
Beyond the C: Retargetable Decompilation using
Neural Machine Translation
Iman Hosseini

New York University
iman.hosseini@nyu.edu

Brendan Dolan-Gavitt
New York University
brendandg@nyu.edu

Abstract—The problem of reversing the compilation process,
decompilation, is an important tool in reverse engineering of
computer software. Recently, researchers have proposed using
techniques from neural machine translation to automate the
process in decompilation. Although such techniques hold the
promise of targeting a wider range of source and assembly
languages, to date they have primarily targeted C code. In this
paper we argue that existing neural decompilers have achieved
higher accuracy at the cost of requiring language-specific domain
knowledge such as tokenizers and parsers to build an abstract
syntax tree (AST) for the source language, which increases the
overhead of supporting new languages. We explore a different
tradeoff that, to the extent possible, treats the assembly and
source languages as plain text, and show that this allows us to
build a decompiler that is easily retargetable to new languages.
We evaluate our prototype decompiler, Beyond The C (BTC),
on Go, Fortran, OCaml, and C, and examine the impact of
parameters such as tokenization and training data selection on
the quality of decompilation, finding that it achieves comparable
decompilation results to prior work in neural decompilation with
significantly less domain knowledge. We will release our training
data, trained decompilation models, and code to help encourage
future research into language-agnostic decompilation.

Index Terms—decompilation; deep learning; transformers

I. INTRODUCTION

Decompilation is the problem of reversing the compilation
process. It is an important tool in reverse engineering of
computer software, to support use cases such as malware
analysis, security auditing, and re-engineering of legacy code.
But binary analysis in general, and decompilation in particular,
are not easy [2], [22], [38]. As a result, decompilers for binary
code are few and far between, and require a great deal of of
engineering to produce acceptable output.

The traditional method of decompilation is based on lifting
the binary into an architecture-independent intermediate lan-
guage, and then using control flow recovery, type inference,
and other program analyses to recover high level code, typi-
cally followed by some rewriting based on common C idioms
to improve the readability of the resulting code [2], [38], [39].
Decompilers created in this way are expensive to develop and,

for this reason, all binary decompilers we are aware of target
the C programming language. Aside from difficulties with
retargetability, traditional decompilers also tend to produce
non-idiomatic code that may be difficult to understand (e.g.,
containing excessive GOTO statements [39]).

Recently, there has been interest in a new approach to
decompilation using Neural Machine Translation (NMT) [12],
[13], [17], [18]. These methods aim to leverage neural net-
works to mitigate some of the drawbacks of traditional meth-
ods, by treating the decompilation problem as a translation
task and training on a large number of assembly/source
pairs. Although these methods offer the promise of cheaply
generating decompilers for diverse languages automatically, to
date this promise has gone unrealized: the neural decompilers
referenced above all target C. We argue that this is, in part,
because although at first they appear to be language agnostic,
they in fact rely on domain knowledge and tools that may be
difficult to come by for arbitrary languages:

• Integration with the compiler (e.g., a custom compiler
pass or plugin)

• Parsing/lexing the high level source code or the assembly
(dependence on language or CPU architecture)

• Requiring awareness of assembly instruction semantics
or types (dependence on CPU architecture)

• Lifting the binary to an intermediate language (depen-
dence on lifter and that intermediate language)

• Working with Abstract Syntax Trees (dependence on that
language/AST format)

Although this domain knowledge can improve accuracy, par-
ticularly with smaller models, it increases the effort required
to support a new language: feature extraction tools need to
be adapted or rewritten, the new language may have features
that do not map cleanly to the existing model architecture,
etc. Prior work in neural decompilation generally follows this
path, using domain-specific analysis in an attempt to make the
model’s job easier.

In this paper we explore a different tradeoff, treating the
training data as text and avoiding domain knowledge wherever
possible. Rather than attempting to be aware of the syntax of
each language, we simply extract pairs of source and assembly
at the level of whole functions and use this to train a translation
model. This greatly simplifies the task of collecting training
data and allows us to easily handle new languages as long

Workshop on Binary Analysis Research (BAR) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-76-2
https://dx.doi.org/10.14722/bar.2022.23009
www.ndss-symposium.org

as we can collect suitable function pairs. We demonstrate this
flexibility by training decompilation models for C and, for the
first time, Fortran, Go, and OCaml. For C, we achieve results
comparable in quality to prior work [17] while retaining the
ability to easily adapt to new languages.

We note that the purpose of this paper is not to introduce
new decompilation or machine learning technique. Rather, we
are interested in a) how far we can get using the most recent
off-the-shelf techniques from machine learning, b) how little
domain knowledge we can get away with while retaining use-
ful decompilation quality, and c) whether our design choices
allow neural decompilation to make good on its promise to
deliver retargetable decompilers for multiple languages. Given
the amount of progress made in neural machine translation
since the most recent comparable related work (Katz et al. [17]
from 2018) in decompilation, we expect that advances in
machine learning (longer sequence lengths and more sophis-
ticated architectures such as the transformer [4]) can free us
from many of the language-specific features that were imposed
by less capable models.

The main contributions of this work are as follows:
1) We investigate the viability of discarding language-

specific domain knowledge in neural decompilation by
designing a decompilation system that treats code as
plain text.

2) We demonstrate retargetability by training decompila-
tion models for four programming languages, including
three that have never been the subject of research in
decompilation.

3) We provide an evaluation of the models in terms of speed
and quality of decompilation, and give cross-language
comparisons that illuminate differences between lan-
guages relevant to decompilation.

