
The Inconvenient Truths of Ground Truth for Binary
Analysis

Jim Alves-Foss
Center for Secure and Dependable Systems

University of Idaho
jimaf@uidaho.edu

Varsha Venugopal
Center for Secure and Dependable Systems

University of Idaho
vvenugopal@uidaho.edu

Abstract—The effectiveness of binary analysis tools and tech-
niques is often measured with respect to how well they map to a
ground truth. We have found that not all ground truths are created
equal. This paper challenges the binary analysis community to
take a long look at the concept of ground truth, to ensure that we
are in agreement with definition(s) of ground truth, so that we
can be confident in the evaluation of tools and techniques. This
becomes even more important as we move to trained machine
learning models, which are only as useful as the validity of the
ground truth in the training.

I. INTRODUCTION

Binary analysis research involves automatic analysis of
executable binaries and a transformation of those binaries
into some intermediate representation that allows for complex
analysis. Part of this transformation involves the disassembly
of the binary into low level constituent pieces: instructions and
data, and also into more complex constructs: functions, classes,
data structures. There have been many research projects and
tools developed to assist with this process. The question is
how good are they? To determine the effectiveness of the tools
requires an understanding of the correct answers and then how
well the tools map to those answers. These correct answers are
the ground truth of the system.

There are many ways that researchers find the ground truth
of the test suites they are using to evaluate their tools, and
to generate results for publication. Unfortunately, this part of
their work is often not seen as interesting and so the details
of ground truth generation are not published in their papers,
and scripts or directions for ground truth generation are not
made available in the public repositories for the tools. Some
readers may respond “but that is obvious” or “that part is easy”.
Although we have heard these types of responses at meetings,
the devil is in the details, and what may initially appear easy
may not be the real ground truth. For example, the Byteweight
project [1], [2] published results related to detecting function
boundaries in binary executables. Their software returned start
address and number of bytes in a function. Their script that
was used to evaluate the correctness of the reported length
actually reported any short lengths as correct. This was not

discussed anywhere in the publication or documentation of
the tools. We assume that this was a hack since the symbol
tables of unstripped binaries generated by the Intel compiler
icc include padding bytes as bytes of the preceding function,
while the gcc compiler does not include these. Two different
compilers generated two views of the ground truth. We would
like to avoid these hacks in the future. In addition, there were
instances of multiple symbols referencing the same function
in some binaries. The analysis counted those functions twice.
In a recent study, Koo et al. [9] generated a set of test suites
to evaluate the function identification problem. A couple of
the binaries did not have full symbol table information and
therefore the “ground truth” created for the study was initially
incorrect. They examined this issue and adjusted their data,
and explained it in their paper. This problem could have been
easily missed in other studies.

We argue that there needs to be research into, and con-
sensus on the evaluation/testing tools and the generation of
test suites. Therefore when researchers evaluate the results
of a new tool or technique, the community agrees with the
measurements of the evaluation. In the general sense, we are
talking about applying the science of instrumentation not only
to our binary analysis tools, but to the tools that generate the
ground truth values that we use to evaluate the binary analysis
tools.

The purpose of this paper is to discuss the concepts of
ground truth, to evaluate what has been published related
to ground truth, and to start a dialog with the community
to develop a set of standards for consistent ground truth
determination. We would also like to see easily accessible
and publicly available tools for ground truth generation and
reporting.

We examined over 50 binary analysis papers, and found
that many of them did not discuss how they calculated ground
truth. Those that did, either used the generated symbol table,
generated debug data, another tool such as IDA Pro, modified
the compiler, or manually determined the ground truth. This
paper summarizes the main categories of ground truth we
found, the techniques to extract ground truth and possible
confusion from this techniques.

