BTC: Beyond the C
Retargetable Decompilation using Neural Machine Translation

Iman Hosseini, Brendan Dolan-Gavitt

CEPoR
%‘O’ gn ﬁ'ﬁmﬁ.
5 — 05

Decompilation

Why?
To analyze malware
Patch vulnerable software
Audit closed-source libraries

Previously:
- Lift native code to some Intermediate Representation
- This IR is decoupled from the underlying architecture now
- Apply data-flow and type analysis
- Reason about types, construct control flow graph
- And finally: construct high level code from the CFG
Magic ingredient is C-specific heuristics baked in
Modeled on C
Prone to emitting GOTOs (Spaghetti, anyone?)

Decompilation: Classics

He);-Rays @

Decompilation: Classics

- Complex, costly (to develop) software
- BasedonC
- Not based on the premise of generating human-friendly code
- Traded with ‘correctness’
- “But | want to reverse this Go or Rust malware” ®
- Motivation for Retargetability
- These examples have all taken many engineer-years to develop and making new ones
for other languages is a large endeavor: not much of the previous C-specific patterns
and insights can be reused
- Rust was released a decade ago -> today it is used in malware

Decompilation

Lets decompile a Go function...

2 |veid main.foo(void)

<main.foo>:
mov Sfs e A8, %rex 1 |{

cmp Bx18 (%rcx) ,%rsp g

jbe 48cf2e <main.foo+Bx%e> -
sub $0x68,%rsp

mov %rbp,Bx58(%rsp)

func foo(x int) { lea Bx58(%rsp) ,%rbp
for i :=8; i ¢ x; i++ { xor %eax, keax

10 puvVarl = {ulong *) {*{long *){

fnt.println("hi") compiled unstripped , Jmw 48cfla cmain.foo+0xBa> GHIDRA o ‘:ﬁ::‘;j :
} and unoptimized mov Frax,@x48(%rsp) decompiler 13| 1vars < o
Xorps Zxmme, Zxmme
¥ movups Hxmme), ex4a (%rsp) 14 while (1VarZ < param {
lea @x11317(%rip),%rax 13 Imt.Fprintlng);
mov %rax,Bx48(%rsp) 16 1Var2 = 1Var2 + 1;
lea exdcBab(#rip),%rcx 17 1
mov Frcx,Bx58(%rsp) 18 return;
mov exde2ct(%irip),%rdx 19 }
lea Bxddebs(%rip),%rbx 20 runtime.morestack_noctxt();
e wn 21 main.foo();

22 return;

Traditional methods are bad at decompiling non-C...

Neural Decompilation

What if we applied NMT methods to decompilation?
- 2018 Katz et. al applied RNNs to this problem
- Modified Clang
- Limited to < 88 C source, < 112 binary tokens
- 200,000 snippet pairs (short snippets -> attribution problem)
- 2019 Fu et. al introduced Coda which adds additional error correcting stage
- Instruction-type awareness
- Works with ASTs
- Still RNN-based

Neural Decompilation

- Prior work is only limited to C

- Datasets limited and lacking (i.e. Coda is tested on Hacker’s Delight loop-free programs, and
very narrow synthetic data using ‘math.h’ far from Real-World)

- Not retargetable!

Challenges To Retargetability

Compiler Integration (i.e. Clang pass)

Parsing/Lexing required (asm or source)

Requiring awareness of assembly instruction types/ semantics

Working with Abstract Syntax Trees

What if... W12

We treated code, both assembly and source, as text?
No more compiler integration

No longer requiring parsing

Goodbye to ASTs!

Minimize language and target-specific knowledge & get the most out
of the least domain-specific knowledge

NMT, NLP has progressed a lot recently...
Using what NMT has to offer and seeing how far it gets us.

Contributions

- Assessing viability of discarding language-specific knowledge by treating code as plain
text
- Demonstrating retargetability by applying our system to 4 programming languages, 3
of which never been the subject of research in decompilation before.
- Provide evaluation of the models
- We will make our training corpora, trained models and code available to enable
further research
- There is little prior examples of such data
- Including 6 million C functions extracted from 50K+ Debian packages
- 800K+ Ocaml functions from OPAM repositories
- A vscode extension to view a decompilation model in action

BTC Architecture

'l Il BTC
functiong - <sourcep , assemblyg>
Pair Generator :{>

T Overview

functiony, - <sourcep,

source files

c/ ml/

, assembly,>
fo0 /.