4) We will be making our training corpora, trained models
and code available to enable further research in neural
decompilation.

II. BACKGROUND

A. Challenges of Decompilation

Decompilation of binary code is a difficult problem. First,
as detailed in Meng and Miller [22], even basic problems
like distinguishing code from data and recovering a control
flow graph from a binary executable are hard. The problem
of accurately disassembling a binary executable is sometimes
known as “reassembleable disassembly” [36]. We will not
dwell too much on the problem of low-level disassembly in
this paper, however, and will assume that we can recover
assembly code in a form similar to what the compiler produces
(i.e., with labels intact and data distinguished from code).
Because we are primarily interested in source language retar-
getability, we consider in this paper only the familiar (64-bit)
x86 architecture, but we expect our techniques to work equally
well on other architectures. x86 is also the best-supported
architecture for traditional decompilers, allowing more direct
comparisons.

Beyond the challenge of disassembly, decompilation from
assembly is still hard. Assembly code is much lower level
than any modern programming language, and a great deal
of information is discarded during the compilation process.
For example, variable names and high-level types are lost,
and optimizing compilers can entirely omit code if it can be
proved to be unreachable (e.g., guarded by an always-false
conditional). Compilers are also free to reorder and transform
code significantly as long as semantics are preserved, and so
can apply transformations like changing integer division into
an equivalent multiplication. Such transformations can be very
difficult to invert without resorting to hand-crafted patterns
specific to each compiler.

Finally, compilers may add significant amounts of code to
the program that do not correspond to anything the program-
mer wrote. This code typically is used to implement runtime
support needed by higher-level language features, such as
exceptions, bounds checks, etc. If the decompiler is not aware
of such automatically generated code, it may include it in the
decompiled output, even though it is not helpful to human
analysts. These shortcomings can be seen in Figure 1, which
shows (from left to right) a small function in Go, a portion
of its compiled assembly, and the result of decompilation
with Ghidra. It also demonstrates how traditional decompilers
struggle at non-C languages. We call this problem of matching
low-level assembly to high-level code the attribution problem.

B. Neural Machine Translation

Neural Machine Translation (NMT) is the application of
neural networks to translate text from one language to another.
NMT systems are widely used for translation of natural
languages. Current state-of-the-art NMT systems typically
use the transformer architecture [35]. SuchAs used in NMT,
such models are a composition of an encoder and decoder
[5], [32]. Input text is tokenized into tokens from a fixed
vocabulary and fed to the encoder; the decoder emits the
output tokens in the target language. The decoder generates,
at each step, a probability distribution over the tokens in the
target vocabulary, assigning a probability to each token in the
vocabulary. By finding the most probable sequence of tokens,
a translation can be generated from the model. As the search
space for possible sequences is intractably large (V N where
V is size of vocabulary and N is sequence length), greedy
methods such as beam search and nucleus (top-p) sampling
are used to find a solution [11], [15].

Text can be decomposed into tokens of varying granularity:
tokens can be words, characters or bytes, or anything in
between. The internals of a model—i.e., how the encoder and
decoder are connected—vary as well and consist of multiple
different layers and connections. The model is trained over a
corpus of example translations, where each sample consists of
a sentence in the source language and its translation. The loss
function used to train the model is a differentiable measure
(typically cross-entropy) of how the output probability distri-
bution is from the ground truth. The model is then trained by
minimizing the loss function using gradient descent. Neural

2

Fig. 1: GHIDRA decompilation of a simple Go function

decompilation is the application of NMT to decompilation,
seeing decompilation as translation from assembly to source
code.

C. Neural Decompilation

Researchers have been studying application of NMT meth-
ods to decompilation [12], [17], [18]. These works have
focused on the C language and used Recurrent Neural Network
(RNN) architectures as their sequence to sequence model.
These models have feedback loops (thus called “Recurrent”)
that allow information to flow through the nodes of the encoder
and decoder laterally. There is more recent work [13] which
uses transformer [35] models, a more recent sequence to
sequence model which has enjoyed great success in the field of
Natural Language Processing (NLP) [37]. Transformers make
a few changes to the RNN architecture, including removing the
feedback loops, which allows training to be more efficiently
parallelized.

D. Classical vs. Neural Decompilation

Traditional decompilers apply classic program analyses such
as control flow recovery, data flow analysis, etc., and use do-
main knowledge about the source level language and common
compiler idioms to construct a source-level representation. By
contrast, neural decompilation treats the problem as one of
neural machine translation, and uses deep neural networks to
learn a mapping between assembly and source code from many
training samples.

Because the neural networks on which they are based are
not interpretable, neural decompilers are opaque and offer no
guarantees about the correctness of the output. This means that
when they make mistakes, it can be difficult (or impossible) to
diagnose what went wrong or to fix them. In addition, whereas
a traditional decompiler can refuse to provide a decompilation
when it encounters some construct it cannot handle well,
neural decompilers will always provide some output, which
may be nonsensical when the input is very different from code
in its training set.

These disadvantages are balanced by some unique benefits
of NMT-based decompilation. First, because it needs only
training data (which can be easily obtained with a compiler)

and GPU time, neural decompilation holds the promise of re-
moving the need for handcrafted patterns designed by experts
and refined through great effort and significant amounts of
developer time (e.g., the Hex-Rays decompiler has been under
active development for 18 years). In principle, this also means
that neural decompilation can easily support new architectures
or source languages as long as a compiler and programs in
the source language are available; by contrast, Hex-Rays only
supports four main CPU architectures (x86, ARM, MIPS,
and PowerPC) and a single source language (C). Second,
because they are trained on source code written by humans,
neural decompilers will typically generate code that looks
more natural and is free of artifacts like GOTO statements
that plague traditional decompilers [39]. Finally, particularly
on modern GPUs, decompilation using NMT techniques can
be much faster than a traditional decompiler.

