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Abstract—Common network protocol fuzzers use complex
grammars for fuzzing clients and servers with a (semi-)correct
input for the server. In contrast, feedback-guided fuzzers learn
their way through the target and discover valid input on their
own. However, their random mutations frequently destroy all
stateful progress when they clobber necessary early communica-
tion packets. Deeper into the communication, it gets increasingly
unlikely for a coverage-guided fuzzer like AFL++ to explore later
stages in client-server communications. Even combinations of
both approaches require considerable manual effort for seed
and grammar generation, even though sound input sources for
servers already exist: their respective clients. In this paper, we
present FitM, the Fuzzer in the Middle, a coverage-guided fuzzer
for complex client-server interactions. To overcome issues of the
State-of-the-Art, FitM emulates the network layer between client
and host, fuzzing both server and client at the same time. Once
FitM reaches a new step in a protocol, it uses CRIU’s userspace
snapshots to checkpoint client and server to continue fuzzing
this step in the protocol directly. The combination of domain
knowledge gathered from the proper peer, with coverage-guided
snapshot fuzzing, allows FitM to explore the target extensively.
At the same time, FitM reruns earlier snapshots in a probabilistic
manner, effectively fuzzing the state space. We show that FitM
can reach greater depth than previous tools by comparing
found basic blocks, the number of client-server interactions,
and execution speed. Based on AFL++’s qemuafl, FitM is an
effective and low-effort binary-only fuzzer for network protocols,
that uncovered overflows in the GNU Inetutils FTP client with
minimum effort.

Index Terms—snapshot, stateful, protocol, fuzzing

fuzzing ineffective. The typical approach to fuzz complex
network services is to write a grammar by hand and pass input
over slow sockets. We show that we can get around writing
grammars and manual harnesses, as we already have the
domain knowledge as part of the client-server communication.
With FitM, the Fuzzer in the Middle, we present a qemuafl-
based [1] coverage-guided fuzzer that fuzzes client and server
at the same time. FitM-qemu uses network layer emulation,
able to handle synchronous and asynchronous network interac-
tions. The networking syscall hooks pass input through shared
maps instead of sockets, increasing the speed many-fold. For
each potential new state, meaning a new recv→send→recv
transition, we create persistent snapshots using CRIU [2].
Persistent snapshots allow us to stop and continue fuzzing
of target states at any time and even replay snapshots with
strace, or other debugging features enabled. Additionally, we
implement waypoints and smart state creation — based on
new socket outputs and unique AFL maps — and fuzz each
state transition independently. FitM is the first tool to use
persistent snapshots of userspace processes. In comparison to
hypervisor-based solutions [3]–[5] userspace fuzzing works
without the need for additional introspection into the host
system, is simpler, and can potentially reach faster speeds,
without the need for expensive hypervisor interactions [6].

More important than the snapshotting itself, however, is
our answer to: when to snapshot, how to schedule, and how
to automatically explore stateful protocols. In this paper, we
explain how we tackle these challenges. Our contributions are
as follows:

• We design, develop and open-source FitM, a novel
coverage-guided Fuzzer in the Middle for binary-only
targets.

• We propose a scheme of state snapshots and stateful
fuzzing.

• We extend qemuafl through a fuzzer-aware network emu-
lation layer, taking away the need for kernel interactions.
It emulates both synchronous and asynchronous sockets.

• We evaluate FitM against AFLNet, a State-of-the-Art
coverage-guided fuzzer for network protocols, and show
promising results.

• We find a previously unknown buffer-overflow in GNU
Inetutils’ FTP client by fuzzing the FTP Server and
running it on other networking servers and clients.

I. INTRODUCTION

Fuzzing is one of the main methods to find memory 
corruption bugs. Even though fuzzing has been around for 
years, and despite many clients and servers being written in 
memory unsafe low-level languages, too few clients and 
servers are fuzzed in-depth. Fuzzing network-facing services 
still requires a large amount of manual effort. Instead of fuzzing 
client and server, as a whole, the security researcher has to 
hook up a fuzzer to fuzz individual parser functions manually. 
Clients and servers for elaborate protocols are usu-ally 
stateful and complex, rendering simple coverage-guided
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Fig. 1: High-level overview of FitM’s structure. FitM takes one CRIU snapshot for each new interaction. The snapshot can
spawn inside an individual namespace, and be fuzzed there. Afterwards, the minimizer and output collectors prepare the next
generation snapshots.

II. BACKGROUND

Fuzzing, or fuzz testing, is a form of automated software
testing. A fuzzer generates a large number of inputs it uses to
run the target binary with. Its goal is to find inputs that crash
the target, or otherwise trigger unwanted behavior.

