machine learning model
for function clone identification. OFCI aims to re-
produce similar performance of related models while

1https://github.com/sbaresearch/ofci
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reducing their high computational complexity. To im-
prove identification of function clones, OFCI uses API
calls, like system or library calls, as an additional
iterative feature vector, i.e. detection of a function
clone can improve the identification of other functions
calling this clone.

• Matching state-of-the-art performance of function
similarity classification in the presence of basic
obfuscation. OFCI can match state-of-the-art solutions
for function similarity classification when obfusca-
tions like bogus control-flow, control-flow flattening,
instruction substitution etc. are present.

• Analysis of identifying functions in the presence
of virtual machine obfuscation. OFCI presents the
first approach to function clone detection, when func-
tions are obfuscated using virtualized code based on
recorded execution traces. While the results them-
selves are not adequate, we identify possible pitfalls
and research directions are given to assist future
research.

• Analysis of reduced function clone search per-
formance. While the ROC-AUC scores reported by
OFCI are comparable to the state of the art, the
function clone search shows reduced performance.
Our work gives an analysis into possible issues and
the consequences for other function clone search im-
plementations.

II. BACKGROUND

To identify similar functions in optimized and obfuscated
binaries, first a definition of what constitutes similarity be-
tween two segments of binary code is required. For the purpose
of this work, as is also the case in related works [13], [39],
[47], [63], we define executable binary code to be similar if it
is semantically similar.

A. Function Clone Detection

The binary similarity problem can be constrained to func-
tion clone detection. By restricting binary similarity to function
boundaries, function clone detection can be defined as an
information retrieval (IR) problem. Treating binary code as
a language then allows application of modern information
retrieval algorithms, designed for, e.g., full text search.

B. Obfuscation

Detection of function clones might be hindered by obfus-
cation, especially when dealing with malware. Obfuscation
means transforming code in such a manner that it becomes
harder to analyze, while still preserving the execution seman-
tics. Hikari [64] and Tigress [7] are two freely available ob-
fuscation tools, with selected passes used in related work [13],
[47], [3], [9], [41] as well.

1) Hikari: is based on LLVM and can be used to obfuscate
complete projects. It is a fork of Obfuscator-LLVM [33]
including additional obfuscation passes. Bogus Control Flow
(BCF) changes the control-flow graph (CFG) by inserting new
basic blocks to make it harder to find the relevant basic blocks
of the original function. Basic Block Splitting (SPL) breaks

larger basic blocks apart, thereby creating a large number of
new basic blocks. Control Flow Flattening (CFF) changes
the control flow into a flat structure, where basic blocks are
called from a central dispatcher. At the end of each block
control returns to the dispatcher, which decides which block
to execute next. The CFG of every function will then have the
same basic structure. In comparison, Hikari’s Register-Based
Indirect Branching (IBR) does not flatten the control-flow,
but replaces every existing branch with an indirect one. The
Instruction Substitution (SUB) does not change the CFG,
instead replacing instructions with a chain of more complex
ones that produce the same output for all expected inputs.

2) Tigress: is a source-to-source obfuscator that supports
more types of obfuscation, but can not as easily be applied to
full projects. Virtualized Code (VIRT), also used in commer-
cially available obfuscators [57], [61], transforms the code into
bytecode that is run in a virtual machine (VM). While there
exist different approaches to VM deobfuscation, there appears
to be no prior work regarding binary code similarity of code
executed in the VM. Encode Arithmetic (EA) strengthens
arithmetic operations by generating mixed boolean-arithmetic
expressions.

C. Machine Learning

Modern IR relies on complex machine learning archi-
tectures. In the context of language processing, words are
distributed across a text in a certain manner, with some
words more likely to appear in specific parts of a sentence or
surrounded by specific words. Embedding vectors, popularized
by WORD2VEC [43], are based on this concept and provide
a vector representation of words embedded in their contexts,
thus making it possible to represent simple semantic concepts
through operations on vectors. This can be applied on the
property of cosine similarity, allowing similar words to be
represented by vectors having a high cosine similarity. Word
embeddings map simple semantics concerning single words
and their contexts, but not sequences. To process sequences,
a neural network needs to incorporate memory to keep state
from previous and successive words in a sentence to form the
embedding for a whole sequence. Recurrent neural networks
(RNN) were invented to model such processes, later followed
by the Long Short-Term Memory (LSTM) [25] architec-
ture. The ability to process sequences allows a sequence-to-
sequence model, or seq2seq model, which transforms an input
to an output sequence. A seq2seq model consists of an encoder
to convert an input sequence to an internal representation,
and a decoder, transforming the internal representation into
a sequence in the domain of the output vocabulary. Due to
the sequential nature of RNN/LSTM models, training cannot
effectively use modern architectures that heavily rely on GPU
processing, leading to the introduction of the Transformer
architecture [60]. A transformer is a seq2seq model designed
to work with a fixed maximum input length to optimize the
training and inference on GPUs. It consists of a stack of
encoders and decoders, which contain self-attention layers and
feed-forward networks. BERT [12] was introduced, removing
the decoder half of a transformer and stacking several encoder
layers. These layers can be pre-trained with a general task and,
instead of adding a decoder, a task-specific neural network can
be added on top as head for fine-tuning. One such general
pre-training task is masked language modeling (LM), which
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is semi-supervised: A sequence is fed into the model and
before processing BERT masks out random tokens in the input
sequence, training the model to predict the original token
at the masked location. ALBERT [35] improves on BERT
by reducing the number of parameters, without sacrificing
benchmark performance. This is achieved by factorizing the
embedding matrix, allowing to keep hidden layer sizes small
with a growing vocabulary, and the sharing of parameters
across hidden layers.

III. RELATED WORK

As function clone identification is not always wanted or
possible, most research is done in the broader field of binary
similarity, which is not necessarily limited to the scope of
functions.

A. Classical Approaches to Binary Similarity

In the context of this paper, all approaches that do not rely
on machine learning techniques are referred to as classical
approaches. One category is similarity based on extracted fea-
tures such as string references, call sequences or CFG match-
ing heuristics, with prime examples for this being BINDIFF [4]
or DISCOVRE [16]. Fuzzy hashing can be used to compare
these features or byte sequences directly, with different forms
being used. The most common form is locality-sensitive hash-
ing (LSH) [28] as part of the pipeline in a large number
of approaches such as CACOMPARE [26], BINHASH [31],
MULTI-MH [49] and others ([14], [27], [8], [53], [54], [65],
[22]). Static analysis approaches, which are prone to simple
obfuscation attacks, are complemented by dynamic techniques
that make use of traces ([11], [10]) paired with sampling of
I/O pairs [5], symbolic execution [49], or monitoring of the
environmental changes (e.g. memory of pointer arguments)
caused by functions ([15], [40]). Dynamic analysis offers a
trade-off between more accurate results and longer analysis
runtimes, leading to approaches like EXPOSE [44] pre-filtering
the analysis set statically before performing dynamic analysis.