In pursuing neural decompilation here, we take the view
that neural decompilation is, for now, best used to complement
traditional decompilation. Even though a neural decompilers
may not get the exact constants or operators right, they are
typically good good capturing a rough high level sketch of the
original function, and it may be easier for a human to fix up
such a sketch by referring to the assembly or the output from a
traditional decompiler. This could allow a reverse engineer to
take advantage of the improved readability of NMT techniques
(particularly for languages other than C) while still retaining
the semantic accuracy of classical decompilers.

E. Computer Languages vs. Human Languages

Although we are using techniques from neural translation
of human languages, programming languages are in fact very
different from natural language. To illustrate and quantify
these differences, we define a parameter called sequence
contraction, denoted η: for an NMT task translating from
language L1 to L2, the η for a given sample is the ratio
of the number of L1 tokens to L2 tokens. Figure 2 shows
the distribution of η over samples from our programming
languages dataset, and from the IWSLT 2012 English/German
dataset [10].

This figure captures the high asymmetry between high
level source code and low level assembly. Not only does the

3

mean of η vary greatly between human language translation
and decompilation, but also between different programming
languages. There is also a large difference in the standard devi-
ation for each, suggesting that decompilation is a distinctively
different domain compared to NMT for human languages.

Fig. 2: Programming languages are markedly different than
human languages.

III. DESIGN

In this section we discuss the high-level design of our
decompiler, BTC (Beyond the C): how we prepare the training
data, what model architecture we use, and how we train the
model. The main goal of our design is to minimize domain
knowledge and make every step as generic and as simple
as possible, not depending on specifics of any programming
language or CPU architecture. We formulate the problem of
decompilation as a text-to-text translation, looking at both the
source and machine code as a sequence of tokens and just
that, with no source parsing, CPU instruction awareness or
indication to the transformer about what a token means. By
eschewing domain knowledge, we hope to obtain a retargetable
approach that can be applied to any language.

Figure 3 shows an overview of BTC’s design. At a high
level, we fetch source of programs from a code repository,
compile them into assembly, and then generate pairs of assem-
bly and source code functions from those assembly and source
files. From these pairs we generate two separate tokenizers for
source and assembly, respectively, and use the tokenized pairs
to train our model. The final result is a trained model and
tokenizers.

A. Model and Data

To train the model we need pairs of source code snippet
with the corresponding assembly snippet. We generate these
pairs at function level: each of our source code snippets is a
whole function. The benefit of this approach is that functions
are a natural decomposition of a program, which mitigates
the attribution problem discussed earlier: for smaller snippets
it is harder to make a correspondence between source and
assembly. As an example consider a line containing a variable

declaration: which assembly lines should we attribute to that
line? Or what part of source code should we attribute to the
function prologue and epilogue? At the function level, there is
less ambiguity: we know the assembly code that was generated
for the whole function.

To extract pairs of source and assembly at function level
we use Call Frame Information (CFI) directives which are
placed into the generated assembly by the compiler and which
mark the start and end of each procedure, as well as directives
indicating what source lines the body of the function were
compiled from. The assembler uses these directives to put the
debug information into the generated executable, usually in
DWARF1 format. CFI directives have a very simple format
with each directive is on a separate line, making it straightfor-
ward to process the assembly (“.s”) files to extract functions.
Their format is shared between both LLVM and GNU com-
pilers, allowing us to implement the function extractor once
and then use it for all four languages. Supporting additional
compilers that do not use CFI directives, such as Microsoft’s
Visual Studio or Intel’s icc, would require a small amount
of additional effort to identify similar debug information.

Working at the function level means that this approach does
not require any parsing or lexing on either source or assembly
side, allowing the pair extraction process to be decoupled
from the specifics of the high level language or the low level
assembly. Prior work [17], which relied on relatively short
snippets, needed more sophisticated techniques to parse source
and assembly code and create paired snippets.

B. Preprocessing

Once we have generated assembly files from the source files
we go over the assembly files and, based on the assembler CFI
directives, we extract the functions from the assembly file.
In each function there are directives specifying source files
and lines in that source file which correspond to the function.
Before emitting the pair of assembly and source text, for each
of the source lines corresponding to that function, we do some
minimal preprocessing:

• Normalize whitespace (tabs, spaces)
• Remove comments
• Replace string literals with “STR”

Even this small amount of preprocessing is a departure
from our purpose of having no language dependence, since
these constructs (whitespace, comments, and string literals)
may have slighting different syntax depending on the source
language. We make this compromise because transformer
models have quadratic (n2) complexity with respect to the
input sequence, so preprocessing allows us to include larger
functions in our training data. Luckily, the implementation for
this preprocessing is quite simple (compared to, say, building
an AST) and handles the four languages in our evaluation in
only 166 lines of Python.