A. Pitfalls of Coverage-Guided Fuzzing

Coverage-guided fuzzing is a common form of fuzzing that
tracks the effect of an input on the target. Coverage-guided
fuzzers like AFL [7] have had a large impact on the security
landscape. Even though previous work allows them to fuzz
network services directly, they rarely reach a state spanning
multiple exchanged packets. Given a handshake, even if the
fuzzer reaches a state where the receiver accepts the fuzzer’s
input and continues to parse the second packet, the fuzzer is
still just as likely to mutate bytes in the initial package as in
the second. Each mutation in the first packet a) is no longer
interesting for the fuzzer, and b) has the potential to ultimately
destroy the progress to packet two if it corrupts the first
packet. Even State-of-the-Art solutions, such as AFLSmart [8],
Nautilus [9], Superion [10] and AFLNet [11], still need user-
specified grammar and inputs. Few automated solutions with
network support exist that try to extract flows from network
pcap [12] or even learn the grammar [13]. Mapped to Super
Mario, Aschermann et al. improve coverage guided fuzzer
performance by giving the fuzzer additional feedback on
waypoints reached [14].

In the recent past, we have seen more and more fuzzing re-
search proposing the use of snapshots for fuzzing, such as the
oeuvre of Falk [5], [15], as well as Nyx by Schumilo et al. [3],
and Agamotto by Song et al. [4]. Snapshots can be used to
keep states of a program, which will be helpful for network
protocol fuzzing. Most proposed snapshot engines work on
a hypervisor level. Since these engines require expensive
hypercalls and handle a full operating system in addition to the
target, userspace snapshotting can reach far greater speeds [6].

B. QEMU and qemuafl

To make FitM work for binary-only fuzzing, we built on
top of qemuafl. Using qemu-user, qemuafl lifts and recompiles
each basic block it encounters during execution. As this hap-
pens only once, as long as it is in the cache, it is fast enough for
fuzzing. When the basic block is emitted, qemuafl adds AFL++

compatible coverage instrumentation that the fuzzer uses as
feedback for future mutations [1]. While it works for binaries
of the same architecture, the recompilation even allows us to
rehost a binary to a different architecture [16]–[18]. As we
have full control of the target, we can replace any syscall,
add unsupported calls, hook them, and alter behavior. In
comparison to hooking at the library layer through a preloaded
shared object, like in preeny [19] or networkemu [20], hooking
at the syscall level also works for non-well-behaved targets, as
long as they do not specifically fingerprint their environment.

III. CHALLENGES

While working on FitM we faced several challenges that we
tackled using different approaches. In this section we outline
these challenges and explain how we addressed them in the
subsequent section IV.

A. State Explosion

One challenge with fuzzing targets FitM is intended for is
state explosion. Each output of one generation geni is input
to one new snapshot in generation geni+1. As each snapshot
in geni+1 on average produces more than one output, the
number of new states produced per generation is proportional
to the number of states within that same generation. This
exponential growth is a problem both from a practical point
of view, as memory resources on any host are usually limited,
but also from a logical point of view. Because the number
of new snapshots grows faster than they can be processed,
i.e., fuzzed, FitM would never arrive in the later stages of
the communication. However, these later stages are critical to
uncovering deep bugs within the protocol implementations.
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In order to deal with state explosion we take multiple mea-
sures: (1) minimizing inputs from prior generations and the
current corpus with afl-cmin, (2) picking random snapshots
for the current loop and (3) deduplicating outputs using string
similarity.

B. Dead Ends

There may be situations where client or server end up in a
state where they constantly repeat a setup, teardown or error
message. Typically the fuzzer is not able to recover from
such a loop. Trace comparison for each new snapshot would
catch cases where the new state behaves precisely the same
as the old one. However, in most cases some data processing
dependent on input length, randomness, or similar happens
within the target, thus resulting in a different coverage map
and consequently in a new state. To address this challenge we
probabilistically abort some generations.

C. Desynchronisation Between Generations

Each generation should produce outputs that transition to
its next state when used as input for the following generation.
For example, in a basic FTP communication, the server will
begin with a banner message, signaling successful connection
establishment, the client will continue with sending the user
for login, for which the server then requests the password,
and so on. If the server does not receive the user name, for
whatever reason, it will not transition to a state where it asks
for a password. Consequently, the client will never receive the
password request it would expect and instead may receive the
welcome banner again. Client and server are now out of sync.
This becomes problematic because the client is now missing
a generation. While the server transition from generation 1 to
generation 3 by receiving the username, the client is stuck in
generation 2. Generation 3 does not have any relevant inputs
at this point. To reduce the effect of desynchronization we use
the output of multiple generations to feed a new generation.

IV. DESIGN

We now present how we addressed the aforementioned
challenges.

The general goal of FitM is to build a fuzzer that can
autonomously discover paths deep within the state machine
of a given network protocol and thus the client/server that
implements the protocol. The two main tools to achieve this
are: (a) fuzzing two binaries in turns and (b) snapshotting.

FitM is written in Rust and works natively on unpatched
Linux systems. We use persistent snapshots through CRIU and
a normal AFL-style forkserver for fuzzing. In future versions
of FitM, we aim to replace forks by qemuafl’s persistent mode,
increasing the speed further. FitM automates harnessing by
proxying all emulated network interactions like a Machine-
in-the-Middle (MitM). FitM offers a comprehensive network
emulation layer, directly intercepting client and server, and
places socket inputs into the target via shared maps, without
the need for slow kernel interaction. This produces very stable
and reproducible results with persistent snapshots. While FitM

is intended to be used in a client-server manner, using a custom
client, or even an echo client, also makes it an effective means
to fuzz a single peer. In the following, we drill down on each
component depicted in Fig. 1. Most servers only respond to
inputs abiding by strict rules and reject the inputs otherwise.
To reach depth, correct input is necessary during each stage
of the communication. Therefore we collect the response of
the client and the server during each stage. They are known
to abide by the rules. For every request to the server, we save
the response, and for each response, we save the following
request, see Fig. 2. The blue lines indicate test case flow; black
lines are the snapshots. Dotted elements and lines address
other generations. Whether the client or server begins the
communication can be configured depending on the selected
target. Every collected output is then an input for the upcoming
stage and seeds the fuzzing of that stage.

