
THE INCONVENIENT TRUTHS OF
GROUND TRUTH FOR BINARY
ANALYSIS

JIM ALVES-FOSS AND VARSHA VENUGOPAL

©2022 by Jim Alves-Foss and Varsha Venugopal

INTRODUCTION
The effectiveness of binary analysis tools and techniques is often

measured with respect to how well they map to a ground truth.

We have found that not all ground truths are created equal.

This paper challenges the binary analysis community to take a long look at

the concept of ground truth, to ensure that we are in agreement with

definition(s) of ground truth, so that we can be confident in the evaluation of

tools and techniques.

This becomes even more important as we move to trained machine

learning models, which are only as useful as the validity of the ground truth

in the training.

©2022 by Jim Alves-Foss and Varsha Venugopal

DEFINING GROUND TRUTH
The definition of ground truth, with respect to a binary executable, is

context dependent.

• A lot depends on what the researchers are examining: correct decoding

of instructions and data, mapping of binary to complex structures such

as functions or data structures, or mapping of binary back to the source

code.

• This context matters when evaluating the effectiveness of binary

analysis tools.

• It also matters if we are examining normal code, obfuscated code or

malware. For the purposes of this paper, we will primarily focus on

normal code.

©2022 by Jim Alves-Foss and Varsha Venugopal

INSTRUCTIONS
Where do we obtain the ground truth about which bytes are instructions?

• Do we need to instrument the compiler, or is their sufficient details in the debug

data?

What about instructions as data?

• There are some programs that run checksums over their own code, in this case

code is data -- most people will define that code as instructions. However, other

programs may store portions of code that they copy to other parts of memory.

This may be malicious, or may be part of a just-in-time compilation routine. Is that

stored code really instructions, or just data?

©2022 by Jim Alves-Foss and Varsha Venugopal

INSTRUCTIONS (2)
Recommendation: We recommend defining instructions as executable

code as compiled into the binary. Instructions that are only meant to be

copied, and are therefore used only as data, should be categorized based

on location. If these are stored in the data section, then they are data. If

these instructions are stored in the code section, they are code, even if they

are never called or executed

©2022 by Jim Alves-Foss and Varsha Venugopal

FUNCTIONS (1)
Is there a need to map binary directly to source code?

• If so, what happens when a function is in-lined?

• What happens if the compiler creates multiple entry points to the function, or
divides the function into two separate functions?

What is a function within the binary?

• Do we define a function with a strict adherence to the source code?

• What about a function with a tail call (last instruction is a function call)?

• If the compiler optimizes away the call with a jump, are we jumping to a new
function or to a disjoint portion of the same function?

• What about a compiler that allows a function to fall through to the next
function?

©2022 by Jim Alves-Foss and Varsha Venugopal

FUNCTIONS (2)
Are uncalled functions still functions?

• Some compilers may optimize them away, while others do not.

Are compiler added functions, functions?}

• There are several functions added by compilers, many are hand
coded assembly.

Can functions have more than one entry point?

• Some compilers will optimize a function into multiple separate
functions.

• Also, some compilers may insert multiple entry points for same
function. The Intel compiler does this in 32-bit

©2022 by Jim Alves-Foss and Varsha Venugopal

FUNCTIONS (3)
Besides function entry points, how do we define function boundaries?

• Some tools look for the start and end bytes of a function.

• Is the listed end byte the last byte of the last instruction? The first byte of the
last instructions? The first byte after the last instruction?

• And how about padding between functions, does that belong to a specific
function.

©2022 by Jim Alves-Foss and Varsha Venugopal

FUNCTIONS (4)
Recommendation: We recommend defining functions as logical units

within the binary that have an entry point and one or more exit points and

the collection of executable instructions in between (including exception

handlers). The exit may be a call to a non-returning function, a jump to the

start of another function, or a return. This maps as close as we can to the

source code.

• We do not count in-line functions as functions, but rather treat them as if

they were macros.

• We do count compiler inserted functions as functions, since they are in

the binary.

©2022 by Jim Alves-Foss and Varsha Venugopal

CROSS REFERENCES/POINTERS, INDIRECT JUMPS AND CALLS (1)

Within the code there will be pointers/references to other code and data.

Within the data section, there will be pointers/references to code and data.

These pointers/references may be absolute values, or relative. We don't

think there are too many questions related to these values as they are what

they are.

There are jump tables, function pointers and other values that are used for

indirect jumps and calls.

The location of these values fits into this category as pointers/references to

code.

©2022 by Jim Alves-Foss and Varsha Venugopal

CROSS REFERENCES/POINTERS, INDIRECT JUMPS AND CALLS (2)

Where do we obtain the ground truth about which bytes are these

references/pointers?