1https://dwarfstd.org/

4

Fig. 3: Overview of the system

C. Tokenization
After extracting and preprocessing our function pairs, we

tokenize the snippets. We have a number of choices in how
we tokenize the source and assembly text. A common choice
in natural language processing (NLP) is to simply split on
spaces. This results in an infeasibly large vocabulary if used
on source code, however, since source code contains many
unique names and individual “words” need not be separated by
spaces (consider, e.g., “x+2”). At the other end of the spectrum
are domain specific tokenizers such as those used in prior
work [17]; while these give more precise tokenization, they
must be rewritten for each new source language, decreasing
retargetability. We could also tokenize at the byte level, making
each individual byte its own token, with a vocabulary size of
256; however, because ML models are limited in the number of
tokens they can process at once, this would severely limit the
size of functions we can handle. Our solution is to instead use
byte pair encoding (BPE) [30], which has become a popular
choice in NLP and is used by large language models such
as GPT-3. BPE is a subword tokenization based on recurring
subword i-grams leading to a reasonable vocabulary size while
offering some degree of compression and allowing larger
functions to fit into the model’s input. For the tokenizer used
for the “large” OCaml dataset (described in Section IV-A5)
represent around 5.9 characters per token on average. The vo-
cabulary includes single character tokens like digits, keywords
like OCaml’s “let” and common subword tokens like “str ”.
Our implementation uses Huggingface’s built-in BPE facility,
and also splits numbers into digits (one token per digit). We
provide an evaluation of byte-level vs BPE tokenization in
Section V-D.

For each language we train the tokenizer on source code
and assembly code separately to obtain high-level (source) and
low-level (assembly) tokenizers, which we will refer to as the
HTokenizer and LTokenizer, respectively.

IV. IMPLEMENTATION

A. Training Data
One of the most important factors in the performance of

a machine learning model is the quality of its training data.

Here, we describe how we selected training samples for each
of our four languages. For each language, we needed to build
a large number of programs written in that language and
obtain their assembly code; given that some languages have
no standard build system, this is sometimes difficult and is
the most time-consuming part of adding a language to BTC.
However, our use of compiler-generated debug information
allows us to reuse the same preprocessing and extraction steps
for each language, as long as we can get the compiler to emit
assembly in the standard format used by the GNU assembler.
A summary of the collected data for each language can be
seen in Table I.

1) C-Small (C-S): For our small C dataset, we collected
competitive programming and interview style problems (e.g.,
leetcode2, Project Euler3, and UVa4); we were able to find
enough of these repositories to give us enough data to train
and evaluate our model. These programs usually consist of a
single source, are easy to compile, and typically do not use
complex language features. Similar programs have also been
used for corpus creation in prior neural decompilation work,
allowing us to make an apples-to-apples comparison with such
work.

2) Go-Small (Go-S): Similar to C, for Go we also started
with competitive programming and interview style reposi-
tories. Because we found fewer code samples written in
Go, we augmented this with additional repositories found
on GitHub, including general algorithm implementations and
relatively small utility programs. As these are relatively simple
programs, we were able to obtain the assembly files by simply
invoking the gccgo compiler on each source file with the “-S”
option.

3) Fortran-Small (Fortran-S): For Fortran we picked real-
world programs solving computational problems (a Couette
flow solver, ODE solvers, etc.) as this is the most prevalent
use case for Fortran. These repositories were the top results
in a GitHub search for “Fortran90” and are among the most-
starred Fortran repositories. For generating the assembly files

2https://leetcode.com/
3https://projecteuler.net/
4https://en.wikipedia.org/wiki/UVa Online Judge

5

TABLE I: Dataset Parameters

Dataset
Max Source

Length
Max Asm

Length
Source Vocab

Size
Asm Vocab

Size
Source Line

Count
Source Token

Count
Asm Token

Count
Function

Count
C-S 271 1,776 7,104 4,040 148,178 1,106,279 5,209,251 12,488

Go-S 254 6,350 8,688 4,848 131,148 888,912 15,121,847 9,879
Fortran-S 398 5,408 8,352 3,056 127,545 1,014,613 5,758,989 9,598
OCaml-S 192 5,939 23,184 17,288 153,695 1,574,681 12,588,749 70,348

C-L 271 1,776 11,176 11,608 38,141,177 319,519,055 397,132,136 2,000,000
OCaml-L 271 1,776 10,960 11,680 1,273,767 16,651,933 129,398,038 700,000

from source files, we traversed each directory and attempted
compilation of each source file, using several attempts to try
and solve simple compilation errors due to a compilation flag
or including/referencing of another source file. We used the
GNU Fortran compiler (gfortran) for the compilation.

4) OCaml-Small (OCaml-S): For OCaml there is an easy
way to instruct the compiler to generate assembly files and
include DWARF information by setting the OCAMLPARAM
environment variable, which gets passed to the compiler
whenever it is called, and the OPAM5 package manager has
a --keep-build-dir flag that keeps all the intermediate
files generated in the process of building a package. We built
119 packages of various sizes, including packages from Jane
Street6 and CMU’s Binary Analysis Platform (BAP) [1]. After
building packages with OPAM we traversed the build directory
and parsed the “.s” files to generate the data.

5) Large Datasets: In machine learning, the common wis-
dom holds that more data is always better. To study the effect
of having more data, we also gathered two large datasets for
C and OCaml; we will make these datasets publicly available
to aid in future research on neural decompilation.

For OCaml, we used the same procedure that we used
for the OCaml-S dataset, but with all packages available in
OPAM. The OCaml-Large (OCaml-L) dataset consists of over
900K functions, of which 700K are short enough to be used
for training. This gives us roughly 10× the amount of data as
we had for OCaml-S.