Once the fuzzer finds multiple inputs for subsequent states,
simply rerunning the inputs in order may lead to differ-
ent behavior. Even if the exchanged messages are identical,
randomness in the target hinders reproducibility and further
progression. So, instead of rerunning, FitM creates a new
snapshot whenever the target expects new input, i.e., at the
recv syscall.

A. Corpus Minimization

afl-cmin is a known tool included in AFL++ that allows the
user to minimize a given corpus by collecting the coverage
map for a process on each input and only retaining the subset
of inputs that still produce the initial coverage. Generally, each
input for a state si from geni corresponds with one output of si
(there may be cases where an input does not produce output).
As long as this relation exists, less input means less output,
which leads to fewer new states. Therefore it is desirable to
have the minimum number of inputs before producing the
outputs of the current generation since that reduces the number
of new snapshots while keeping all discovered paths in the
current snapshot.

B. Random Select

Even though afl-cmin helps in reducing the number of
states, they still grow exponentially, since afl-cmin can not
eliminate the fact that each state has more than one child state
on average. Only a random, constant size subset of states is
used for each generation during processing to further reduce
the growth’s impact. A constant size is chosen so that every
generation takes the same time to complete, and no generations
are favored over others. This also keeps AFL’s original spirit
of using simple and fast but possibly incorrect solutions over
complex, but hopefully correct, solutions. More refined state
selection algorithms are an ongoing research topic, as recently
discussed by Liu et al. [21], and are out of scope for this paper.

C. String Distance Filtering

Another phenomenon that produces a lot of duplicate states
are duplicate outputs. While the target may take different
paths during execution, it might end up with the same error
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messages for many inputs. A first idea could be to eliminate all
exact duplicates in the output before starting snapshot creation.
However, this will fail due to ever-changing components like
timestamps or sequence numbers. In order to still identify
these ”almost”-duplicates, we define a minimal string distance
between outputs that always have to be met. If any output
is too close to any other output, it will be excluded from
the out corpus. The used string distance is the Jaro-Winkler
distance [22].
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Fig. 2: Information flow in one generation of FitM. The
previous outputs pose as inputs to this fuzzing run, the current
outputs, filtered, feed into the next generation.

D. Escaping Error Loops

We introduce a random restart into the run loop to escape
the potential error loops described in subsection III-B. During
the run loop, two conditions will make FitM restart fuzzing
from generation one. The first one is if no snapshots for
upcoming generations exist, i.e., all test cases reached an
exit before reading further bytes. On top of that, we added
a second probabilistic restart, with a low probability of 2 in
100 generations. A constant factor decides whether it is time
to restart or not. Just like with the random selects to battle
state explosion, we follow AFL’s simplicity doctrine here.

E. Resynchronization

Subsection III-C described the problem of generations going
out of sync. To circumvent this situation, we decided to take
the output of multiple generations as input for generation i.
By default the output of generation i − 1 would become the
input for generation i. To resync generations we also take the
outputs of generation i−3 and i+1, if present. Since afl-cmin
is called on the inputs, this does not introduce new duplicate
states as afl-cmin will eliminate all inputs that do not create
new coverage.

V. IMPLEMENTATION

In the following, we discuss implementation related details
of FitM.

A. Algorithm

To give a more detailed explanation of how FitM works, we
outline the two main algorithms governing FitM’s decision-
making in this section. Algorithm 1 outlines how generations
in their entirety are processed, while algorithm 2 highlights
one single generation.

1) Main Loop: The first conceptual step is to run an
init_run function on both client and server. This function
will produce the initial states for each target, state S1 and
S2. Additionally, it will record the output for the target that
sends first in the targeted protocol, corpus C0. There are three
situations within which the loop will not process the current
generation:

1) FitM skips a generation at random occasions, with a 7%
chance for every generation, to emphasize deeper states
in a probabilistic manner.

2) If the current generation is empty, a restart from the
first generation is triggered. Running from beginning
may find and explore new code paths from an earlier
generation.

3) Thirdly, a run over all generations is aborted if another
random threshold of 2% for every run is surpassed.

The thresholds are best-effort after non-exhaustive trials, and
we see room for improvement here. These parameters shift the
focus of fuzzing between generations. The optimal choice of
these parameters is nontrivial [21] and may vary, depending on
the choice of target and the desired type of fuzzing. Increasing
the choice of the generation skip probability shifts the focus
onto longer connections, which can help better leverage the
stateful fuzzing approach, yet sacrifices some exhaustiveness
for the initial states. The choice of the abort threshold has the
opposite effect, shifting the focus onto earlier states, with the
added benefit of possibly dropping dead states, i.e., states from
which no meaningful new state transitions can be discovered.
If none of these three checks succeed process is called,
triggering algorithm 2. For the following step, the subsequent
corpus Cgen+1 is returned. The snapshots Sgen+2 then get
created for the loop step after the next one.