Before we start, we want to mention that there have been
other papers that touch on parts of this topic. One notable
paper is by Pang et al. [12] that evaluates nine binary analysis
tools/platforms. They instrument both clang and gcc compilers
to determine the ground truth for disassembly, symbolization

Workshop on Binary Analysis Research (BAR) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-76-2
https://dx.doi.org/10.14722/bar.2022.23010
www.ndss-symposium.org

(references to other code/data), function entries, and control
flow graphs (indirect jumps and calls, tail calls and non-
returning functions). Li et al. [10] grab intermediate informa-
tion from the compiler to generate their disassembly ground
truth, in an attempt to validate ground truth. Another useful
paper is by Kim et al. [8] that discusses a benchmark for binary
code similarity analysis.

II. DEFINING GROUND TRUTH

The definition of ground truth, with respect to a binary
executable, is context dependent. A lot depends on what the
researchers are examining: correct decoding of instructions
and data, mapping of binary to complex structures such as
functions or data structures, or mapping of binary back to
the source code. This context matters when evaluating the
effectiveness of binary analysis tools. It also matters if we
are examining normal code, obfuscated code or malware. For
the purposes of this paper, we will primarily focus on normal
code.

Compilers perform optimizations, and may add or delete
portions of the code, so that there is not an one-to-one mapping
between source code and binary. Most compilers insert stan-
dard functions for code initialization and termination, and other
may insert new optimized libraries (such as Intel compiler’s
embedded memory management routines [5]).

Therefore, when researchers are analyzing a binary in the
context of what the binary does, we argue that they must
look at the binary as compiled. In the context of functions,
researchers must first define what a function is, within the
context of the binary, as compiled and linked. For example if
a source code function is in-lined, it is no longer a function,
and an analysis tool should not claim it found that function
within the binary. A more difficult question we have to ask, is
if the compiler optimizes out tail calls1, is a function that is
only jumped to, instead of called, still a function?

A. Instructions

The first category we examine is instructions versus data
for disassembly of a binary. It is well known that it is hard
to analyze a binary if the tool does not correctly identify
instructions and data within the binary. Compilers, or hand
written assembly may embed data within code sections of the
binary, making it difficult to have precise determination of the
mapping of bytes from the binary to instructions. Questions
researchers should ask are:

• Where do we obtain the ground truth about which
bytes are instructions? Do we need to instrument the
compiler, or is their sufficient details in the debug
data?

• What about instructions as data? There are some
programs that run checksums over their own code, in
this case code is data – most people will define that
code as instructions. However, other programs may
store portions of code that they copy to other parts of

1A tail call exists when the final instruction of a function is a call to another
function. An optimizing compiler will clean up the local function context, and
then jump to the next function instead of using a call, saving the expense of
a call and return.

f i x s y m s () : . . / b i n u t i l s 2 . 2 3 / b fd / l i n k e r . c :3208
080 b41c0 <f ix syms >:

80 b41c0 : mov 0x4(% esp) ,% eax
80 b41c4 : mov 0x8(% esp) ,% edx

080 b41c8 <f i x s y m s . > :
80 b41c8 : push %e s i
80 b41c9 : push %e d i

Listing 1. Multiple entry points from binary as_new (binutils v 2.23).
Compiled with icc v 14.0.1, in 32-bit mode, -O2 option. Shown using AT&T
syntax.

memory. This may be malicious, or may be part of
a just-in-time compilation routine. Is that stored code
really instructions, or just data?

Recommendation: We recommend defining instructions as
executable code as compiled into the binary. Instructions that
are only meant to be copied, and are therefore used only as
data, should be categorized based on location. If these are
stored in a data section, then they are data. If these instructions
are stored in a code section, they are code, even if they are
never called or executed.

B. Functions

Let’s take functions as the next example of a construct for
which a researcher may want to find the ground truth. At a
high level of abstraction, a function is a construct in a high
level programming language. We can analyze source code and
clearly find function names, types, parameters and boundaries.
If a researcher is looking at binary differencing [3], traceability,
or some other concept where there is a need to map the source
code directly to its implementation in a binary, then the ground
truth we are looking for must include that mapping.