Compiling a large number of C programs is more challeng-
ing, because there is no standardized build system used by all
C projects. To solve this, we use packages included in Debian
Linux, which can be automatically built in a uniform way.
We created a tool that automates this process by downloading
each package available in the “main” section of Debian Buster,
and then selecting all packages that contained C source files
(excluding C++) based on file extension, for a total of 50K
packages. We then built these using dpkg-buildpackage,
using Docker containers to isolate each package build and
running the builds and preprocessing steps in parallel. Because
the GNU C compiler (gcc) creates temporary assembly files
for each compilation unit, we used LD_PRELOAD to hook
the unlink system call and preserve the generated assembly
code for each package. On a dual-CPU AMD EPYC 7542
server with 128 parallel containers, we were able to extract 6

5https://opam.ocaml.org/
6https://github.com/janestreet

TABLE II: Parameter and Hyperparameter values

Parameter S-Model L-Model
learning rate (fixed) 0.1 0.1

encoder layers 6 12
decoder layers 6 12

encoder attention heads 16 8
decoder attention heads 16 8
max tokens per batch 10,000 10,000

gradient clip norm 0.1 0.1
embedding dimension 512 768

million functions in less than five hours, selecting 2 million
for training based on sequence length.

B. Training the Transformer

For model training we use Facebook’s fairseq toolkit with
its standard transformer encoder/decoder architecture. The
models were trained on an HPC node with an NVIDIA V100
(32 GB) or RTX8000 (48 GB) GPU with and 2x Intel Xeon
Platinum 8268 CPUs with 369 GB of RAM. The model
parameters (encoder layers, attention heads, etc.) can be seen
in Table II, and these same parameters were used for all the
languages we trained on. The only per-language parameters
are the maximum sequence lengths, which were set based on
the maximum observed in the dataset for each language, and
the vocabulary sizes, which can be seen in Table I. To batch the
data, we used a fairseq option to specify a maximum number
of tokens in a batch; fairseq then batches samples so that the
number of tokens in each batch is close to that maximum
value. This helped us keep GPU utilization high given that we
had samples covering a wide range of token lengths.

To take advantage of the larger amount of data for C and
OCaml, we also trained two larger models, with twice as many
encoder and decoder layers (12 vs 6) and a larger embedding
dimension (768 vs 512); however, to fit within the memory
limit of the GPU we also had to reduce the number of attention
heads from 16 to 8. The small models were trained until the
test accuracy stopped improving, which only takes a few hours.
The large models take significantly longer to train, and the C
model was still (slowly) improving after ten days, at which
point we terminated the training.

C. BTC VSCode extension

To observe the results for qualitative assessment and allow
interactive exploration, we also created a Visual Studio Code
(VSCode) extension (shown in Figure 4) that can be called
on any “.s” file and will run every procedure in that assembly
file through the model, showing the model’s decompilation

6

TABLE III: Summary of evaluation results

Model
Avg.

Edit Dist.
Translation Speed

(function/s)
Number of

Model Params
C-S-S 0.60 17.8 53,481,472

Go-S-S 0.74 14.74 55,517,184
Fortran-S-S 0.63 13.4 54,255,616
OCaml-S-S 0.77 27.7 76,730,368

C-L-S 0.55 18.4 61,747,200
C-L-L 0.46 11.52 187,115,520

OCaml-L-S 0.59 20.81 61,710,336
OCaml-L-L 0.60 18.2 187,060,224

Katz et al. [17] 0.70 N/A N/A

with each token colored according to its probability according
to the model. Such a view could also help a human agent
to fix the errors based on seeing which tokens have lower
confidence scores. The extension consists of 146 lines of
TypeScript code that extract the functions in an open “.s” file,
run the decompilation model using an external Python script
(100 lines), and then render the results in a side panel within
VSCode; we will also release the extension.

Fig. 4: Highlighted output of the model in BTC’s VSCode
extension

V. EVALUATION

A. Quantitative Metric

We measure decompilation quality using (normalized) aver-
age edit distance (AED), the average of edit distances between
prediction and ground truth, divided by length of the ground
truth sequence ; this metric is also used by Katz et al. [17], the

most closely related prior work to BTC. In the translation of
human languages, measures like BLEU [23] are also common,
but prior work has found that BLEU may not be appropriate
for code [33]. Average edit distance also intuitively captures
how we believe BTC might be used, as it roughly indicates
how many changes a reverse engineer might have to make to
the decompiled function in order to recover the original code
(relative to the size of the function).

The AED for samples in our held-out test set for each
model are shown in Table III. For comparison, Katz et al. [17]
achieved an average edit distance of 0.70 over snippets which
were an order of magnitude shorter than our samples. How-
ever, in absolute terms, even our best result (for the large C
model trained on 2M functions, C-L-L) is still relatively poor:
an AED of 0.46 means (very roughly) that changes are needed
to half the tokens in a given function. In practice, we have
found that this is not quite true; many functions are decompiled
almost perfectly, while others are completely wrong. But it is
clear that neural decompilation is not yet ready for practical
use on real code.

B. Effect of Dataset and Model Size

Training on larger dataset enhanced the performance of the
model for both C and OCaml. Figures 5 and 6 show how
overfitting is mitigated with larger datasets, as both training
and test loss converge together as opposed to test loss starting
to rise or level off before training loss. However, there are still
limits to how good the accuracy gets, as the very large 2M
C dataset shows. And although with larger datasets a bigger
model can improve results, we only observed this with the 2M
C dataset; the larger model shows only a minor improvement
on the 700K OCaml dataset.

C. Translation Performance

The other metric of concern is translation (inference) time,
also shown in Table III. All our models translate more than
10 functions per second on average on a V100 GPU, which
is quite fast. However, we note that this is not directly
comparable to a traditional decompiler like GHIDRA or Hex-
Rays, as these tools also have to do the work of disassembly,
control flow recovery, etc., whereas we assume that these tasks
have already been done and that the input assembly is in a form
comparable to what the compiler produced. That being said,
the relatively fast translation speed means that there is room
to pair BTC with more costly techniques that could fix up our
candidate sketches.