2) Process Stage: The second algorithm used in FitM, the
process function, goes through the current generation and
processes a subset of the included states. This subset is of
constant size and randomly chosen. Each snapshot in this
subset S′gen then needs to be fuzzed, and its outputs need
to be collected. Before fuzzing the input corpus Cgen (the
outputs of the previous generation) are minimized using afl-
cmin. By fuzzing this minimized corpus, the fuzzer produces
a new queue which in turn will be minimized by afl-cmin
to become C ′gen. The second afl-cmin happens to reduce the
number of potential outputs Cgen+1 that will be created by
supplying the minimized corpus C ′gen to create_outputs.
This constitutes the first return value of process. To generate
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Algorithm 1 Main Loop
1: function FITM LOOP
2: gen = 1
3: S1 ← init run(peer1)
4: C0, S2 ← init run(peer2)
5: while True do
6: if random genskip() then
7: gen← gen+ 1
8: continue
9: if snapshotsgen = ∅ then

10: gen← 1 . Restart
11: continue
12: if random abort() then
13: gen← 1 . Restart
14: continue
15: Cgen+1, Sgen+2 ← process(Sgen)
16: gen← gen+ 1

new snapshots Sgen+2, each input from the minimized corpus
C ′gen is taken and checked to actually produce new traces and
outputs (lines 9 and 11 in Algorithm 2). If that is the case, it
will be used to advance snapshot snap to the next generation.

Algorithm 2 Process Stage
1: function PROCESS(Cgen, Sgen)
2: Cgen+1, Sgen+2 ← [ ]
3: for snap in S′gen ⊂ Sgen do
4: Cgen ← snap.cmin(Cgen)
5: Cgen′ ← snap.fuzz(Cgen)
6: Cgen′ ← snap.cmin(Cgen′ )
7: Cgen+1 ← snap.create outputs(Cgen′ )
8: for inp in Cgen′ do
9: if snap.trace(inp).known? then

10: continue
11: if snap.get output(inp).known? then
12: continue
13: Sgen+2.add(snap.next(inp))
14:
15: return (Cgen+1, Sgen+2)

B. QEMU Syscalls

By default, the overhead of reading data through the oper-
ating system’s network stack would be detrimental to fuzzing
performance. In order to overcome this challenge, we decided
to patch QEMU’s syscall translation layer. All hooks for
network emulation were created, step by step, by re-running
real-world targets in FitM-QEMU with strace enabled.
We then modify the syscall layer that handles the respective
network-related syscall. We introduced FITM_FD, a special
pseudo-file descriptor, over which all AF_INET (IP protocol)
socket operations are handled, or even multiplexed in case
the target, like FTP, uses multiple sockets to communicate.
The patches applied to the respective syscalls are explained in
Table I.

Syscall FitM-QEMU HOOK

accept(4) Always return static FITM_FD

bind Succeed when called on FITM_FD.

clone/fork We support the flavor of clone as used by
pthread_create — it behaves normally until the
first successful FITM_FD accept, write, or send,
afterwards either always runs the child function,
or returns 0 to continue in the parent (configurable)

connect Succeed when called on FITM_FD

dup(2) Return FITM_FD for FITM_FD, else forward

After FITM_FD is registered via EPOLL_ADD,
always return EPOLLIN/OUT Event on EPOLL_WAIT

fnctl If FITM_FD, return 0 for SETFL,
return O_SYNC | O_RDWR for GETFL

epoll Asynchronous primitives for monitoring multiple FDs.
(p)poll Always return as if FITM_FD had activity
(p)select (FITM_FD has further Input/Outputs were drained)

exit Redirect our reserved exit code 42 to 43, optionally
immediately _exit for misbehaved targets

read If FITM_FD, either return input from client or, if
recv is_sent, special snapshot handling.
recvfrom See paragraph V-B2
recvmsg

send(to) If FITM_FD, write output if output run, or nothing.
sendmsg
write

socket If AF_INET, return static FITM_FD 999,

TABLE I: Essential syscall hooks placed in FitM’s aflqemu
fork to make binary-only network peers fuzzable.

If a patch in Table I has specific conditions to be trig-
gered, the syscall will adhere to QEMU ’s original trans-
lation if the condition is not met, for example, all socket
operations for Unix domain sockets still work, to allow the
target to start up orderly. Some of the patches are im-
mediately necessary to handle network and socket opera-
tions: socket, bind, connect, accept, getpeername,
getsockname, recv, send. Patches to read and write
are necessary as some targets might choose to use read
or write instead of recv and send, refer to Sect V-B2.
select, poll and other asynchronous primitives need to be
modified to inform the target of state changes of the fuzzed
FD. Skipping this modification leads, in most cases, to the tar-
get waiting indefinitely for events to arrive. More importantly,
select also makes it necessary to chose FITM_FD to be
another pointer than 1337, since select is not able to wait
on FDs higher than FD_SETSIZE, which is 1024. Patching
fork and clone is necessary so only the child is fuzzed,
see Sect. V-B3. A change to exit allows us to communicate
the correct creation of a snapshot from the code calling the
CRIU server to FitM via exit code 42, and make sure the target
can never trigger this exit code. We furthermore hook fcntl,
ioctl and other syscalls retrieving or modifying the internal
state of the socket. These hooks are necessary, as the target
might want to change the socket’s operation mode, e.g., set the
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socket to non-blocking mode, or receive information about the
FITM_FD pseudo-FD. A call like this on FITM_FD will break
as the FD does not point to a valid socket. Likewise, fstat
returns information about the faux socket, if needed. The dup
hook is necessary because the target is not allowed to change
the pseudo-FD it uses to read and write from and to the socket.
In other words: once the target receives a FITM_FD from
QEMU it should never be able to move it to another FD again.
We patch close and shutdown as opening and closing of
the FITM_FD needs to be done by the syscall translation layer.