However, a compiler can apply many optimizations, and
not directly map the source code to the executable code. For
example, functions may be in-lined, where there is no actual
function call within the binary, but rather the body of the func-
tion is directly compiled into the body of the calling function,
effectively treating the function as a macro. There may be
optimizations involving tail calls. In addition, compilers may
optimize local variables so that they are stored in registers
only, or do loop unrolling, or many other optimizations that
prevent a direct mapping between source code and the binary.
Therefore, we believe researchers must address the following
questions:

• Is there a need to map binary directly to source code?
If so, what happens when a function is in-lined? What
happens if the compiler creates multiple entry points to
the function, or divides the function into two separate
functions?

• What is a function within the binary? Do we define
a function with a strict adherence to the source code?
What about a function with a tail call1? If the compiler
optimizes away the call with a jump, are we jumping
to a new function or to a disjoint portion of the same
function? What about a compiler that allows a function
to fall through to the next “function”?

2

• Are uncalled functions still functions? Some compilers
may optimize them away, while others do not.

• Are compiler added functions, functions? There are
several functions added by compilers, many are hand
coded assembly.

• Can functions have more than one entry point? Some
compilers may insert multiple entry points for the
same function. The Intel compiler does this in 32-
bit mode (see discussion in Section III-A1, and see
Listing 1). In addition, some compilers will optimize
a function into multiple separate functions (See dis-
cussion of Listing 2 in Section III-A2.)

• Besides function entry points, how do we define func-
tion boundaries? Some tools look for the start and
end bytes of a function. Is the listed end byte the
last byte of the last instruction? The first byte of the
last instruction (for multibyte instructions)? The first
byte after the last instruction? And how about padding
between functions, does that belong to a specific
function? What if the last instruction is unreachable?

Recommendation: We recommend defining functions as
logical units within the binary that have an entry point and
one or more exit points and a collection of instructions in
between. The exit may be a call to a non-returning function, a
jump to the start of another function, or a return. This maps as
closely as we can to the source code. We do not count in-line
functions as functions, but rather treat them as if they were
macros. We do count compiler inserted functions as functions,
since they are in the binary. The hard part is determining the
end of the function. Ideally we want to define a function as
all of the bytes from the start of the function until the start of
the next function, assuming functions are contiguous.

C. Function parameters and Local variables

It is possible that an optimizing compiler may remove or
add parameters to a function, although we have only seen this
in experimental compilers. As we mention in Section III-A2,
some compilers can optimize the values of constant parameters
and the ignore the passed in value. Compilers can also optimize
away local variables, keeping the values only in a register.
Therefore, we believe researchers must address the following
questions:

• How are you defining parameters? There is a need to
map parameters back to source code, to registers or
stack locations where they are stored, or maybe for
data flow graphs. If a compiler optimizes away the
use of a parameter, what is the ground truth in the
mapping to source code, or to data flow graphs?

• How are you defining local variables? There is also
need to map local variables back to source code, to
registers or stack locations where they are stored, or
maybe for data flow graphs. If a compiler optimizes
away the use of a local variable what is the ground
truth in the mapping to source code, or to data flow
graphs? Is there a need to understand the location of
the local variables on the stack – since some compilers
will change the order.

Recommendation: We recommend defining parameters
and local variables as those that are compiled into the binary.
If the parameter or local variable is optimized away, it does
not exist in the ground truth of the binary.

D. Cross references/pointers, Indirect jumps and calls

Within a code section there will be pointers/references
to other code and data. Within a data section, there will be
pointers/references to code and data. These pointers/references
may be absolute values, or relative. We don’t think there are
too many questions related to these values as they are what
they are.

There are jump tables, function pointers and other values
that are used for indirect jumps and calls. The location of these
values fits into this category as pointers/references to code. The
question researchers have to ask here is:

• Where do we obtain the ground truth about which
bytes are these references/pointers? Some people rec-
ommend using relocation data for pointers, but that
does not work well in position independent code
which does not need as much relocation information.

Recommendation: These values are what they are. We
don’t think instrumenting a compiler to find these values is
the best long-term solution for generating the ground truth.If
debug data contains all typing information, we can extract it
from there. (See Section IV for further discussion).