B. Approaches Based on Machine Learning

The rise of computation power and development of modern
machine learning techniques opened up new possibilities for
information retrieval and natural language processing. While
some approaches use machine learning to learn embeddings
based on manually selected structural features ([18], [63],
[20], [19]), related work has in general shifted away from
relying on these features, rather making use of WORD2VEC-
like techniques ([13], [39], [37], [65], [51]). One of these
approaches is ASM2VEC [13], training embeddings directly on
the instruction text. Similar to WORD2VEC, these embeddings
would only represent single instructions and not functions,
which is solved by adopting a customized PV-DM [36] ap-
proach. To capture the control-flow of a function, ASM2VEC
is trained on random walks through CFGs of functions. In
comparison, INNEREYE [65] and SAFE [39] take a two-step
approach and first train a WORD2VEC model on instructions
and later process a sequence of instruction embeddings with
an LSTM and an RNN respectively. Additionally, SAFE makes
use of self-attention features, leading to recent approaches
([47], [48]) incorporating transformers through the BERT archi-
tecture. TREX [47] introduces additional data for pre-training

the model by recording microtraces to capture program seman-
tics, before fine-tuning the model on the function similarity
task. This pre-training can be done on a different dataset than
the fine-tuning, which ideally contains a wide range of different
instructions on different architectures. In comparison to TREX,
OSCAR [48] does not require additional data, but instead
achieves good results by customizing BERT for code similarity
and lifting binary code to an intermediate representation.

C. Deobfuscation

As machine learning does not provide exact results, it
cannot be used directly to recover exact unobfuscated code,
but can still be used as part of a general solution. One
use case is the restoration of code metadata for use with a
human analyst, similar to assigning function names through
function clone detection. Examples for this include DEBIN [23]
trying to recreate debug information or DEGUARD [2] and
MACNETO [55] trying to restore variable names and type
information in obfuscated Android applications. Other use
cases for machine learning in deobfuscation have appeared
in the context of opaque predicates and VM deobfuscation.
Tofighi-Shirazi et al. [58] make use of supervised learning to
label whether a predicate is opaque or not and SYNTIA [3] and
XYNTIA [41] have used machine learning for deobfuscating
VM handlers. As the latter approaches make use of program
synthesis, machine learning and probabilistic algorithms are
used to guide the search space exploration.

IV. OBFUSCATED FUNCTION CLONE IDENTIFICATION

A review of related approaches has shown that binary
similarity has profited from machine learning and that usage
of machine learning is viable for deobfuscation tasks. Out
of recent state-of-the-art function clone detection approaches,
only some approaches deal with obfuscation [47], [13], [30],
[34]. None of these approaches have tried to apply binary code
similarity algorithms to counter obfuscation by virtualization.
In order to improve the state of function clone detection
when faced with heavily obfuscated code, this work introduces
Obfuscated Function Clone Identification, or OFCI for short.

A. Assumptions and Threat Model

Before discussing the general architecture, it is necessary
to highlight the assumptions and constraints under which OFCI
was designed to operate. Firstly, we assume that detection of
function entry points and boundaries is provided correctly by
existing tools/libraries, in our case Ghidra [1]. Since OFCI
uses textual disassembly to compare functions, a working
disassembler is required; however, compared to other solutions
(e.g. [13], [63]), OFCI does not need to reconstruct the CFG.
OFCI’s model can be trained using a consumer grade GPU,
however using the model does not require a GPU.

The threat model of OFCI assumes the author of the
binaries under analysis to be an attacker, who makes use of
obfuscation techniques to hide information contained in the
binary. The attacker is assumed to only apply the obfuscations
discussed in subsection II-B, i.e. only obfuscations that do
not split or merge functions. However, standard compiler opti-
mizations, like function inlining, can be applied as usual. The
attacker may make use of code virtualization as implemented
by TIGRESS [7].
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Fig. 1: Overview of the OFCI architecture and pipeline.

B. Architecture Overview

The architecture of OFCI and its three basic pipelines
are shown in Figure 1: Pretraining, fine-tuning and inference
within the reverse engineering environment. It adopts recent
trends in natural language processing that have been shown
to work well in related work ([47], [48]), causing the model
training process to be split into pre-training and fine-tuning.
OFCI makes use of this insight to build a simpler framework
that does not require the additional model parameters required
to accommodate dynamic value information [47] or lifting of
the disassembly to an IR [48]. A disassembler is required
to extract the textual instructions from the base dataset or
a target program under analysis. OFCI then processes these
instructions together with their function metadata and stores
them for model training or directly uses them for function
embedding inference and lookup. Before embeddings can be
generated, the model has to undergo a pre-training process
where it tries to learn general concepts about the extracted
disassembly through masked LM. This is a one-time effort
and is run on the complete corpus of binaries. While the
pre-training doesn’t require any metadata and can operate
solely on the extracted instructions, fine-tuning makes use of
contrastive learning, where two functions are compared based
on the cosine similarity of their embeddings. This requires the
selection of function pairs after the function instructions have
been extracted and additionally adds a label, marking whether
the paired functions are similar or dissimilar. After the training
process, the model can be used for detecting function clones on
new binaries, by filling a database with embeddings of known
functions and detecting the clones in the new binary. In the
case of code obfuscated through virtualization, we make use
of instruction tracing and use the resulting trace to infer the
embedding for lookup.

C. Feature Modeling

Feature extraction happens at every part of the pipeline,
providing the necessary input data for the embedding model.
When comparing the task of function similarity with sen-
tence similarity in natural language processing, the idea of
treating disassembly as text and using it directly seems to

appear straightforward. However, further processing is re-
quired, largely due to the appearance of numeric constants
in the textual instructions that present a challenge in a typical
word processing setting. These constants can carry specific
meaning, e.g. relative address offsets or special constants
used for bitwise operations, which should be preserved to
aid identification of a function. Issues arise when trying to
tokenize these numbers, as in theory all 64-bit numbers could
be represented in the disassembly, resulting in a prohibitively
large vocabulary. Therefore those constants need to be handled
specifically. Instead of replacing all numeric constants with a
single token ([39], [13]) or encoding the constants through
additional model support [47], OFCI splits the constants into
bytes. Every time it encounters a scalar value or address, it first
treats the value as an 8-byte integer in little endian byte order.
Then, every byte of the integer is added to the stream of nor-
malized disassembly words as hexadecimal number, increasing
the vocabulary by a fixed size of 256 entries. Trailing zeros are
omitted in order to reduce the amount of needed tokens and
with similar reasoning, negative constants are interpreted with
their absolute value and a preceding negation sign, instead
of using their actual byte representation. In general, most
other information present in the disassembly instructions is left
unchanged: All special characters, e.g. brackets or arithmetic
operators, are treated as separate tokens, instruction operands
are separated by whitespace, and the instructions itself are
separated with dots. Lastly, to turn the words of the normalized
disassembly into numeric tokens, we make use of a Byte Pair
Encoding (BPE) tokenizer.