D. Tokenization

To validate our choice of tokenization, we compared BPE
tokenization to character-level tokenization on our Fortran
dataset with the small model configuration. Because the
character-level encoding is less efficient, we limited the train-
ing dataset for the character-level (CL) model to functions
less than 6,000 tokens (throwing away 30% of the dataset).
The BPE model is the Fortran-S model trained on the full
Fortran dataset. To make a direct comparison, the models were

7

0 20,000 40,000

0
2

4
6

Step

L
os

s
C-S-small training

test
train

0 5 · 105 1 · 106 1.5 · 106

2
4

Step

L
os

s

C-L-small training

test
train

0 5 · 105 1 · 106 1.5 · 106

0
2

4
6

Step

L
os

s

C-L-large training

test
train

Fig. 5: Comparison of training loss-step for C-S-small, C-L-small and C-L-large

0 20,000 40,000 60,000

2
4

6
8

Step

L
os

s

OCaml-S-small training

test
train

0 5 · 105 1 · 106 1.5 · 106

0
2

4
6

Step

L
os

s

OCaml-L-small training

test
train

0 5 · 105 1 · 106 1.5 · 106
0

2
4

6
Step

L
os

s

OCaml-L-large training

test
train

Fig. 6: Comparison of training loss-step for OCaml-S-small, OCaml-L-small and OCaml-L-large

evaluated on the reduced test set and the AED was computed
by tokenizing the CL model’s output using the BPE model’s
HTokenizer. The two models performed about equally well:
the CL model achieved an AED of 0.59 while the BPE model
scored 0.62.

We note that the reduced test set, which consists of smaller
functions, is also likely to be somewhat easier to decompile, so
the small improvement seen here is not likely to be significant.
Because of this, and the fact that the CL model cannot support
larger functions, we believe that the use of BPE is justified.

E. Qualitative Observations

To get a better feel for the decompilations produced by BTC,
we have show in Figure 7 one sample decompilation from each
language alongside its ground truth; samples were chosen by
hand to illustrate strengths and weaknesses of the decompiler.
All samples shown were produced by the small models.

Looking at some of the examples, we observed that on all
four models, the general structure is picked up fairly well.
Major features like loops and conditionals correspond fairly
well to the original code. The variable names even make sense

in many instances, which illustrates a potential advantage of
the neural approach (one explored in more detail in Jaffe et
al. [16]).

However, the models often make small but semantically
meaningful mistakes: in the Fortran example, “n + 1” becomes
“n * n + 1”. Such mistakes could potentially be fixed up by a
human by comparing the decompiled output to the assembly
or the output of a traditional decompiler, which may still
be easier than trying to manually translate the C output of
a traditional decompiler into Fortran. The quality also varies
between different languages; OCaml appears to be the hardest
to decompile of the four languages we investigated.

We also see that edit distance does not perfectly capture
decompilation quality. In the C example, BTC is penalized
for using printf instead of puts, for not storing the string in
a separate variable (p), and for checking for EOF rather than
1 as the return value from scanf. These choices are arguably
semantically equivalent to the original code in this case, but
are completely different in terms of edit distance.

Still, neural decompilers have a long way to go. The
decompiled output is not nearly accurate enough to be trusted

8

Fortran: 0.26
subroutine en_her_02_xiu_size (n , o

)↪→

implicit none
integer (kind = 4) n
integer (kind = 4) o
o = n + 1
return
end

subroutine i4_determinant (n , value
)↪→

implicit none
integer (kind = 4) n
integer (kind = 4) value
value = n * n - 1
return

end
OCaml: AED 0.62

let fmt_path f x = fprintf f " STR "
fmt_path_aux x ;;↪→

let pp ppf x = Format . fprintf ppf "
STR " (to_string x)↪→

Go: 0.14
sum := 0
for _ , val := range arr {
sum += val
}
return sum

sum := 0
for _ , v := range nums {
sum += v
}
return sum

C: 0.84
char* p = "STR";
while (scanf ("STR", &a)== 1 && a)

puts (p);↪→

return 0;

while (scanf ("STR", &a) != EOF) if (a
== 0)↪→

printf ("STR");
else
printf ("STR");
return 0;

Fig. 7: Example BTC decompilations and normalized edit distance from ground truth - left: ground truth, right: prediction

without additional manual or automated fixups. However, we
believe that these results do indicate that neural decompilation
remains a promising research area, and we hope that our work
can help establish a baseline and proof of concept of a multi-
language approach to decompilation.

F. Quality of Training Data

One major challenge of using code that is used in the wild
for training data is that unlike simple synthetic data there is a
great variety in the structures and idioms used and we realized
there are many issues that can adversely affect the quality of
training data. Our function extractor uses “.loc” directives in
assembly to attribute source lines to assembly procedures. In
a language with a simple structure like Fortran, each function
will be represented in the source code in a contiguous set of
lines, and so the loc directives can be used to match to that
region.

In more complex languages, however, this mapping may not
be straightforward. For example, we may we have anonymous
functions which perforate the otherwise connected regions,
the effect of such problems with matching source code and
assembly also depend on how frequent these constructs hap-
pen. OCaml turned out to be the most problematic with
lowest quality of training data; upon inspection, many of the
training examples are not actually complete functions (or even
syntactically valid due to mistakes in extraction). This likely

explains the poor performance of the decompiler on OCaml,
even with a relatively large training dataset and model.