E. Special functions

Some functions do not return, and these affect the validity
of control flow analysis. Also, some functions are inserted into
the binary by the compiler, and are not linked to the source
code. The question researchers have to ask here are:

• For non-returning functions, where do we get the
ground truth about this characteristic? We have seen
tools that embed a list of non-returning standard
library functions. This needs to be updated as libraries
change, and may be language or even compiler depen-
dent. In addition, use code can be non-returning if it
always calls a non-returning function such as an error
handling routing that then call exit or abort. How are
these documented?

• How does a non-returning function affect function
analysis or control flow? Is an instruction after a
call to a non-returning function part of the same
function or not? We have seen fault-tolerant code that
adds additional instructions after calls to non-returning
functions, just in case an error results in a return. We
have seen compilers that include additional function
clean up instructions, because the compiler can not
determine it is a non-returning function. The ground
truth of the program must capture this.

• How do we handle uncalled functions? Some of the
compiler inserted functions are actually never called.
If library is linked in, all of the functions in the library
are usually included, not just the called ones. Are these
unused, uncalled functions part of the ground truth?

3

08055750 l F . t e x t 00000 c30 ope rand . . 0
080570 a0 l F . t e x t 00000330 i n t e g e r c o n s t a n t . . 0
08056 b60 l F . t e x t 00000540 i n t e g e r c o n s t a n t . . 2
08056840 l F . t e x t 00000320 i n t e g e r c o n s t a n t . . 3
08056520 l F . t e x t 00000320 i n t e g e r c o n s t a n t . . 4
0805 a7d0 l F . t e x t 00000 cb0 exp r . . 0
080573 d0 l F . t e x t 00000 c80 exp r . . 1
08058 f a 0 l F . t e x t 00000 cd0 ope rand
08056380 l F . t e x t 000001 a0 i n t e g e r c o n s t a n t . . 1

Listing 2. Symbol table from binary as new (binutils v 2.23). Compiled with icc v 14.0.1, in 32-bit mode, -O2 option.

i n t e g e r c o n s t a n t . . 2 (r a d i x i s 16)
/ d a t a / u s e n i x / Linux / b i n u t i l s −2.23/ gas / exp r . c : 360

number = number ∗ r a d i x + d i g i t ;
8056 baa : 8b d5 mov %ebp ,% edx
8056 bac : c1 ea 1 c s h r $0x1c ,% edx
8056 b a f : c1 e5 04 s h l $0x4 ,% ebp
8056 bb2 : c1 e6 04 s h l $0x4 ,% e s i

i n t e g e r c o n s t a n t . . 3 (r a d i x i s 2)
/ d a t a / u s e n i x / Linux / b i n u t i l s −2.23/ gas / exp r . c : 360

number = number ∗ r a d i x + d i g i t ;
805688 c : 8b d3 mov %ebx ,% edx
805688 e : 03 db add %ebx ,% ebx
8056890: c1 ea 1 f s h r $0x1f ,% edx
8056893: 03 c0 add %eax ,% eax

Listing 3. Code samples from binary as new (binutils v 2.23). Compiled with icc v 14.0.1, in 32-bit mode, -O2 option. Shown using AT&T syntax.

Recommendation: Non-returning functions are special
and need to be recognized and documented. OS system calls
may need to be documented with the non-returning attribute.
Everything should be recursively analyzable. Any functions
inserted by the compiler or linker are still part of the binary
and need to be treated as functions in the program.

III. EXAMPLES OF GROUND TRUTH CONFUSION

Many tools are designed to analyze binaries, in the wild.
Therefore they may assume that the binaries are stripped of
all metadata, including symbol tables and debug data. They
may even assume that any symbol table or debug data in the
binary may be deliberately incorrect to help thwart reverse
engineering. This is a reasonable approach to take. However
when we are conducting experimentation to determine how
well a tool works, we have control over the experimentation
test suite, and we can therefore be confident that any metadata
is non-malicious. Researchers should also take care that the test
suite is built in a way that allows generation of correct ground
truth. For example, Koo et al. [9] mentioned that they had
some test cases that were missing function data in the symbol
table, although it existed in the debug data. We were able to
rebuild these binaries with the full symbol table information.
If we could not do this, we would recommend removing these
outliers from the test data, if ground truth could not be reliably
determined.