Another issue is the fixed input size of transformer models,
in our case 512 tokens. Functions can be much longer than
512 tokens, in which case we split them into fragments: All
functions are split into fragments with a maximum size of
512 tokens each. When matching two functions that contain
more than one fragment, the surplus fragments of the longer
function are ignored and the function fragments matched side-
by-side during training. During inference, the embeddings for
all fragments of a function are calculated and averaged to
produce one single embedding for the whole function.

OFCI tries to incorporate the basic idea of function inlining,
without actually inlining the function into the caller. Instead,
address references to the entrypoint of a function are recorded
and replaced in the normalization phase, a feature we named
Call-ID. Whenever a binary is passed through the data process-
ing phase of OFCI, the names of all functions are compared
against a database of function names, or added to the database,
generating a new unique ID. The preprocessor remembers
the IDs of these functions for the disassembly normalization
phase. During the normalization phase, whenever an address
is encountered as numerical constant, the preprocessor checks
whether the address points to the start of a function. If not, it
is directly normalized through the previously described scalar
splitting, but if it turns out to be a function address, the
generated ID for the function name is normalized instead.
This encodes references to other functions in and outside of
the binary, which is especially interesting in the case of API
functions or syscalls, as these are usually known from the start.
Call-ID therefore allows for iterative embedding generation as
more functions used in the binary are identified at each step.
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D. Neural Network Architecture

OFCI is mainly inspired by related work ([47], [48])
making use of BERT-like architectures. While these approaches
modify the base architecture to some extent, the goal of OFCI
is to make use of stock implementations, while also reducing
the overall model size and still achieving comparable results
to the state of the art. To this end, we adopt a different
BERT architecture called ALBERT [35], designed specifically
to reduce the model size of BERT. In order to limit the
parameter count of BERT significantly, ALBERT introduces
two optimization strategies: Factorization of the vocabulary
embedding matrix and sharing of parameters between layers.
As the vocabulary used for tokenization grows, so does the
embedding matrix, which is in turn influenced by the size of
the hidden layers. ALBERT factorizes the embedding matrix
into smaller matrices to accommodate bigger vocabularies and
hidden sizes.

In the context of OFCI, ALBERT is pre-trained using
masked language modeling, with the disassembly features that
have been previously extracted. After pre-training, a simple
feed forward network, a head for the base network, has to be
added on top of ALBERT. The similarity head is constructed as
follows: First, mean pooling of the embeddings is calculated,
then passed through a dropout layer, a single feed forward layer
with the tanh activation function, through another dropout
layer, then through a linear layer and normalization. This
follows roughly the architecture used by BERT classification
tasks, or the similarity head implemented in SENTENCE-
BERT [52] and TREX [47]. For training the similarity head,
a contrastive learning approach is used, taking a pair of two
functions and a similarity label as input. The goal of the task
is to make the embeddings of similar functions have a high
cosine similarity, while dissimilar functions should produce a
low cosine similarity value. To achieve this, the two functions
are first passed through the model with the similarity head,
producing embedding variables, which are then combined
through a cosine loss function calculating the distance from
the label.

E. Virtual Machine Analysis

Research dealing with virtualization in the context of func-
tion clone detection is scarce. A recent survey [34] highlights
the need for covering interprocedural virtualization obfuscators
like Themida [57], or VMProtect [61], as the obfuscations
applied by Hikari [64] do not appear to be more complex
than cross-optimization binary similarity. OFCI does not solve
interprocedural obfuscation either, but is intended as a stepping
stone to expand research in this area. To this end, OFCI aims
to perform function clone search on functions virtualized with
Tigress [7], which works by virtualizing functions separately.

When virtualizing code, the original code of a function
is translated into a new language, i.e. bytecode, which is
intended to obfuscate the original intention of the instructions.
This transformation is in stark contrast to the obfuscations
of Hikari, as neither the original instructions, nor control-
flow is preserved. However, since the transformation can be
interpreted as translation into a new language, BERT-like
architectures should still perform reasonably well. M-BERT
[21] has shown this and existing work on function clone

detection [47], [39] produces good results across architectures.
Treating the bytecode as different architecture directly is not
straightforward, because a static disassembler might not be
able to identify where or how the bytecode is stored and
there is no straightforward way to map bytecode operations
with their arguments to text. Because our approach relies on
disassembly text, we collect instruction traces: The recorded
instructions implicitly encode the semantics of the executed
bytecode. These traces are processed by our training/inference
machinery in the same manner as static disassembly. OFCI
does not currently support automatic trace creation. If a trace
is required for analysis, it has to be created manually using
our tracing tool, as not all inputs will produce traces covering
the relevant parts of the program.

V. IMPLEMENTATION

While recent approaches for function clone detection per-
form well on paper, code is only published in rare cases [39],
[48], with others selectively publishing code [63], [47] or
relying on expensive proprietary software as part of their
pipeline [13]. The main requirement for implementing OFCI
is therefore to only rely on recent and freely available soft-
ware and to publicly release all parts of its own pipeline,
including trained models. This is achieved by implementing
feature extraction and end-to-end functionality as a Ghidra
plugin, training the model with the Hugging Face Transformers
library [62] and PyTorch [46], collecting traces with Intel
Pin [29] and performing embedding lookup with Faiss [32].
The custom code for interfacing with these tools is kept at
a minimum, making it straightforward to swap to different
transformer models or use different libraries altogether.

The Ghidra plugin extracts the function symbol names
and normalizes opcodes and arguments in the disassembly,
before exporting it into a database. The function names are
extracted for labeling the fine-tuning dataset and thunked
functions, e.g. PLT resolving code, are not disassembled. As
imported functions are important for the Call-ID feature, the
names of thunked functions are however still saved. Call-ID
is implemented by assigning a unique ID for every function
name across the dataset, which is later propagated into the
normalized disassembly instead of the original call address.
This is simplified by using Ghidra’s internal structure of
instructions, instead of parsing the textual disassembly: Ghidra
represents instruction operands that take memory addresses as
Address objects. OFCI then performs a lookup in the Call-
ID map and, if the address points to a function, replaces
it with the Call-ID in the normalized disassembly. If the
binary is statically linked, syscalls are included in this process
and treated as function calls by our plugin. While Ghidra is
generally slower when compared to other disassemblers [50],
OFCI can make use of multiple headless instances to process
larger datasets in parallel.

After the normalized disassembly has been exported, we
tokenize it with the help of the BPE tokenizer implementation
of the Transformers library. If this tokenization is done for the
first time, a BPE vocabulary is trained. The vocabulary used in
our implementation amounts to roughly 800 entries. Due to the
small number of vocabulary entries, token lists are stored either
as JSON for size advantage, or as 16-bit integer binary dumps
for efficient loading. When generating the training datasets,
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token lists are split and padded into chunks of size 512,
the chosen input size of the used ALBERT transformer. For
pre-training, all chunks of the full dataset are written into a
binary dump file. The fine-tuning dataset generation is more
involved: Due to the contrastive learning approach, function
pairs need to be selected from the dataset. We define functions
as similar when they have the same name and therefore select
similar pairs of functions with the same name, but different
optimization/obfuscation levels. TREX generates 5 and SAFE
generates 1 dissimilar function pair on 1 similar function
pair; for our approach, we chose the middle ground and used
a 1:2 ratio for similar and dissimilar function pairs. When
matching function pairs, the differing number of chunks for
each function has to be taken into account and we match the
chunks by zipping the two functions, i.e. we use the number
of chunks of the shorter function and then match one chunk
of the first function with the opposite chunk in the second
function. The goal of the fine-tuning dataset generation is to
generate roughly 50k chunks for each obfuscation category.