These problems are also likely to carry over to other
functional languages like Haskell, in which functions are first
class citizens and lambdas are used frequently. However, even
C is prone to such issues, as features like preprocessor macros
can break the simple mapping between source and assembly
represented in the debug information.

Neural Decompilation has not been previously attempted
with any language except C, and it is clear that adapting
it to tackle new languages will be more difficult for some
languages more than others. Our four attempts cover a variety
of different language paradigms, and we hope that the dataset
can be useful for future research in how language and compiler
design affect training data collection. We also believe it may
provide motivation for improving the quality of compiler-
emitted debug information, to allow more precise matching
of source constructs to the generated assembly.

VI. RELATED WORK

Reverse engineering of binary code has been the subject of
many research works [2], [6], [38]. Research [2], [19], com-
mercial (HexRays) and open source (GHIDRA) decompilers
have been developed targeting the C language using the tradi-
tional approach. There have been attempts to make traditional
methods produce more human-readable code and construct
more structured control flow (e.g. fewer GOTOs) [3], [8], [22],

9

[39]. Durfina et al. [9] proposed a method to automate making
decompilers by using a formal specification of the hardware
platform. An important phase in traditional decompilers is
lifting the binary to an intermediate representation. Hasabnis
et. al [14] developed a learning-based method to automate
this, which depended heavily on integration with the compiler.
Wang et al. [36] created Ouroboros, a tool to disassemble
binaries in such a way that the output can be re-assembled
into a binary again which is rule-based as opposed to learning-
based. Pei et al [24] made XDA which is a learning-based
disassembler.

There has also been research on specific sub-tasks, such as
detecting functions inside a binary using neural networks [31]
or suggesting sensible variable names [34] or type annota-
tions [28], the latter two targeting Javascript. Representation
learning methods have been applied to assembly code to
encode instructions as vectors [7], [20], [27] or infer variable
types [25], which are useful in downstream tasks like finding
semantically similar code. Another approach for this task is
Trex [26], which uses transfer learning to learn execution
semantics from execution traces.

In neural decompilation, there have been several prior
efforts [12], [13], [17], all of which focused on the C language.
We also note that this work focused almost entirely on
very small programs derived from sources like programming
challenges, which does not reflect the kind of code that is
usually of interest to reverse engineers. We believe that our
work, particularly the larger C dataset, represents the largest
test of neural decompilation on real-world code to date.

VII. LIMITATIONS AND FUTURE WORK

Traditional decompilers operate with a completely different
approach which consists of multiple stages of parsing and
usually intermediate-languages like GHIDRA’s pcode. They
rely on hardcoded idioms, and data-flow and type analysis
tailored for C. Although they can generate hard-to-understand
code, traditional decompilers have the advantage that unlike
neural networks, they are interpretable. Interpretability is a
major drawback in deep learning methods and has been an
active field of research [21].

Given the black-box nature of deep networks, these methods
cannot guarantee semantic correctness and suffer from lower
semantic accuracy. However, there are techniques that can
enhance the accuracy of neural decompilers. Schulte et al [29]
use evolutionary algorithms to mutate a code sketch and
compile it until the generated object code is byte-equivalent
with the input. Our approach can be used for the sketch
generation of their method. Another approach is to delegate
some error handling to the human agent, as we suggest in the
Evaluation section: many of the errors are the network getting
a constant or operator wrong, which can be readily resolved
by a human agent with access to the assembly code or other
tools. Advanced data normalization, like the canonicalization
scheme described by Katz et al. [18] can also enhance accuracy
if it can be automated.

A limitation specific to BTC is dependence on the debug
info, the CFI directives emitted by the compiler to let the
assembler generate DWARF information. The quality of im-
plementation of these information and DWARF support varies
across different compilers and may even be buggy. As we note
in Section V-F, progress in neural decompilation may depend
on improving the quality of the source to assembly mapping
provided by compilers.

Finally, all NMT methods suffer from limitations on length
of input sequences supported. Previous methods based on
RNNs were severely limited and could only handle small
snippets of code, this might be one of the reasons that no
work had tackled any language besides C until now, as Figure
2 shows, other languages produce more verbose assembly
code that would exacerbate this problem, shorter snippets also
suffer more from the attribution problem and would make it
harder for the model to learn larger constructs. We predict that
this limitation will be alleviated as NMT methods in general
and learning hardware gets more advanced. They have been
advancing between RNNs and the more recent Transformer
models, compared to the previous work [17] we managed to
expanded the size limit by an order of magnitude.

VIII. CONCLUSION

In this paper we demonstrated that neural decompilation
can indeed provide a path to retargetable decompilers for
different programming languages. In addition to C, we re-
port results on applying neural decompilation to Fortran, Go
and OCaml, which have not previously been evaluated. Our
approach, Beyond The C (BTC), does not rely on compiler
customization, complex parsing, or even specifying keywords
or operators of the programming language, which eases the
burden of supporting new languages while matching the qual-
ity of comparable prior work; despite the lack of any explicit
knowledge about the source languages or CPU architectures
baked in, we saw that the model can replicate many of the
features of the language. Although many challenges remain,
particularly related to code size limitations, semantic accuracy,
and data quality, we hope that other researchers will see our
work as a sign that there is fertile ground for new research
beyond the C.

AVAILABILITY

Our code, data and trained models can be found at:
https://figshare.com/s/2c68b9c181e80f4e3b06

ACKNOWLEDGMENTS

The authors would like to thank Ivan Gotovchits for helpful
suggestions about working with the OCaml build system. This
research was supported in part by National Science Foundation
(NSF) Award 1801495. Any opinions, findings, conclusions,
or recommendations expressed are those of the authors and
not necessarily of the NSF.