A. Compiler issues

Compilers will generate executables where there is not
a direct one-to-one mapping from the source code. As an
example, the following two examples cause confusion and

difficulty when generating ground truth related to function
boundaries.

1) Compiler insertion of multiple entry points: Listing 1 is
a code snippet from the as-new binary, from binutils version
2.23, compiled with Intel compiler icc, version 14.0.1 into a
32-bit binary with the -O2 optimization option. Here we see
two different entry points for the function fix_syms. The
first entry allows for passing of parameters via the stack. These
parameters are then stored in registers and then the code falls
through to the next function. This allows for linking with other
binaries that expect parameter passing on the stack, but leads
to ground truth confusion.

What is the ground truth in this case? The code is sup-
porting two different calling conventions, with an optimized
register convention being used for calls from functions within
the same compilation unit. Is this one function or two? The
symbol table says two.

2) Compiler duplication/separation of functions: Listing 2
is a portion of the symbol table from the as-new program
mentioned in Section III-A1. The first column is the byte
address of the symbol, in this case the function start address.
The next two columns include flags and a type of the symbol
(in the example, all symbols are local and functions). The next
column is the name of the section in the binary where the
symbol is located, followed by the size – which is the length
of the function.

Here it is evident that the function integer_constant
is compiled into 5 separate functions. This function
takes a string and parses it into an integer, depending
on the specified radix (base) of the number. An
analysis of the code shows that the first argument of

4

integer_constant, the radix, is passed as a constant
in this program. For calls to integer_constant..0
it is 10, for integer_constant..2 through
integer_constant..4 it is 16, 2 and 8 respectively.
There are no calls to integer_constant..1, where the
radix is not one of the standard constants. The code makes
very specific choices with respect to the value of radix. For
each of these functions the compiler optimizes in the constant
value of the radix, generating code for just the appropriate
subset of the function for that radix. See code snippets in
Listing 3, where the radix is 16 and then 2.

What is the ground truth in this case? If we are mapping
source code to binary, we have multiple mappings. If we are
looking at individual functions in the binary, there are five
functions for this one source function. If we are looking at
parameters, we see that the first parameter is optimized out
for four of the functions, and is not used, although it is still
passed on the stack.

B. IDA Pro

IDA Pro [6] is a binary analysis tool that is used by a
large portion of the community. It is a good tool with a lot
of capabilities and features. However, it is still a tool, and
is not necessarily the oracle of ground truth. We have seen
papers and projects that say they use IDA Pro for their ground
truth, such as [7]. This is the most concerning when they use
it for ground truth that is then used for training a machine
learning algorithm. The results are then compared to IDA Pro
generated ground truth. So, although the experimental results
may be favorable to the researchers, it does not mean that the
trained and evaluated ground truth values are actually correct.
The following are concrete examples of this.

For our research, we have compiled several different tool
suites using several different compilers and compiler optimiza-
tion flags. We compiled objdump, from the standard binutils
package, using the clang compiler with -O2 optimization
option for 32-bit Intel architecture under Linux, we got the
code shown in Listing 4. Notice the jump pointer at address
0x8152ae7. IDA Pro was not able to interpret the target
addresses and therefore assumed this was an end of a function,
identifying 0x8152aee and 0x8152b12 as new functions.
It also left code in address range 0x8152afa – 0x8a52b11
as not within a single function. This error occured even with
an unstripped binary with full debug information indicating the
correct function start and size.