Pre-training can make use of the unmodified ALBERT
implementation of the Transformers library, together with
masked LM as training objective. As we already performed
tokenization beforehand, the only relevant missing field is the
attention mask, where tokens that should not be considered for
attention calculation are masked, which is the padding token in
our case. For fine-tuning, a similarity head is needed for the
transformer, which is not directly provided by Transformers
and implemented by us as described in our description of
OFCI, based on the other task-specific heads already im-
plemented in the Transformers library for ALBERT. For the
similarity task, each chunk of a function chunk pair is passed
through the model and then combined with the label through
the cosine embedding loss function provided by PyTorch.

While Ghidra itself provides simple tracing capabilities
we utilize Intel Pin, which is a dedicated tool for dynamic
analysis, to create instruction trace files. We implemented a
pintool with the intention of recording the address of every
executed instruction, importing the recording into Ghidra and
then iterating over each address to disassemble and normalize
the instruction at this address in the same manner as the static
disassembly. This allows reusing the normalization procedures
we implemented in the Ghidra plugin, avoiding having to
duplicate this code into the pintool. As an optimization, not
all instruction addresses are recorded, but only start and end
addresses of a pin basic block, which can be passed as an
address range to Ghidra, allowing the disassembly in bulk.
Only the pin basic blocks located in the main binary image
are logged; while traces for external libraries could make use
of Call-ID, the tracing is only performed on intraprocedural
virtualized code The trace file addresses also subtract the
main binary image base address to keep addresses position-
independent. The pintool does not address function boundaries
in a special way and solely logs addresses. The Ghidra plugin
will then decide during analysis which portions of the log are
assigned to which function, assuming that there is only at most
one trace of each function present in the trace file. Therefore,
repeated traces have to be split into different trace files.

Function clone search is performed through Faiss [32],
which provides several efficient embedding index lookup tech-
niques. In general, after fine-tuning OFCI, the embeddings of

all functions are stored in an index. For evaluating OFCI, we
use the flat index making use of the L2 distance between
vectors, which is equivalent to cosine similarity search in our
case, as we normalize the embedding vectors. While the L2
index provides exact results, Faiss also provides more efficient
indexing techniques, which come with the cost of some
precision loss. For performing clone search, the embeddings
generated from exported Ghidra functions are used as query
tensor for the index. Faiss returns the first k ranked results,
where we defined k = 1 for our purposes, retrieving only the
most similar function label.

VI. EVALUATION

To evaluate OFCI’s performance, we compare it to the two
underlying approaches TREX [47] and SAFE [39], as well as
recent approaches with the same goal, such as ASM2VEC [13].
We furthermore discuss other implications rarely covered in
existing work, e.g. practical applicability and training time.

A. Experiment Setup

Pre-training of the model is performed on a server running
Ubuntu 18.04.5 LTS with an NVIDIA GTX Titan X, 94 GB
of RAM and an Intel Xeon X6580 CPU. All other tasks use
a mid-range developer workstation based on Arch Linux with
a 5.14 kernel, an AMD Ryzen 1800x, 32 GB of RAM, and
an NVIDIA RTX 2070 Super. The server does not offer better
training performance, but was used to avoid potential stability
problems as pre-training requires several days of runtime.
Composition of the dataset is described in detail in section A.

Function similarity is a classification problem and therefore
the performance across different thresholds is measured using
the Receiver Operating Characteristic (ROC), together with
the corresponding Area Under the Curve (AUC). Function
clone search is a ranked retrieval problem instead: Querying
for function clones returns a list of candidates with decreasing
similarity, with the first entry in this list, i.e. the function at
rank 1, having the highest similarity. The metric Precision at
Rank 1 (P@1) therefore measures whether the function at rank
1 has the same label as the query function. For single queries,
this value is either 0 or 1 and we report the P@1 as averaged
across all queries.

B. Feature Extraction and Training Performance

Table I shows the analysis times for the Ghidra-based
feature extraction for different categories, together with the
obfuscation abbreviations used throughout the evaluation. The
listed times are split in analysis time and export time, with
the latter being the time needed to extract the normalized
disassembly. These measurements offer insight into the ex-
pected analysis times on different program categories within
Ghidra. Indirect branching and virtualization is the most time
intensive w.r.t analysis in Ghidra, as Ghidra tries to resolve
target locations of indirect jumps. Export times across the
categories are expectedly similar, with the exception of the
virtualization categories: The exporter does not parse functions
here but traces, which are longer than normal functions.

After export from Ghidra, a vocabulary has to be trained
and the disassembly has to be tokenized. The process for
vocabulary generation took 10 minutes and the tokenization
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Fig. 2: Function parsing and embedding generation performance.

Category Analysis Export

O0 88 8
O1 95 6
O2 90 6
O3 103 7
Bogus Control-Flow (BCF) 102 6
Control-Flow Flattening (CFF) 36 7
Indirect Branching (IBR) 410 5
Basic Block Splitting (SPL) 124 7
Instruction Substitution (SUB) 57 6
EncodeArithmetic (EA) 42 11
Virtualize (VIRT) 248 17
Virtualize + EncodeArithmetic (VIRT-EA) 271 17

TABLE I: Dataset processing times, in minutes.

took 50 minutes, both of which have been executed across
the complete dataset. After selection of functions for fine-
tuning, the pre-training and fine-tuning datasets are generated,
which happens by dumping the tokens from the database into
HDF5 files. The pre-training on the remote server was run
for exactly one week, during which it achieved 8 epochs on
the pre-training dataset. The fine-tuning was executed on the
local developer machine and ran for 30 epochs within 20
hours. OFCI is faster than both SAFE and TREX on function
parsing; as TREX specifically mentions function parsing, the
Ghidra analysis time is not taken into account. Exporting
and normalizing the disassembly takes 16s, 4s, 1.5s and
0.9s for Binutils, PuTTy, Findutils and Diffutils respectively.
Additional 40s, 8s, 1.6s and 0.9s are required for tokenization;
adding these measurements results in the function parsing
performance shown in Figure 2. Embedding generation is fast
in SAFE compared to OFCI and TREX seemingly only requires
a fraction of OFCI’s embedding generation time. The main
factor for this difference is the measurement of embedding
generation on the GPU: The reported values are measured on
a system with 8 Nvidia RTX 2080-TI GPUs, while OFCI is
evaluated on a machine with only one RTX 2070 Super.