Training the Transformer
BPE BPE
Tokenizer Tokenizer |:> ﬁ

assembly files

Neural Decompiler

<::I

code
repositories

HTokenizer
LTokenizer

(includes DWARF info)

The 4 Languages

C — ~50 years old and still going, close to HW

Go - relatively new language, recently used in ransomware
(among other uses)

OCaml - functional, used in various fields from finance (Jane
Street) to automated analysis (FB Infer)

Fortran — Old with roots in scientific software, widely used In
HPC now and in the past (lots of legacy)

Data Acquisition

Katz et. al: programs that “compile with minimal modification” from an assortment of Fedora
projects [recall max-seg-len of buckets: 5, 9, 17, 88]

snippets of tokenized code

snippets of parsed code [graph]
Coda: synthetic sets composed of math expressions, argument less function calls and math
epressions + function calls (only from math.h) and a “real” set which includes Hackers Delight

loop-free programs

Also used in other prior work: Euler project/ programming competition programs

1=l lvlI+llzl];

| J
I

6 token in Katz’s model
Won't fit in 15t bucket (limited to maximum of 5)

Data Acquisition

Each of our samples is a complete function

C [10K]: competitive programming (Euler project etc.), interview questions (leetcode)

Go [10K]: competitive programming (Euler project etc.), interview questions (leetcode) and
implementations of general algorithms and utility programs

Fortran [10K]: computational code (Couette flow solver, ODE solvers etc.) which is the main
use of Fortran in the wild

OCaml [30K]: used packages from OPAM package manager and picked a set of core packages
and BAP [a binary analysis tool] with all it’s dependencies

How does it scale if we had more data?
So we gathered larger, MUCH larger corpora for C and OCaml...

Tokenization

BPE: Byte Level Encoding, subword-based

Middle-ground between word-based and character-based

Found to be more suitable than character-level

Generic solution used in NMT: oblivious to language/ any specifics of the domain

Used Huggingface implementation
Model Implementation

Fairseq: Facebook Al implementation of Seq2Seqg models [including Transformer]

HARDWARE

Trained over NYU Greene
| Nvidia V100 GPU, 32 GB VRAM | Intel Xeon Platinum 8268 CPU | 369 GB RAM |

C-Data collection [6M dataset] over MESS lab server
| 2x AMD EPYC 7542 | 512 GB |

Evaluation

Average edit distance: terminology same as in Katz, find edit-distance between prediction
and ground truth, normalize it by length and average over samples. Asks the question:
a human auditor would take a decompilation, and fix it to get the ground truth, what is the

% of change he needs to do?

BTC results

TABLE III: Summary of evaluation results for C, Go, Fortran and OCaml
translation speed number of

language | avg. edit dist. | training time (s) (function/s) final loss | model params
C 0.60 6165 17.8 2.030 53,481,472
Go 0.74 11024 14.74 2.438 55,517,184
Fortran 0.63 0523 13.4 1.207 54,255,616
OCaml 0.77 10041 27.7 2.540 76,730,368

Evaluation

No prior result has been established on Go, OCaml or Fortran
Let’s compare with Katz et. al results on C

Katz et. al BTC
avg. edit dist.
language | avg. edit dist.
C Source 0.70 C 0.60
Bucket 0 0.65 Go 0.74
Bucket 1 0.67 Fortran 0.63
Bucket 2 0.72 OCaml 0.77
Bucket 3 0.75
Max Source | Max Asm
Max. Bin. Len. | Max. C Source Len. Language Length Length
11 5 C 271 1776
Go 254 6350
22 9
47 17 Fortran 398 5408
112 38 Ocaml 192 5939

Fortran

subroutine en_her 02 _xiu_size (n , o subroutine i4_determinant (n , wvalue
o) =)

implicit none implicit none

integer (kind = 4) n integer (kind = 4) n

integer (kind = 4) o integer (kind = 4) wvalue

o =n + 1 value = n » n — 1

return return
end end
OCaml

let fmt_path f x = fprintf £ " STR " let pp ppf x = Format fprintf ppf "
— fmt_path_aux x ;; —~ STR " (to_string x)
Go

sum := 0 sum := 0

for _ , val := range arr { for _ , v := range nums ({

sum += wval sum += v

} }
return sum return sum
C
char+ p = "STR"; while (scanf ("STR", &a) != ECOF) 1if (a
while (scanf ("STR", &a)== 1 && a) — == ()

— puts (p); printf ("STR");
return 0; else
rintf ("STR");
GROUND TRUTH setuen 0; ' | PREDICTION

Complementation rather than competition

ND research is far from production-grade decompilers

For C: good traditional decompilers that are production-ready
ND can’t compete with them in C
But if we go Beyond-The-C it’s different

Our approach complements Traditional Decompilers
As a tool beside them for reversing non-C languages

C 1S SIMPLE

Limitations

ND still has a long way to go
- Interpretability
- Provable semantic correctness
- Long sequence length

- A general limitation of NMT

- Will get better with advances in ML
- Little open-sourced work/data, no demonstration of a

retargetable approach (until now)

- We're sharing our data/code

Future Work

- BTC’s main advantage is simplicity

- This approach can be used in conjunction with other methods
- With Coda or Evolving Exact Decompilation as Sketch gen
- Anonymization, canonicalization other techniques

- Interactive UX

Conclusion

- ND is promising
- With the right design choices
- And retargetability
- Little domain knowledge can go a long way
- There is much to explore, if we go Beyond-The-C

[THE END]