We compiled enscript with clang compiler (Version 6)
using -flto (linktime optimization) and -O2 to get the code
in Listing 5 for the function process_file. Here the LTO
optimization results in some extra insertion of nops. IDA Pro
indicates that the instruction starting at address 0x24540 is
a new function, even though the symbol table includes the
correct function boundaries. Also notice the stack adjustment
and pushing of the frame pointer in addresses 0x24540 and
0x24543. IDA Pro could have been looking at the long set
of nops or this pattern to make its determination.

We know that IDA Pro does take advantage of some
of the metadata, because we found less errors when it was
run on an unstripped binary versus stripped versions of the
same binary, however it still has some issues with function

08152 ad0 <get DW IDX name>:
8152 ad0 : movl 0x4(% esp) ,% ecx
8152 ad4 : cmpl $ 0 x 1 f f f ,% ecx
8152 ada : j g
8152 a f 4 <get DW IDX name+0x24>
8152 adc : d e c l %ecx
8152 add : cmpl $0x4 ,% ecx
8152 ae0 : j a
8152 b30 <get DW IDX name+0x60>
8152 ae2 : movl $0x81f8d07 ,% eax
8152 ae7 : jmpl ∗0 x81f624c (,% ecx , 4)

−−− M i s i d e n t i f i e d −−−
8152 aee : movl $0x81f8d1b ,% eax
8152 a f 3 : r e t l

−−− F o l l o w i n g Code Orphaned −−−
8152 a f a : j e
8152 b24 <get DW IDX name+0x54>
8152 a f c : cmpl $0x2001 ,% ecx
8152 b02 : j e
8152 b2a <get DW IDX name+0x5a>
8152 b04 : cmpl $ 0 x 3 f f f ,% ecx
8152 b0a : j n e
8152 b30 <get DW IDX name+0x60>
8152 b0c : movl $0x81f8d5d ,% eax
8152 b11 : r e t l

−−− M i s i d e n t i f i e d −−−
8152 b12 : movl $0x81f8d2c ,% eax

. . .

Listing 4. Example misindentified function entry in objdump utility (clang
32bit -O2 option), in AT&T syntax for Intel.

boundary detection even on unstripped binaries. On a test of
approximately 57,000 unstripped binaries, in 19% of the cases,
there was not a perfect match between IDA Pro listed function
starts and the function starts of the symbol table. In 1% of the
cases, the resulting F1 statistic for correct function starts was
less than 96%. Most of these cases occurred in evaluation of
32-bit binaries. Although this is not a horrible statistic, we
want our ground truth to be 100% correct for validation.

The code in Listing 6 is derived from quotearg.c file,
function quotearg buffer restyled. This is part of a standard
gnu library for parsing command line arguments that is used
by many common utilities. We compiled this library codes as
part of a compilation of the coreutils suite of programs, using
the intel compiler icc, with -O0 optimization and 64 bit Intel
architecture under Linux. For this example, the library is part
of the utility test. Here IDA Pro can not determine the target of
the jump pointer instruction on line 0x4056bb and therefore
reports that the instruction on line 0x4056bd is the start of
a new function.

Any tools that rely on IDA Pro, either as plug-ins or stand
alone, should not just rely on IDA Pro when deriving the
ground truth from the unstripped binaries.

C. Ghidra

Ghidra [11] is a reverse engineering tool developed by the
National Security Agency, and was first publicly released in
2019. Ghidra has many capabilities similar to IDA Pro and
can be used for disassembly, detection of function boundaries,
etc. As with IDA Pro, it uses available debug and symbol
table information. And, as with IDA Pro, it is not perfect in

5

w h i l e (f g e t s (buf , s i z e o f (buf) , . . .
24516 : sub $0x4 ,% esp
24519 : push %eax
2451 a : push $0x1000
2451 f : l e a 0 x1274(% esp) ,% ebp
24526 : push %ebp
24527 : c a l l 34 d10 <f g e t s @ p l t>
2452 c : add $0x10 ,% esp
2452 f : t e s t %eax ,% eax
24531 : j e 24691 <p r o c e s s f i l e +0x4581>
24537 : xor %ebx ,% ebx
24539 : nop
2453 a : nop
2453 b : nop
2453 c : nop
2453 d : nop
2453 e : nop
2453 f : nop

−−− M i s i d e n t i f i e d −−−
i = s t r l e n (buf) ;

24540 : sub $0xc ,% esp
24543 : push %ebp
24544 : c a l l 34 bd0 <s t r l e n @ p l t >
24549 : add $0x10 ,% esp
. . .