C. Comparison of Model Size

A goal in the creation of OFCI is to cut down on model
complexity and decrease the size of the model compared
to other recent approaches. The model size in terms of on-
disk size and number of trainable model parameters is com-
pared to TREX and SAFE in Table II. We compare against
SAFETORCH [17], a PyTorch implementation of the SAFE
neural network, which allows easier integration of instruction

embeddings into the overall training process. OFCI has 9M
trainable parameters, multiplied by 4 (for 32-bit floating point
numbers) results in 36 MB of model data. The parameters
are stored almost entirely without meta-data or transforma-
tion.Performing the same calculation does not hold up for
TREX, which is also using PyTorch to store its model, but
reaches a size of almost 700 MB, where it should only have
240 MB. This does put OFCI as the leanest approach in
comparison to SAFE and TREX, at worst requiring only 17%
of the disk space and trainable parameters.

Approach Size on Disk Number of Parameters

TREX 696 MB 60.606.229
SAFETORCH 210 MB 55.043.500
OFCI 35 MB 9.136.000

TABLE II: Comparison of model size of different approaches.

While a significant part of this parameter reduction is due
to usage of ALBERT, OFCI also removes specifically designed
model parts, as its goal is to evaluate the capabilities of stock
NLP models when used in this context. In comparison, SAFE
makes use of a specifically modeled RNN, while TREX passes
its input streams through a CNN before using ROBERTA.
Due to our modeling of the input data as one single token
stream, OFCI can represent the full dataset in 3.5GB, whereas
TREX requires roughly 40GB for the same dataset due to
the required model inputs. When compared to SAFE, OFCI
only has roughly 900 tokens in its vocabulary, while the
approach taken by SAFE requires 500k tokens; in the case
of an unknown instruction, OFCI could still make use of the
instruction operands, while SAFE would classify the whole
instruction as out-of-vocabulary.

D. Performance on Unobfuscated Data

Due to the lack of available code and models from related
approaches we use the results reported by the authors of TREX
and other related work for comparison. The robustness of
OFCI embeddings on function pairs sampled from different
optimization levels can be seen through the ROC curve in
Figure 3. On its own, the curve shows good results for the
embeddings generated by OFCI, with a high ROC-AUC of 0.95
and no obvious skewing towards true/false positive rates. To
put the ROC-AUC score into perspective, Table III compares
the AUC scores against TREX. The ROC-AUC for one project
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Fig. 3: ROC of function pair similarity across optimizations.

is calculated by sampling 1.000 similar and the same amount of
dissimilar pairs from the database, with the standard deviation
across 10 runs of sampling being smaller than 0.01 in all cases.
The AUC scores of OFCI are worse, as the number of trainable
parameters has been significantly reduced and it does not use
microtraces introduced by TREX. OFCI performs the worst
at LibTomCrypt, with an AUC score of 0.849. The drop in
AUC is roughly 15%, while the average decrease is at 7%,
which is minor when compared to the 85% reduction of model
parameters in OFCI compared to TREX.

Project TREX OFCI

Binutils 0.993 0.933
Coreutils 0.992 0.968
Curl 0.993 0.929
Diffutils 0.992 0.951
Findutils 0.992 0.939
GMP 0.993 0.929
ImageMagick 0.993 0.924
Libmicrohttpd 0.994 0.901
LibTomCrypt 0.994 0.849
OpenSSL 0.992 0.952
PuTTY 0.995 0.938
SQLite 0.994 0.916
Zlib 0.991 0.892

Average 0.990 0.925

TABLE III: Comparison of unobfuscated AUC scores.

As the ROC-AUC only shows the performance of clas-
sifying functions as similar, it does not show how well OFCI
performs on function search. Table IV provides the comparison
of Precision@1 reported by TREX and ASM2VEC to OFCI.
While the function similarity classification performance of
OFCI is on par with other approaches, function search is
not. When searching similar functions from binaries with
optimization levels O2 and O3, the average performance of
OFCI is below TREX and ASM2VEC, at around 50%. While
OFCI does not perform well in function search, the precision
values are still above the performance of random embeddings.
A drop in performance is expected, as OFCI reduces model
complexity and the number of trainable parameters, but the

reduction margin should be closer to the results on ROC-
AUC scores. One potential problem could be the reduction of
model complexity. With the intention of building on TREX, a
model too computation heavy to train on a budget, the focus of
OFCI was set to transformer-based models. But in comparison
to TREX, which uses ROBERTA [38], OFCI is based on
ALBERT [35]. Within the ALBERT paper, the authors devise
certain measures to reduce the model complexity (discussed
in subsection IV-D), and can achieve on-par performance with
BERT [12] on several widely used natural language process-
ing benchmarks, including semantic textual similarity (STS).
ROBERTA performs better than simple BERT and thus better
than ALBERT in theory. The performance differences discussed
in these papers however are in line with the ROC-AUC score
differences discussed here, and not with the drastic differences
in precision scores. Other points are reporting of metrics
and description of evaluation sets in related work. While
there are a variety of popular benchmarks for natural language
processing, these benchmarks do not exist for function clone
detection and most fields of binary analysis in general, making
it hard to objectively compare different approaches on a
certain task. This is highlighted by the authors of TREX in
a striking manner: For every approach they compare against,
i.e. ASM2VEC [13], SAFE [39], GEMINI [63] and BLEX [15],
they compare results with different metrics, because with the
exception of SAFE, none of the other approaches provides the
full source-code or trained model. While there is recent work
trying to tackle this issue [34], this benchmark is not yet widely
used.

O2 and O3 O0 and O3

Project TREX ASM2VEC OFCI TREX ASM2VEC OFCI

Coreutils 0.955 0.929 0.137 0.913 0.781 0.025
Curl 0.961 0.951 0.680 0.894 0.850 0.159
GMP 0.974 0.973 0.748 0.886 0.763 0.219
ImageMagick 0.971 0.971 0.457 0.891 0.837 0.066
LibTomCrypt 0.991 0.991 0.611 0.923 0.921 0.040
OpenSSL 0.982 0.931 0.469 0.914 0.792 0.082
PuTTy 0.956 0.891 0.248 0.926 0.788 0.049
SQLite 0.931 0.926 0.551 0.911 0.776 0.117
Zlib 0.890 0.885 0.465 0.902 0.722 0.329

Average 0.957 0.939 0.485 0.907 0.803 0.121

TABLE IV: Comparison of Precision@1 across optimizations.

E. Performance on Hikari Obfuscated Binaries

The ROC curves of classifying similar function pairs
between obfuscations and between all functions in the dataset,
including the different optimization levels, are shown in Fig-
ure 4. The AUC score on the obfuscated function pairs is 0.963,
which puts the classification performance above the previously
discussed classifying of function pairs across optimization
levels. OFCI performs slightly better on the obfuscation part
of the dataset, due to two reasons: The obfuscations provided
by Hikari appear to be less drastic than difference between O0
and O3, and the AUC score is calculated between obfuscated
function pairs only, meaning there are less differences between
the different obfuscations itself.