10

REFERENCES

[1] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. BAP: A binary analysis platform. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification, 2011.

[2] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick
Woo. Native x86 decompilation using semantics-preserving structural
analysis and iterative control-flow structuring. In 22nd USENIX Security
Symposium (USENIX Security 13), pages 353–368, Washington, D.C.,
August 2013. USENIX Association.

[3] Gengbiao Chen, Zhuo Wang, Ruoyu Zhang, Kan Zhou, Shiqiu Huang,
Kangqi Ni, Zhengwei Qi, Kai Chen, and Haibing Guan. A refined
decompiler to generate c code with high readability. In 2010 17th
Working Conference on Reverse Engineering, pages 150–154, 2010.

[4] K. Cho, A. Courville, and Y. Bengio. Describing multimedia content
using attention-based encoder-decoder networks. IEEE Transactions on
Multimedia, 17(11):1875–1886, 2015.

[5] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder–
decoder approaches. In Proceedings of SSST-8, Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation, pages
103–111, Doha, Qatar, October 2014. Association for Computational
Linguistics.

[6] Cristina Cifuentes. Reverse compilation techniques, 1994.
[7] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland.

Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In 2019
IEEE Symposium on Security and Privacy (SP), pages 472–489, 2019.

[8] Lukas Durfina, Jakub Kroustek, and Petr Zemek. PsybOt malware: A
step-by-step decompilation case study. In 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE, October 2013.

[9] Lukás Durfina, Jakub Kroustek, Petr Zemek, Dušan Kolář, Tomás
Hruska, Karel Masarı́k, and Alexander Meduna. Design of an auto-
matically generated retargetable decompiler. 2011.

[10] Marcello Federico, Mauro Cettolo, Luisa Bentivogli, Michael Paul, and
Sebastian Stüker. Overview of the IWSLT 2012 evaluation campaign. In
2012 International Workshop on Spoken Language Translation (IWSLT),
2012.

[11] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural
machine translation. 2017.

[12] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian,
Farinaz Koushanfar, and Jishen Zhao. Coda: An end-to-end neural
program decompiler. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[13] Cheng Fu, Kunlin Yang, Xinyun Chen, Yuandong Tian, and Jishen Zhao.
N-bref : A high-fidelity decompiler exploiting programming structures,
2021.

[14] Niranjan Hasabnis and R. Sekar. Lifting assembly to intermediate
representation: A novel approach leveraging compilers. ACM SIGARCH
Computer Architecture News, 44:311–324, 03 2016.

[15] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The
curious case of neural text degeneration. In International Conference
on Learning Representations, 2020.

[16] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and
Bogdan Vasilescu. Meaningful variable names for decompiled code: A
machine translation approach. In Proceedings of the 26th Conference
on Program Comprehension, 2018.

[17] Deborah S. Katz, Jason Ruchti, and Eric Schulte. Using recurrent neural
networks for decompilation. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, March 2018.

[18] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran Yahav. Towards
neural decompilation. ArXiv, abs/1905.08325, 2019.

[19] J. Křoustek. Retargetable analysis of machine code. page 190, 2015.
[20] Xuezixiang Li, Qu Yu, and Heng Yin. Palmtree: Learning an assembly

language model for instruction embedding. 2021.
[21] Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Xiao Zhang, Ji Liu,

Jiang Bian, and Dejing Dou. Interpretable deep learning: Interpretation,
interpretability, trustworthiness, and beyond, 2021.

[22] Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In
Proceedings of the 25th International Symposium on Software Testing

and Analysis, ISSTA 2016, page 24–35, New York, NY, USA, 2016.
Association for Computing Machinery.

[23] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU:
A method for automatic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting on Association for Computational
Linguistics, 2002.

[24] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman
Jana. Xda: Accurate, robust disassembly with transfer learning, 2020.

[25] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi
Ray. Trex: Learning execution semantics from micro-traces for binary
similarity, 2020.

[26] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi
Ray. Trex: Learning execution semantics from micro-traces for binary
similarity, 2020.

[27] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin.
Building program vector representations for deep learning. In Songmao
Zhang, Martin Wirsing, and Zili Zhang, editors, Knowledge Science,
Engineering and Management, pages 547–553, Cham, 2015. Springer
International Publishing.

[28] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting
program properties from ”big code”. SIGPLAN Not., 50(1):111–124,
January 2015.

[29] Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey
Loginov. Evolving exact decompilation. In Proceedings 2018 Workshop
on Binary Analysis Research. Internet Society, 2018.

[30] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units, 2015.

[31] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing
functions in binaries with neural networks. In 24th USENIX Security
Symposium (USENIX Security 15), pages 611–626, Washington, D.C.,
August 2015. USENIX Association.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc.,
2014.

[33] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen.
Does bleu score work for code migration? In Proceedings of the 27th
International Conference on Program Comprehension, ICPC ’19, page
165–176. IEEE Press, 2019.

[34] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. Recov-
ering clear, natural identifiers from obfuscated js names. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 683–693, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[36] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassem-
bling. In 24th USENIX Security Symposium (USENIX Security 15),
pages 627–642, Washington, D.C., August 2015. USENIX Association.

[37] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online, October 2020. Association
for Computational Linguistics.

[38] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 158–177, 2016.

[39] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and
Matthew Smith. No more gotos: Decompilation using pattern-
independent control-flow structuring and semantic-preserving transfor-
mations. In NDSS, 2015.

11