Listing 5. Example misindentified function entry (clang 32bit -O2 -flto
options), in AT&T syntax for Intel.

4056 b5 : add %rax ,% rdx
4056 b8 : mov (% rdx) ,% r a x
4056 bb : jmpq ∗%r a x

−−− M i s i d e n t i f i e d −−−
4056 bd : movzbl −0x120(% rbp) ,% eax
4056 c4 : movzbl %al ,% eax
4056 c7 : t e s t %eax ,% eax
4056 c9 : j e 40580 f

Listing 6. Example misinterpreted function end for function
quotearg buffer restyled (icc 64bit -O0 option)

408115: mov (%rax ,% rcx ,8) ,% r c x
408119: mov %edx , 0 x20(% r c x)
40811 c : mov 0 x20d35d(% r i p) ,% r c x
408123: mov %rbx ,(% rax ,% rcx , 8)
408127: pop %rbx
408128: jmpq 407640
40812 d : xor %ecx ,% ecx
40812 f : cmp %rbx ,% r c x
408132: j n e 4080 e5
408134: pop %rbx
408135: r e t q
408136: nopw %cs : 0 x0(%rax ,% rax , 1)
40813 d : 00 00 00

−−− Miss ing F u n c t i o n −−−
0000000000408140 <y y a l l o c >:
408140: jmpq 401450 <malloc@pl t>
408145: d a t a 1 6 nopw %cs : 0 x0(%rax ,% rax , 1)
40814 c : 00 00 00 00

Listing 7. Example missing function entry (clang 64bit -O1), in AT&T syntax
for Intel

generating ground truth information. We have not seen papers
that explicitly use Ghidra for ground truth, but it would not
suprise us as more people begin to use it. In general Ghidra has
done better, but as seen in Listing 7, for the states program
(which is part of the enscript utility, Ghidra missed some
function starts when analyzing the unstripped binary, even
though they are listed in the symbol table. Therefore we can
not always rely on it either for 100% accurate ground truth.

Any tools that rely on Ghidra, either as plug-ins or stand
alone, should not just rely on Ghidra when deriving the ground
truth from the unstripped binaries.

D. Symbol Table

The symbol table in an unstripped binary contains infor-
mation about functions and global variables (Listing 2 shows
part of a symbol table). The problem we have found when
using symbol tables for ground truth are:

• They don’t contain all of the information we want. For
example, no mapping of which bytes are instructions.
Jump tables and global pointers do not always have
symbols.

• There may not be a one-to-one mapping between func-
tion name symbols and source code. The example in
Listing 2 shows just that case, where there are multiple
binary functions for a specific source function. The
example in Listing III-A1 shows multiple entry points
for the same function. We have also seen aliases for
functions, where two names point to the same function
location.

• Function lengths are not consistent. We found that the
Intel compiler includes padding bytes in the function
length in the symbol table, other compilers do not.

E. DWARF

We have seen several papers state that they use debug data
for ground truth, but never elaborate further. When looking
at DWARF debug data [4], we have seen several issues. First
involves correctly interpreting the data. The HIGH PC value
in a subprogram is the byte after the end of the function.
However, it may be an absolute value or a relative value
(length), which is not parsed correctly by some libraries/tools.
Not all compilers include complete information in the DWARF
data. It is a good source, but researchers have to be careful.

F. Compiler Hacks

There are a couple of tools that generate ground truth by
hacking the compiler. One example of this is the work by Pang
et al. [12], where the authors revise the compiler to emit all
of the ground truth information they need. Li et al. [10] use
intermediate representation, such as generated assembly code
listings, to assist in the generation of their ground truth for
disassembles.