The performance on the obfuscated data when compared
to other approaches can be seen in Table V. First, OFCI is
directly compared to TREX on obfuscated function pairs only,
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Fig. 4: ROC of obfuscated function pairs and all function pairs.

as the results come from the same dataset. When comparing
the AUC scores of obfuscated pairs, OFCI is expectedly
outperformed by TREX and again shows a maximum drop
of 15% in AUC score. This is again a trade-off for an 85%
reduction in the number of trainable model parameters. The
second category, the ROC-AUC of all function pairs in the
dataset, is taken from the ablation study performed by TREX.
It includes the AUC scores calculated for SAFE on the TREX
dataset and the TREX results when the model is not pre-
trained with microtraces, but only with static data, similar
to OFCI. This comparison is not entirely objective, as these
numbers also include cross-architecture function pairs that are
not present in OFCI; however, the comparison is presented
here to contextualize the results produced by OFCI. Keeping
this in mind, OFCI manages to achieve a higher AUC score
than TREX on two projects, manages to generally outperform
the version of TREX that does not make use of microtraces
and produces results in the same range as SAFE, therefore
producing good results when only considering ROC-AUC.

Obfuscated Pairs All Pairs

Project TREX OFCI TREX (w/o microt.) SAFE OFCI

Binutils 0.991 0.947 0.952 0.871 0.918 0.942
Coreutils 0.991 0.966 0.951 0.900 0.910 0.965
Curl 0.991 0.940 0.953 0.919 0.931 0.924
Diffutils 0.990 0.959 0.952 0.931 0.918 0.945
Findutils 0.990 0.967 0.961 0.889 0.910 0.934
GMP 0.990 0.869 0.953 0.931 0.930 0.852
ImageMagick 0.989 0.910 0.962 0.889 0.935 0.902
Libmicrohttpd 0.991 0.905 0.951 0.910 0.917 0.874
LibTomCrypt 0.991 0.836 0.953 0.900 0.911 0.844
OpenSSL 0.989 0.946 0.952 0.858 0.925 0.941
PuTTy 0.990 0.976 0.941 0.840 0.900 0.951
SQLite 0.993 0.956 0.953 0.850 0.929 0.947
Zlib 0.990 0.911 0.960 0.810 0.931 0.888

Average 0.990 0.929 0.953 0.884 0.920 0.916

TABLE V: Comparison of obfuscated AUC scores.

Analyzing the function search Precision@1 results yields
the values presented in Table VI, compared to TREX and
ASM2VEC. The use case of function search for an obfuscated
function is the determination of the original unobfuscated
function. To this end, the embeddings of the unobfuscated

functions are stored in an index, and the index is queried with
the obfuscated functions. This is done for the Bogus Control-
Flow (BCF), Control-Flow Flattening (CFF) and Instruction
Substitution (SUB) obfuscations, as these are the ones listed by
ASM2VEC and TREX. The results are slightly worse compared
to searching functions across O0 and O3, highlighting that
Hikari obfuscations are still able to increase the complexity
of the function beyond the typical capabilities of standard
compiler optimizations. Instruction substitution is among the
simpler obfuscations with an average Precision@1 of 0.229,
while CFF and BCF are on the more complicated end with
0.136 and 0.149 average Precision@1 respectively. Similar to
the precision values of the unobfuscated function search, the
results are however far behind the reported values of TREX
and ASM2VEC. The reasons for this being the same as already
described for the unobfuscated version.

Obf. Approach GMP LibTomCrypt ImageMagick OpenSSL Average

Bogus
Control-
Flow

TREX 0.926 0.938 0.934 0.898 0.924
ASM2VEC 0.802 0.920 0.933 0.883 0.885

OFCI 0.158 0.121 0.224 0.093 0.149

Control-
Flow
Flattening

TREX 0.943 0.931 0.936 0.940 0.930
ASM2VEC 0.772 0.920 0.890 0.795 0.844

OFCI 0.169 0.178 0.156 0.043 0.136

Instruction
Substitution

TREX 0.949 0.962 0.981 0.980 0.968
ASM2VEC 0.940 0.960 0.981 0.961 0.961

OFCI 0.249 0.214 0.283 0.169 0.229

TABLE VI: Comparison of obfuscated P@1 scores.

F. Ablation Study

One additional feature provided by OFCI is the Call-
ID, where references to another call are added to the call
instruction, with the intention of improving the results of the
embedding. Within this ablation experiment, the performance
of OFCI with and without the Call-ID feature is tested to
see whether the call references offer an improvement of the
results. The ROC curves of function pairs selected from the
obfuscation dataset, grouped by different obfuscation passes,
can be seen in Figure 5. Functions that do not perform any
calls are excluded, as the Call-ID feature will not have any
impact on them.

Project Call-ID w/o Call-ID

Binutils 0.131 0.116
Coreutils 0.059 0.057
Curl 0.462 0.500
Diffutils 0.471 0.462
Findutils 0.360 0.326
GMP 0.857 0.714
ImageMagick 0.377 0.333
Libmicrohttpd 0.857 0.714
LibTomCrypt 0.296 0.296
OpenSSL 0.049 0.052
PuTTY 0.108 0.100
SQLite 0.372 0.283
Zlib 0.857 0.857
Average 0.404 0.370

TABLE VII: Comparison of P@1 with and without Call-ID.

The ROC curves in Figure 5 show no visible difference,
the robustness of the embeddings appears to be just as good
as without the Call-ID feature. However, there are small dif-
ferences in the ROC-AUC scores of function pairs in favor of
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Fig. 5: ROC of various obfuscated function pairs with and without Call-ID.

having the Call-ID feature. For the group of O0-BCF function
pairs, this difference is as low as 0.001 difference in AUC,
while the O0-CFF and O0-IBR pairs show a bigger difference.
While the differences in the ROC-AUC scores are small, the
effect of Call-ID can be observed in the Precision@1 scores
as well, shown in Table VII for all projects when searching
O0 from CFF. The dataset is the same subset used for the
ROC curve O0-CFF in Figure 5. While the differences are
again small, they are more distinct than the difference in ROC-
AUC scores and with the exception of Curl/OpenSSL they are
showing that Call-ID can indeed improve the function clone
search. The ablation testing shows how the Call-ID feature
does appear to be beneficial, with differences in ROC-AUC
scores being small, but consistently positive across all tests.

G. Performance on Tigress Virtualized Examples

As the second major new addition on top of existing work,
OFCI approaches analysis of code obfuscated through virtual-
ization. At the time of writing there are only two references
to virtualized code in related work regarding function clone
detection: A survey [22] citing virtualized code as an unsolved
problem, and ASM2VEC [13] performing analysis on the static
code generated by Tigress. They showed that they were still
able to detect vulnerabilities from the static code generated
by Tigress virtualization, with a true positive rate of 35.8%
on a small dataset, but do not discuss function clone detection
across virtualization. To the best of our knowledge, OFCI is the
first machine learning based approach trying to tackle function
clone detection across virtualization through dynamic analysis,
i.e. through generating instruction traces of the virtualized code
and comparing with these traces; the results can therefore not
directly be compared with existing approaches.