For misbehaving targets we added the option to exit(0)
immediately from close, and empty recvs, as the client
would wait on stdin for the the user to establish a new
connection. This means we do not fuzz teardown code, and
miss stack overflows in calling functions, but we do not trigger
unwanted hangs

In summary, these modifications allow for two things: (a)
supply input to the target with files instead of sockets. And
(b) create snapshots during specific events, namely receiving
data from sockets during recv and read calls.

1) Target Input: In order to effectively get input into the tar-
get, we want to intercept all instances in which the target tries
to communicate over a TCP/IP socket. Instead of opening and
using the socket, we want the target to use fuzzer input.This
should be transparent to the target as one of FitM’s purposes
is removing the necessity of manual target preparation. The
target should still work regardless of where the socket FD
points. The target receives fuzzing input in all places where
it reads from FITM_FD, were socket communication with the
other party would have happened.

2) Receive Functions: The receive function recv and
read are the core components of our network emulation layer.
If a receive function is called with the FITM_FD, previously
returned by either accept or socket, several things happen.

Firstly, we increase the counter in a fixed location of AFL’s
fuzzer map each time we reach a send or receive function,
similar to the waypoints of Ijon [14]. Further, if the target
already sent network data in the meantime (or it is the initial
run), we check if we are running in one of the four modes
that can be switched to between snapshot restores:

• fuzzing mode: Return data from AFL++’s shared map input
if available, else return 0 or exit.

• replay mode: Read next packet from sequentially num-
bered files in a folder. Always return the remaining
contents of the last opened file, or open the next file if
necessary and it still exists.

• timewarp mode: Create a CRIU snapshot for future fuzz
runs.

• output mode: Open a file at a supplied path to write output
to. Technically, this can also be done in either of the three
previous modes. It is done in an extra run to save time
during fuzzing.

All receives to all potential sockets are multiplexed through
FITM_FD, so each receive is called on this pseudo-FD sequen-
tially. This works as no multiprocessing exists after the socket

opens. Even if the client would send on multiple sockets in
a different order each time, we handle desynchronization (as
described in subsection III-C) as we pass input for multiple
stages to each run when calling process.

Entering Recv

Sent 
once? Snapshot

Forkserver

More 
Data?

Restore

Return

Exit

Fig. 3: Hooked recv function of FitM. It will take a new
snapshot after each send, and can be restored at this point
later in time.

In timewarp mode, the read and recv syscalls trigger
an remote Procedure Call (RPC) from the target to another
process, the CRIU server. This CRIU server will then snapshot
the target that sent the call. The logic to decide when to trigger
a snapshot is visualized in Fig. 3.

In order to only create new snapshots when the target
actually expects new input, a snapshot is only triggered after
the target has sent data at least once. The assumption is that the
basic program loop of a client-server architecture program will
consist of ”recv input” → ”process input” → ”send output”.
If a target does not fulfill this assumption, FitM will not be
able to fuzz it effectively.

To decide whether or not to create a snapshot, we introduce
a second constraint next to the ”sent”-constraint: snapshots are
only created if the target runs in timewarp mode. If timewarp
mode is not active, the target will exit at the point where it
would otherwise issue a snapshot request to the CRIU server.
This is done to increase AFL++ ’s speed. The fuzzer does not
need to go beyond the point where the next recv() happens
since it found an input that arrives at that point. Consequently,
we can create a snapshot after fuzzing is done and start from
there in the next generation.

While these two constraints are always active, the user can
activate the third one if a given target requires it. In the case
of the live555 media streaming server, the server will send
and recv an initial packet to determine its own IP address.
See Listing 1 for a simplified version of the code. These
unrelated sockets would let FitM go out of sync from the
very beginning, as the client never answers it fully. Logically
this is part of another protocol that happens before the actual
Real Time Streaming Protocol (RTSP) interaction that should
be fuzzed with this target. Because the server communicates
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with other parties than the target client, we want to skip this
protocol prelude. For this, a configurable number of recv
syscalls can be skipped before the first snapshot happens. The
skipped recv syscalls will return 0.
1 // Get our address by sending a (0-TTL) multicast

packet,
2 // receiving it, and looking at the source address

used.
3 // (This is kinda bogus, but it provides the best

guarantee
4 // that other nodes will think our address is the

same as we do.)
5 // ...
6 testAddr.s_addr = our_inet_addr("228.67.43.91"); //

arbitrary
7 Port testPort(15947); // ditto
8

9 sock = setupDatagramSocket(env, testPort);
10 // ...
11 if (!writeSocket(env, sock, testAddr, testPort.num

(), 0,
12 testString, testStringLength)) break;
13 // ...
14 int result = select(numFds, &rd_set, NULL, NULL, &

timeout);
15 // ...
16 int bytesRead = readSocket(env, sock,
17 readBuffer, sizeof readBuffer,
18 fromAddr);
19 // ...