These techniques only work for the compilers they are
designed for, and therefore can not be reliably used for
generalization of ground truth, even with newer versions of
the same compilers.

6

IV. CONCLUSION

Knowing the ground truth is essential when evaluating the
effectiveness of binary analysis tools. We have seen instances
where the ground truth was incomplete, misleading, misinter-
preted or even hacked to get results that the authors wanted.
We are not saying that the authors deliberately misled the
community, but rather did not focus on the importance of
making sure the ground truth was correct. Most authors do not
communicate the details of their generation of ground truth or
the assumptions they made when doing the evaluation.

Without the existence of well vetted tools and/or data sets
for ground truth, we will struggle with the ability to accurately
build, evaluate and gauge binary analysis tools. If researchers
then use incorrect ground truth when using machine learning
or other automated analysis, the problem will just get worse.
We recommend a discussion among the community about
the types of ground truth metrics we need, the best ways to
develop them, and a process for vetting and sharing ground
truth generation tools.

We do not believe custom tools, such as compilers mod-
ifications, are a good long term solution to ground truth
generation. Use of DWARF [4] debug data and the compiler
generated symbol tables is a good start, but their limits need
to be fully explored.

Each method of generating a binary, different compilers,
architectures, compiler optimizations, and source language
creates challenges for binary analysis. We want our tools to
be as accurate a possible. Creating good testsuites, with well
documented and well create binaries is essential for validating
the tools. When creating the testsuites, the researcher has
control. They can ensure that all of the symbol table and other
information is available in each binary in the testsuite. If, for
some reason, it is not possible to have complete ground truth
for a particular binary, it should be removed from the testsuite.
This is permitted, since the idea of the testsuite is to validate
the tools or algorithms, so we need 100% correct ground
truth. Researchers should check to make sure their ground
truth is correct, and they should clearly document how they
arrived at the ground truth. Researchers should make scripts
and programs for ground truth extraction and measurement of
results to that ground truth publicly available.

REFERENCES

[1] T. Bao and D. Brumley. (2014) Byteweight: Recognizing functions
in binary code. [Online]. Available: http://security.ece.cmu.edu/
byteweight/

[2] T. Bao, J. Burket, M. Woa, R. Turner, and D. Brumley, “Byteweight:
Learning to recognize functions in binary code,” in Proc. USENIX
Security Symposium, 2014, pp. 845–860.

[3] (2021) Zynamic’s bindiff. [Online]. Available: https://www.zynamics.
com/index.html

[4] DWARF Debugging Information Format Committee, “DWARF debug-
ging information format v 5,” 2017.

[5] (2021) Intel’s oneAPI Toolkits. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/tools/oneapi/
toolkits.html\#gs.koxkci

[6] (2021) Hex-Rays IDA. [Online]. Available: https://www.hex-rays.com/
products/ida/

[7] C. Karamitas and A. Kehagias, “Efficient features for function matching
between binary executables,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 335–345.

[8] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary code
similarity analysis using interpretable feature engineering and lessons
learned,” 2021.

[9] H. Koo, S. Park, and T. Kim, “A look back on a function
identification problem,” in Annual Computer Security Applications
Conference, ser. ACSAC. New York, NY, USA: Association
for Computing Machinery, 2021, p. 158168. [Online]. Available:
https://doi.org/10.1145/3485832.3488018

[10] K. Li, M. Woo, and L. Jia, “On the generation of disassembly ground
truth and the evaluation of disassemblers,” in Proc. of the 2020 ACM
Workshop on Forming an Ecosystem Around Software Transformation,
ser. FEAST’20. Association for Computing Machinery, 2020, p. 914.
[Online]. Available: https://doi.org/10.1145/3411502.3418429

[11] National Security Agency. (2021) Ghidra reverse engineering tool.
[Online]. Available: https://ghidra-sre.org/

[12] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” 2021 IEEE Symposium on Security
and Privacy (SP), pp. 833–851, 2021.

7