The ROC curve for function pair embeddings across this
whole dataset can be seen in Figure 6. The results show that the
classification of function pairs across virtualized code is not
good, but also not completely random. Precision@1 scores are
omitted here, as they show results similarly close to the per-
formance of a random classifier. Only in the case of searching
virtualized functions against obfuscated or other virtualized
functions does OFCI produce results that are slightly above
random performance. Therefore, a possible solution to produce
better results would be to obfuscate known functions with the
same virtualization technique and only then compare them with
unknown virtualized function traces.
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Fig. 6: ROC of all function pairs across optimizations and
virtualization.

We identified three main issues when analyzing the per-
formance of our approach when faced with virtualization: The
length of the traces, only small differences across traces and
the synthetic dataset. Traces represent the longest inputs in
the dataset, potentially consisting of hundreds of fragments.
Through the analysis of the number of fragments on function
pairs obfuscated with Hikari, as shown in Figure 7, we real-
ized that the performance of function similarity classification
decreased with the number of fragments per function; a trace
made up of hundreds of fragments would therefore take a
significant hit in similarity classification performance. This
insight proves especially interesting, as most function clone
detection approaches simply approach the function length
problem by cutting the function at a certain threshold.

Another significant contribution to the performance on
virtualized functions is the usage of synthetically created
functions used as dataset. As seen in Figure 8, classification
between O2 and O3 of the functions shows a perfect classifier,
meaning the functions are not affected by optimizations after
O2 at all. On the other hand, the model cannot classify pairs
between O0 and O3 at all, which translates to the similarly
bad performance in the virtualization benchmarks. The model
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Fig. 7: ROC of obfuscated function pairs by fragment count.

appears to learn certain structural information about the code,
which is not present in our simple synthetic functions. As
Tigress expects a single source file for compilation, coming up
with the quantities of functions needed for machine learning
approaches is not simple, as merging real-world C programs
into a single source file is far from trivial.
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Fig. 8: ROC of source functions in the virtualization dataset.

VII. CONCLUSION AND FUTURE WORK

Function clone detection remains a hard problem, with a
growing set of machine learning approaches trying to provide
new solutions at the cost of being too computation-heavy
for production use. Therefore, building on TREX [47], we
introduce OFCI to focus on a more lightweight approach to
identify obfuscated function clones. OFCI trimmed down the
model into a slimmer form of state-of-the-art architectures and
implemented the approach as an efficient framework. Every
part of this framework makes use of openly available tech-
nologies, with Ghidra as core reverse engineering environment
and PyTorch as central machine learning library. That makes it
possible to have an open end-to-end pipeline for function clone

detection, whereas existing approaches rely on proprietary
disassemblers like IDA. In addition to openness, the evaluation
of OFCI has shown that the framework is able to scale to
hundreds of thousands of functions, facilitated by Ghidra’s
headless analysis modes, outperforming existing approaches in
terms of function processing. OFCI has significantly reduced
the number of trainable parameters when compared to the
most recent and promising related approaches. This does not
heavily affect the ability to classify function pairs based on
their similarity, which is highlighted in the ROC-AUC scores
of the evaluation.

Unfortunately, not all aspects of OFCI have been as suc-
cessful and the precision of function clone search leads to
mixed results in comparison to other approaches. The reasons
for these results have been discussed, but further scrutiny
and trials are required. Similar issues can be found in the
Call-ID and virtualized clone detection features of OFCI.
The evaluation showed that Call-ID, i.e. adding function call
identification info into the tokenized disassembly, can slightly
improve function search performance, while virtualized clone
detection through traces does not work in the current form as
implemented by OFCI. By extensively analyzing these mixed
results, OFCI was able to highlight some general issues in
the way related work tackles the function clone detection
problem. As future approaches need to tackle these issues,
OFCI provides a mature framework for rapid prototyping and
testing of new models.

The development of OFCI highlighted the difficulty of
working with modern machine learning models. To achieve the
reported performance, those approaches rely on large amounts
of computing resources, making those approaches harder to
reproduce and less viable to be used in production. Therefore,
one important issue is to reduce the complexity of new
function clone search approaches, while keeping the search
performance at the same level. OFCI has already reduced
the number of trainable parameters by a large margin, but
is still a computation heavy transformer model. Generation
of viable datasets is another problem. While existing work
is mostly based on using Hikari as an obfuscator, creating
large datasets utilizing virtualization based obfuscation is not
as easily achievable, since Tigress requires a high level of
manual effort. However, generating good datasets is a vital
part for every approach based on machine learning, for both
training and verification. Since OFCI also supports instruction
traces through Intel Pin, another interesting prospect is the
integration of additional information from dynamic traces,
similar to the microtraces used by TREX. And finally, it is
worth investigating whether using intermediate representations
or raw bytes instead of disassembly is viable as input for binary
code similarity models.
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R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[47] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning
Execution Semantics from Micro-Traces for Binary Similarity,” CoRR,
vol. abs/2012.08680, 2020. [Online]. Available: https://arxiv.org/abs/
2012.08680

[48] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu, “How
could Neural Networks understand Programs?” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 8476–8486. [Online]. Available:
https://proceedings.mlr.press/v139/peng21b.html

[49] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
Architecture Bug Search in Binary Executables,” in 2015 IEEE Sympo-
sium on Security and Privacy, 2015, pp. 709–724.

[50] Quarkslab, “An Experimental Study of Different Binary Exporters,”

https://blog.quarkslab.com/an-experimental-study-of-different-binary-
exporters.html, accessed: 2021-04-04.

[51] K. Redmond, L. Luo, and Q. Zeng, “A Cross-Architecture Instruction
Embedding Model for Natural Language Processing-Inspired Binary
Code Analysis,” in NDSS Workshop on Binary Analysis Research (BAR),
2019.

[52] N. Reimers, I. Gurevych, N. Reimers, I. Gurevych, N. Thakur,
N. Reimers, J. Daxenberger, I. Gurevych, N. Reimers, I. Gurevych
et al., “Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks,” in Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational
Linguistics, 2019.

[53] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su,
“Detecting Code Clones in Binary Executables,” in Proceedings
of the Eighteenth International Symposium on Software Testing
and Analysis, ser. ISSTA ’09. New York, NY, USA: Association
for Computing Machinery, 2009, pp. 117–128. [Online]. Available:
https://doi.org/10.1145/1572272.1572287

[54] P. Shirani, L. Wang, and M. Debbabi, “BinShape: Scalable and Ro-
bust Binary Library Function Identification Using Function Shape,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
M. Polychronakis and M. Meier, Eds. Cham: Springer International
Publishing, 2017, pp. 301–324.

[55] F.-H. Su, J. Bell, G. Kaiser, and R. Baishakhi, “Deobfuscating An-
droid Applications through Deep Learning,” https://mice.cs.columbia.
edu/getTechreport.php?techreportID=1632, accessed: 2021-01-15.

[56] T. G. D. Team, “The Go Project,” https://golang.org/project/, accessed:
2021-05-15.

[57] O. Technologies, “Themida - Advanced Windows Software Protection
System,” https://oreans.com/themida.php, accessed: 2021-05-13.

