
Iman Hosseini, Brendan Dolan-Gavitt

BTC: Beyond the C
Retargetable Decompilation using Neural Machine Translation

Decompilation

To analyze malware
Patch vulnerable software
Audit closed-source libraries

Previously:
- Lift native code to some Intermediate Representation

- This IR is decoupled from the underlying architecture now
- Apply data-flow and type analysis
- Reason about types, construct control flow graph
- And finally: construct high level code from the CFG

Magic ingredient is C-specific heuristics baked in
Modeled on C
Prone to emitting GOTOs (Spaghetti, anyone?)

Why?

2

Decompilation: Classics

3

Decompilation: Classics
- Complex, costly (to develop) software
- Based on C
- Not based on the premise of generating human-friendly code

- Traded with ‘correctness’
- “But I want to reverse this Go or Rust malware” 

- Motivation for Retargetability
- These examples have all taken many engineer-years to develop and making new ones

for other languages is a large endeavor: not much of the previous C-specific patterns
and insights can be reused

- Rust was released a decade ago -> today it is used in malware

4

Decompilation
Lets decompile a Go function…

5

Traditional methods are bad at decompiling non-C…

Neural Decompilation
What if we applied NMT methods to decompilation?
- 2018 Katz et. al applied RNNs to this problem

- Modified Clang
- Limited to < 88 C source, < 112 binary tokens
- 200,000 snippet pairs (short snippets -> attribution problem)

- 2019 Fu et. al introduced Coda which adds additional error correcting stage
- Instruction-type awareness
- Works with ASTs
- Still RNN-based

6

Neural Decompilation

- Prior work is only limited to C
- Datasets limited and lacking (i.e. Coda is tested on Hacker’s Delight loop-free programs, and

very narrow synthetic data using ‘math.h’ far from Real-World)
- Not retargetable!

7

Challenges To Retargetability

Compiler Integration (i.e. Clang pass)

Parsing/Lexing required (asm or source)

Requiring awareness of assembly instruction types/ semantics

Working with Abstract Syntax Trees

8

What if…

We treated code, both assembly and source, as text?
No more compiler integration
No longer requiring parsing
Goodbye to ASTs!

Minimize language and target-specific knowledge & get the most out
of the least domain-specific knowledge

NMT, NLP has progressed a lot recently…
Using what NMT has to offer and seeing how far it gets us.

9

Contributions
- Assessing viability of discarding language-specific knowledge by treating code as plain

text
- Demonstrating retargetability by applying our system to 4 programming languages, 3

of which never been the subject of research in decompilation before.
- Provide evaluation of the models
- We will make our training corpora, trained models and code available to enable

further research
- There is little prior examples of such data
- Including 6 million C functions extracted from 50K+ Debian packages
- 800K+ Ocaml functions from OPAM repositories
- A vscode extension to view a decompilation model in action

10

BTC Architecture

11

The 4 Languages

C – ~50 years old and still going, close to HW

Go – relatively new language, recently used in ransomware

(among other uses)

OCaml – functional, used in various fields from finance (Jane

Street) to automated analysis (FB Infer)

Fortran – Old with roots in scientific software, widely used in

HPC now and in the past (lots of legacy)

12

Data Acquisition
Katz et. al: programs that “compile with minimal modification” from an assortment of Fedora
projects [recall max-seq-len of buckets: 5, 9, 17, 88]

Coda: synthetic sets composed of math expressions, argument less function calls and math
epressions + function calls (only from math.h) and a “real” set which includes Hackers Delight
loop-free programs

snippets of parsed code [graph]

snippets of tokenized code

Also used in other prior work: Euler project/ programming competition programs

13

x = y + z ;

6 token in Katz’s model
Won’t fit in 1st bucket (limited to maximum of 5)

So we gathered larger, MUCH larger corpora for C and OCaml…

Data Acquisition

Go [10K]: competitive programming (Euler project etc.), interview questions (leetcode) and
implementations of general algorithms and utility programs

Each of our samples is a complete function

C [10K]: competitive programming (Euler project etc.), interview questions (leetcode)

Fortran [10K]: computational code (Couette flow solver, ODE solvers etc.) which is the main
use of Fortran in the wild

OCaml [30K]: used packages from OPAM package manager and picked a set of core packages
and BAP [a binary analysis tool] with all it’s dependencies

How does it scale if we had more data?

14

Model Implementation

BPE: Byte Level Encoding, subword-based
Middle-ground between word-based and character-based
Found to be more suitable than character-level
Generic solution used in NMT: oblivious to language/ any specifics of the domain
Used Huggingface implementation

Fairseq: Facebook AI implementation of Seq2Seq models [including Transformer]

HARDWARE

Trained over NYU Greene
| Nvidia V100 GPU, 32 GB VRAM | Intel Xeon Platinum 8268 CPU | 369 GB RAM |
C-Data collection [6M dataset] over MESS lab server
| 2x AMD EPYC 7542 | 512 GB |

Tokenization

15

Evaluation
Average edit distance: terminology same as in Katz, find edit-distance between prediction
and ground truth, normalize it by length and average over samples. Asks the question:
a human auditor would take a decompilation, and fix it to get the ground truth, what is the
% of change he needs to do?

BTC results

16

Evaluation
No prior result has been established on Go, OCaml or Fortran
Let’s compare with Katz et. al results on C

BTCKatz et. al

17

GROUND TRUTH PREDICTION

18

Complementation rather than competition

ND research is far from production-grade decompilers

For C: good traditional decompilers that are production-ready
ND can’t compete with them in C
But if we go Beyond-The-C it’s different

Our approach complements Traditional Decompilers
As a tool beside them for reversing non-C languages

19

Limitations
ND still has a long way to go
- Interpretability
- Provable semantic correctness
- Long sequence length

- A general limitation of NMT
- Will get better with advances in ML

- Little open-sourced work/data, no demonstration of a
retargetable approach (until now)
- We’re sharing our data/code

20

Future Work
- BTC’s main advantage is simplicity
- This approach can be used in conjunction with other methods

- With Coda or Evolving Exact Decompilation as Sketch gen
- Anonymization, canonicalization other techniques

- Interactive UX

21

Conclusion
- ND is promising

- With the right design choices
- And retargetability

- Little domain knowledge can go a long way
- There is much to explore, if we go Beyond-The-C

[THE END]

22