Listing 1: Pre-Run Socket Interaction in Live555

3) Clone, Fork, and Async: Servers usually want to accept
connections from multiple clients. A widespread way is to
spawn a thread for each client or a threadpool for all clients.
As our actual fuzzer uses a normal afl forkserver, a forking
target poses a challenge, especially if it forks again during
fuzzing. However, disabling all forks and always following
child or parent can break targets that run external programs
as subprocesses, e.g., a shell script during startup. For FitM,
we chose a middle ground. We disable all forks and clones
after we started operating on FITM_FD. That way, the process
can still spawn as usual. After the first IP socket interaction
occurs, our patches kick in. From here on, as described in
Table I, we always follow the child or always follow the parent.
This way, we can fuzz the threaded server of LightFTP, see
Listing 2, even though it has multiple forks and sockets, one
for each client and an additional one for each data connection.
The alternative way to monitor multiple FDs usually revolves
around monitoring events about status changes thereof. For
asynchronous networking, the Linux kernel provides a range
of APIs. We implemented a modified version of the various
APIs into the network emulator, with each of them reporting
the FITM_FD as always having new activity.

4) Snapshot Configuration: Whenever running a snap-
shot, the FitM sets up various parameters, as discussed in
Sect. V-B2. One snapshot will always run in multiple modes:
fuzzing, timewarp, and output mode, so after snapshot cre-
ation, we need to be able to alter the target’s configuration. We
use environment variables within the syscall translation layer
for this. The environment variables are part of the snapshot
and will be restored every time. Hence we had to wrap calls
to getenv so that a file called envfile is checked for the
searched variable instead of the actual process environment.

We read the env file before spawning the forkserver to stay
out of the hot path. Only if that file is not present, the original
getenv function gets called.

5) Restore from QEMU’s perspective: In order to restore
a process, some startup steps have to be taken inside QEMU.
The previously introduced getenv wrapper is used to get
parameters into the process. Snapshot restoration is then con-
cerned with reading the envfile to set any needed variables.
Afterward, FitM-QEMU starts the AFL forkserver and maps
shared map for communication with AFL.

1 clientsocket = accept(ftpsocket,
2 (struct sockaddr *)&laddr, &asz);
3 if (clientsocket != INVALID_SOCKET) {
4 rv = -1;
5 for (i=0; i<g_cfg.MaxUsers; i++) {
6 if ( scb[i] == INVALID_SOCKET ) {
7

8 scb[i] = clientsocket;
9 rv = pthread_create(&th, NULL, (

__ptr_thread_start_routine)
10 &ftp_client_thread, &scb[i]);
11 if ( rv != 0 )
12 scb[i] = INVALID_SOCKET;
13

14 break;
15 }
16 }
17 ...

Listing 2: Common Threaded Server in LightFTP

C. CRIU

CRIU, Checkpoint/Restore in Userspace is an existing
Linux tool that allows snapshotting process to disk and to
restore them later.

For snapshotting we utilize CRIU’s RPC protocol. It allows
FitM targets to trigger snapshots of themselves during exe-
cution. During restoration, FitM leverages CRIU to change
FDs within a restored process via inherit-fd. The target
knows when to dump itself, inside a socket receive of FitM-
QEMU. Within FitM’s qemuafl-layer this is implemented as
follows: When the target reaches a state that we want to
snapshot, stdin/stdout and stderr are closed to be reattached
upon restoration. FitM-QEMU issues a dump request to the
CRIU server. The CRIU-server will freeze the target, serialize
the process state and write the resulting images to disk. After
the process has been restored, we reattach the manually closed
stdout & stderr, return and run the fuzzing setup described
next.

1) Restores: Subsection V-B4 introduced a way to load en-
vironment variables from the calling process into the restored
process. AFL uses named pipes to communicate with the
forkserver that spawns the fuzz targets. Typically AFL spawns
the forkserver by itself and thus also knows the names of the
pipes it uses to communicate with the forkserver. However,
when AFL is used to target a restored process, the restored
process needs to start the forkserver. The point in the execution
where we saved the snapshot is where the network emulation
layer spawns the forkserver and returns new input after restore.

7



1 2 3 4 5 6 7 8 9 10
Number of Client-Server Round Trips

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 In

pu
ts

 
AFLNet
FitM

Fig. 4: Depth of fuzzer input interactions. FitM triggers far
more client-server interactions.