[58] R. Tofighi-Shirazi, I.-M. Asavoae, P. Elbaz-Vincent, and T.-H. Le,
“Defeating Opaque Predicates Statically through Machine Learning
and Binary Analysis,” in Proceedings of the 3rd ACM Workshop on
Software Protection, ser. SPRO’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 3–14. [Online]. Available:
https://doi.org/10.1145/3338503.3357719

[59] J. Upchurch and X. Zhou, “Malware provenance: code reuse detection
in malicious software at scale,” in 2016 11th International Conference
on Malicious and Unwanted Software (MALWARE), 2016, pp. 1–9.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, u. Kaiser, and I. Polosukhin, “Attention is All You Need,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, pp. 6000–6010.

[61] VMProtect, “VMProtect Software Protection,” http://vmpsoft.com/, ac-
cessed: 2021-05-13.

[62] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-
the-Art Natural Language Processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

[63] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
Network-Based Graph Embedding for Cross-Platform Binary Code
Similarity Detection,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: Association for Computing Machinery, 2017, pp. 363–
376.

[64] N. Zhang, “Hikari Obfuscator,” https://github.com/HikariObfuscator/
Hikari, accessed: 2021-10-05.

[65] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural Ma-
chine Translation Inspired Binary Code Similarity Comparison beyond
Function Pairs,” in Proceedings of the 2019 Network and Distributed
Systems Security Symposium (NDSS), 2019.

13

https://arxiv.org/abs/2011.10749
http://arxiv.org/abs/1909.11942
https://www.mdpi.com/2076-3417/9/19/4086
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1906.02928
http://arxiv.org/abs/1906.02928
https://arxiv.org/abs/2102.04805
https://www.trendmicro.com/en_us/research/18/l/ursnif-emotet-dridex-and-bitpaymer-gangs-linked-by-a-similar-loader.html
https://www.trendmicro.com/en_us/research/18/l/ursnif-emotet-dridex-and-bitpaymer-gangs-linked-by-a-similar-loader.html
http://arxiv.org/abs/1301.3781
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2012.08680
https://arxiv.org/abs/2012.08680
https://proceedings.mlr.press/v139/peng21b.html
https://blog.quarkslab.com/an-experimental-study-of-different-binary-exporters.html
https://blog.quarkslab.com/an-experimental-study-of-different-binary-exporters.html
https://doi.org/10.1145/1572272.1572287
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1632
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1632
https://golang.org/project/
https://oreans.com/themida.php
https://doi.org/10.1145/3338503.3357719
http://vmpsoft.com/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari


Project O0 O1 O2 O3 BCF CFF IBR SPL SUB Total

Binutils 57.527 43.901 42.166 39.096 62.981 62.981 62.981 62.981 62.981 497.595
Busybox 3.321 2.108 1.831 1.854 3.160 3.271 3.483 3.282 3.282 25.592
Coreutils 96.696 74.505 73.013 69.207 17.331 17.331 17.343 17.331 17.331 400.088
Curl 5.390 742 727 661 1.002 1.002 1.002 1.002 1.002 12.530
Diffutils 3.959 2.500 2.829 2.614 848 848 850 848 848 16.144
Findutils 5.055 2.671 3.625 3.286 1.400 1.400 1.404 1.400 1.400 21.641
GMP 789 698 690 665 782 782 782 782 782 6.752
ImageMagick 4.456 2.389 2.380 2.308 4.447 4.447 4.447 4.447 4.447 33.768
Libmicrohttpd 200 176 171 161 200 200 204 200 200 1.712
LibTomCrypt 794 749 743 726 794 794 795 794 794 6.983
OpenSSL 12.178 11.197 11.077 10.755 10.745 10.871 12.176 10.749 11.476 101.224
PuTTy 8.104 5.741 5.666 5.387 8.154 8.154 8.154 8.154 8.154 65.668
SQLite 2.192 1.525 1.367 1.181 2.183 2.183 2.183 2.183 2.183 17.180
Zlib 154 139 124 115 154 154 154 154 154 1.302

TABLE VIII: Extracted functions from the TREX dataset.

APPENDIX A
DATASET

Our dataset consists of two distinct parts, which are trained
together but evaluated separately. These parts are:

1) The amd64 part of the dataset published by the
authors of TREX [47].

2) An additional set of functions used for evaluating the
performance on VM-obfuscated functions.

The first part, the dataset taken from TREX, is already
discussed in detail in their paper. We selected the amd64
part of their dataset, as this part additionally contains bina-
ries obfuscated with Hikari. From what we gathered through
manual analysis, the obfuscated binaries are based on the O0
version of the respective binary or have been compiled with
O0. Through extraction with our Ghidra exporter, the retrieved
function counts differ from the numbers reported by TREX,
with the number of extracted functions shown in Table VIII.

While this accounts for smaller differences, the differences
in Coreutils, Binutils, etc., can be explained by TREX focussing
on one specific version of these utils, while the dataset actually
contains multiple versions. OFCI uses all versions in the dataset
and marks a function as similar even if the version is different.
Whenever we refer to a project that consists of multiple
binaries, e.g. Coreutils and Binutils, we refer to all binaries
contained in these projects, for OpenSSL we use the shared
library itself.

The second part, the dataset used for evaluating perfor-
mance on VM-obfuscated functions, is created synthetically,
as it is not trivial to apply Tigress VM-obfuscations to real-
world programs. We use a Python script to generate functions
containing if-conditions and arithmetic/bitwise operations,
similar to programs generated in VM deobfuscation research
[9], [3].

An example program can be seen in Listing 1; the constants
are picked in a way that a trace will always capture the longest
path, i.e. evaluate the if-condition to true, based on fixed
input parameters. A total of 7k functions is generated this

uint64_t fn_00000849 (uint64_t a, uint64_t b,
uint64_t c,uint64_t d, uint64_t e) {

if ((((((((˜e)ˆe)&2528754653ULL)
&c)-e)+c)*d)> 706126599ULL) {

if ((-(((-e)ˆ(˜a))&b)) > 4055914716ULL) {
return (˜(-((((-(-3380300720ULL))ˆe)

&1282233943ULL)+a)));
}
return 2;

}
return 1;

}

Listing 1: Generated program for VM obfuscation analysis.

way, compiled on all optimization levels, obfuscated using
Tigress Virtualization, EncodeArithmetic and the combination
of Virtualization and EncodeArithmetic together, resulting in a
total of 49k binary functions.

For pre-training the whole function database is used and
1.5M function fragments are randomly selected. As our defi-
nition of similarity is based on function names, for fine-tuning
we first select a subset of function names, to ensure that the
functions and the similar functions we use for the evaluation
have never been used in the fine-tuning process. Our database
contains 190k unique function names, out of which 56k (30%)
are randomly selected for fine-tuning. In the next step, 500k
function fragments are sampled from function pairs using the
selected names. To this end, one positive and two negative
function pairs are randomly selected, their fragments counted
and added to the total number of fragments for their respective
optimization/obfuscation category. The next function pair will
be selected based on the already generated number of frag-
ments per category, with the goal of distributing the number of
fragments equally across categories until 500k fragment pairs
have been generated. Out of these 500k fragment pairs, 200k
are used for training and 100k for validation during training.
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