2) Namespaces: If a snapshotted Process Identifier (PID)
clashes with an existing PID in the system, no snapshots
can be restored as long as the offending process lives. We
circumvent this situation by wrapping every invocation of
restore in a newly initialized Linux namespace. On restore,
FitM spawns a new mount and PID namespace and clones
itself into those namespaces. After clone, the proc filesystem
inherited by the caller process has to be reset not to include the
information previously stored there, as it potentially include
the offending PID. Afterward, we start the CRIU server in this
PID namespace. Lastly the standard streams stdin, stdout
and stderr are opened for the newly created namespace.

If the target has a very low PID it might conflict with one
of the processes during namespace setup (e.g., bash, afl-fuzz,
CRIU server). To be sure that this situation does not arise
within the namespace we forcibly advance the next PID used
by the process to be (1 << 14) + rand(9000) before
the initial spawn of the client and server. Lastly, the target
runs isolated and without any PID clashes.

While the usage of Unix namespaces increases FitM’s
kernel overhead, the resulting isolation of target processes
comes with further benefits. Isolation into multiple different
namespaces allows us to fuzz multiple different snapshots
on the same machine, which allows us to scale fuzzing
horizontally. Additionally, wrapping each fuzz-run in a new
namespace simplifies the cleanup of the fuzzer since all
processes of this namespace are automatically killed upon exit
of its init-process.

VI. EVALUATION

We decided to evaluate FitM by comparing it to AFLNet,
which makes use of compile-time instrumentation and actual
network sockets, regarding multiple metrics throughout a 15h
fuzzing session. The sessions were run on a single core of
an Intel i7-6850K each, supplied with a total of 128 GBs
of RAM. Both used a ramdisk in their current working

Fuzzer Tracesa BBsb Hangs Crashes Depth Total Execs

AFLNet 17 5880 22 0 5 424.701
FitM 146 6158 0 0c 10 113.683.192d

TABLE II: Fuzzing LightFTP for 15 hours in AFLNet & FitM

aWe replayed each input back to back and printed each basic block
translated by qemu during these runs. This number is the number of trace
files with different basic block counts. There is still a chance that runs
coincidentally reached the same BB count with different basic blocks, or
they took a different path using the same basic blocks.

bTotal amount of unique basic blocks across all inputs found by this fuzzer.
cWhile fuzzing the LightFTP server, FitM did uncover crashes in the

connected ftp client.
dIn contrast to AFLnet, each execution during fuzzing only covers a single

state change, the speed for a complete trace. Therefore the overall speed would
be up to depth times lower, for the case that we reach maximum depth. Note
that AFLNet’s speed was constantly below 10 execs/sec, while FitM stayed
around 2k execs/sec on each run. On top, we only fuzzed the server for about
half of the time, the client for the other half.

directory. The target we chose was LightFTP (v2.1), the
server listed in AFLNet’s example section. Furthermore, we
supplied FitM with GNU’s Inetutils (v1.9.4) FTP-client as its
secondary target. We provide an overview of the key metrics
in Table VI. Note that the basic block collection for AFLNet
was done using a patched FitM-QEMU to gather comparable
numbers. While our network emulation layer reached 2105
execs per second over 15 hours, not including FitM-internal
snapshot reruns, AFLNet only reached around 8, even though
it uses compile-time instrumentation. We do not attribute this
to poorly designed algorithms but to the lack of network
emulation. The use of TCP sockets for input delivery dampens
throughput and scalability. Since one of the stated goals of
FitM is the automatic exploration of stateful protocols, we
discuss the amount of ”long-lasting” connections and their
prevalence in the entire corpus next.

A. State Depth

Figure 4 shows the proportion of inputs in the minimized
queue in relation to the number of round-trips they would
eventually reach. Even though AFLNet learns the state, ac-
cording to our evaluation, they still get stuck in an early
stage comparably often. We see this by the high proportion of
inputs exiting within the first Server→Client→Server round-
trip. This problem persists for all following messages, resulting
in a quick decline of longer-lasting sessions, with the longest
one ending in the fifth round-trip. Because FitM only briefly
examines the base state and then explores multiple of its chil-
dren, the exponential state-space growth leads to an increasing
proportion of different inputs up to generation 3. However,
our limit on the number of explored snapshots per generation
starts to come into effect in generation 2 and leads FitM to
discover roughly the same average number of snapshots in
each following generation. If every snapshot resulted in the
same number of new branches on average, the proportion of
all following generations would stay roughly the same, up to
the first reset. In reality, pruning and selecting related states to
propagate into higher generations leaves fewer states to explore
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Fig. 5: Potential snapshots generated, and filtered, over time.
FitM’s filter discards unwanted potential snapshots by similar
outputs and preexisting afl maps. After a while, hardly any
new states need to be stored thanks to the filtering.

later than the earlier ones. The exact trend likely depends on
target-specifics but provides a good indicator on which states
to focus efforts. In this specific run, no reset condition got hit.
The FitM experiment hit its timeout in the 21st generation.

B. State Filtering

We continued the analysis of our fuzzer by examining the
core problem of state-space growth. By examining Figure 5
it is discernible that the growth of new states is dependent
on the state of the program and thus the number of round-
trips (cycles) that ran previously. It is noticeable that there
were many more unique snapshots taken in the server than
the client, hinting at an overall more complex program with
more available branches. Furthermore, the number of new
states found (and discarded) is highly dependent on the gen-
eration, showing the effectiveness of state-aware, snapshot-
based fuzzing, reaching deeper states, and exploring them.
For long-running connections, the divergence of their states
can be recognized by the reducing number of discarded
snapshots, implying that later states accumulate increasingly
unique paths. State filtering could be tuned more aggressively
in the future, however looking at the ratio of filtered to saved
stated in the client shows that almost all potential new states
get rejected, indicating that the pruning is already effective.
A possible solution could be an adaptive adjustment of the
filtering constants or the inclusion of further information.

C. Further Targets

Apart from the statistical analysis, we also looked at several
real-world targets. These included Teamspeak, an open-source
SIP server called Kamailio, and LightFTP. With those targets,
we were able to validate that our syscall patches work for more
than our toy examples and test how easily we could bootstrap
our fuzzer for a new target. We found crashes in the FTP client
of Inetutils, which we used to interact with LightFTP without
any custom patches.

VII. FUTURE WORK

Some areas we leave unexplored. For example, FitM does
not fuzz different initial inputs to the client or the server’s
configuration. Fuzzing them would be beneficial in case of
a strict client that disconnects after the first illegal server
response. Alternating the client’s request parameters would
increase the possible state space by a large margin. Further
research topics are listed in the following subsections.

A. Automatic Scaling

So far, we scale FitM by running multiple instances inde-
pendently of each other, each target in their own namespace,
exploring snapshots independently from each other. The part
that can be synced between multicore instances is each gen-
eration’s test case corpus. For further improvement, parallel
fuzzing of different snapshots should be introduced, effectively
sharing snapshots and states, allowing for horizontal scaling
and quicker exploration through different generations. This
mainly requires additional implementation work to extend the
current isolation by namespacing and setting up dynamically
chrooted environments to get around limitations imposed by
CRIU.

B. Embedded Device and IoT Fuzzing

As many IoT devices run on Linux, one idea would be
fuzzing the servers installed on such devices. Because FitM
uses QEMU as a way to the instrument and execute the
target binaries, little adaption is required for fuzzing binaries
originating from IoT devices, such as routers. QEMU allows
us to run binaries for other architectures which, in turn, enable
FitM to effectively fuzz servers across all supported platforms.
For this to work, the respective syscalls used by the binaries
have to be emulated by QEMU correctly. A server may want
to call an ioctl that needs do be stubbed out.

C. Instrumentation Improvements

As FitM is built upon qemuafl, many features shipped with
AFL++ are already part of FitM-QEMU. For example, we make
use of CmpCov [23] to break up multibyte compares into
multiple single-byte compares and gather feedback as we reach
correct values. For the future recent novelties in qemuafl, like
replacing forks with a lightweight auto-snapshotting persistent
loop, and the introduction of QASan sanitization [24] can be
merged.

D. Multi-process Improvements and Race Condition Fuzzing

Currently, on fork and clone calls after the fuzz start,
FitM-QEMU always either follows the child or the parent.
However, in this way, we may lose other valid paths for spe-
cific targets and will never be able to uncover multiprocessing-
related bugs, such as race conditions. Here the taken path could
be chosen according to randomly generated fuzzer input and
extended with a reproducible userspace scheduler, similarly to
other race condition fuzzers [25].
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E. IPC Connections

The concepts applied in FitM could be extended to allow
fuzzing non-network services, even with multiple connected
two parties in a FitM-like manner. By scheduling targets
manually, this could be used to fuzz distributed systems or
Inter Process Communication (IPC) in multi-process applica-
tions, with potential interest on targets like microservices and
browsers.

F. Exploration of Protocol Reversing

In section VI we show, that FitM outperforms State-of-the-
Art coverage-guided fuzzers on protocol depth. This ability
can be explored further. While FitM already supports a server-
only mode, in which most fuzzing time is spent on one target,
with the other target not necessarily being a proper client, this
functionality has not yet been appropriately evaluated. In test
runs against Live555, we verified that the state snapshotting
functionality of FitM finds paths even without a functioning
peer. This gives us confidence that it could be leveraged to
reverse engineer unknown protocols, especially when paired
with additional binary introspection, such as automatic dictio-
naries, Redqueen [26] and methods used by Weizz [27].

VIII. CONCLUSION

FitM, the Fuzzer in the Middle, improves stateful
fuzzing capabilities of coverage-guided protocol fuzzers with
userspace snapshotting. For this, it uses existing protocol
implementations of respective network peers. It fuzzes both,
the client and the server, at the same time.

For the evaluation, we ran experiments against an existing
State-of-the-Art protocol fuzzer. In comparison to prior work,
we improved stateful exploration over time, and achieve a
significantly higher execution speed per second. Within our use
cases, the network emulator presented a reliable way to deliver
input to a target with high throughput for synchronous and
asynchronous workloads. With low effort, FitM found buffer
overflows in GNU Inetutils that we reported to the maintainers.
In summary, this work bootstraps a new direction of potential
research in this area with possible improvements for faster
snapshotting, more advanced metrics, and more general han-
dling of syscalls for different target behaviors. Additionally,
we hope FitM will help the community to discover and fix,
bugs in network software in order to secure it further.

AVAILABILITY

The source code for FitM has been open-sourced at
https://github.com/FGSect/FitM
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