Some people recommend using relocation data for pointers, but that does

not work well in position independent code which does not need as much

relocation information. Others will instrument the compiler.

Recommendation: These values are what they are. We don't think

instrumenting a compiler to find these values is the best long-term solution

for generating the ground truth. If debug data contains all typing

information, we can extract it from there.

©2022 by Jim Alves-Foss and Varsha Venugopal

SPECIAL FUNCTIONS (1)
There are functions that do not return, and these affect the validity of control flow analysis. There

are also functions that are inserted into the binary by the compiler, and are not linked to the

source code.

For non-returning functions, where do we get the ground truth about this characteristic?

• We have seen tools that embed a list of non-returning standard library functions. This

need to be updated for the libraries.

How does a non-returning function affect control flow?

• Is an instruction after a call to a non-returning function part of the same function or not? We

have seen fault-tolerant code that add additional instructions after calls to non-returning

functions, just in case an error results in a return. The ground truth of the program must

capture this.

©2022 by Jim Alves-Foss and Varsha Venugopal

SPECIAL FUNCTIONS (2)
Recommendation:

Non-returning functions are special and need to be recognized and

documented.

• OS system calls may need to be documented with the non-returning
feature.

• Everything else should be recursively analyzable. Difficulties may
arise with function pointers and virtual functions.

Any functions inserted by the compiler are just part of the program and

need to be treated as such.

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (1)
Multiple entry points for a binary (icc compiler)

fix_syms(): ../binutils2.23/bfd/linker.c:3208
080b41c0 <fix_syms>:
80b41c0: mov 0x4(%esp),%eax
80b41c4: mov 0x8(%esp),%edx

080b41c8 <fix_syms.>:
80b41c8: push %esi
80b41c9: push %edi

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (2)
Symbol table from as_new, compiled with icc (partial clones)

08055750 l F .text 00000c30 operand..0
080570a0 l F .text 00000330 integer_constant..0
08056b60 l F .text 00000540 integer_constant..2
08056840 l F .text 00000320 integer_constant..3
08056520 l F .text 00000320 integer_constant..4
0805a7d0 l F .text 00000cb0 expr..0
080573d0 l F .text 00000c80 expr..1
08058fa0 l F .text 00000cd0 operand
08056380 l F .text 000001a0 integer_constant..1

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (3)
integer_constant..2 (radix = 16)
/data/usenix/Linux/binutils-2.23/gas/expr.c:360

number = number * radix + digit;
8056baa: 8b d5 mov %ebp,%edx
8056bac: c1 ea 1c shr $0x1c,%edx
8056baf: c1 e5 04 shl $0x4,%ebp
8056bb2: c1 e6 04 shl $0x4,%esi

integer_constant..3 (radix = 2)
/data/usenix/Linux/binutils-2.23/gas/expr.c:360

number = number * radix + digit;
805688c: 8b d3 mov %ebx,%edx
805688e: 03 db add %ebx,%ebx
8056890: c1 ea 1f shr $0x1f,%edx
8056893: 03 c0 add %eax,%eax

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (4) –
int main (int argc, char **argv)
{

...
for (size_t copies = bufalloc / copysize; --copies;)

{
memcpy (buf + bufused, buf, copysize);
bufused += copysize;

}

/* Repeatedly output the buffer until there is a write error; then fail. */
while (full_write (STDOUT_FILENO, buf, bufused) == bufused)

continue;
error (0, errno, _("standard output"));
return EXIT_FAILURE;

}

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (4)
8049770: lea 0x0(%ebp,%ebx,1),%eax
8049774: sub $0x4,%esp
8049777: push %esi
8049778: push %ebp
8049779: push %eax
804977a: call 8049090
804977f: add $0x10,%esp
8049782: add %esi,%ebx
8049784: dec %edi
8049785: jne 8049770
8049787: jmp 8049790
8049789: mov %esi,%ebx
804978b: nop
804978c: nop
804978d: nop

. . .

804978e: nop
804978f: nop
8049790: sub $0x4,%esp
8049793: push %ebx
8049794: push %ebp
8049795: push $0x1
8049797: call 80498b0
804979c: add $0x10,%esp
804979f: cmp %ebx,%eax
80497a1: je 8049790
80497a3: call 8049210

IDA PRO thinks this is last
address of function

©2022 by Jim Alves-Foss and Varsha Venugopal

EXAMPLES (5)
4056b5: add %rax,%rdx
4056b8: mov (%rdx),%rax
4056bb: jmpq *%rax
4056bd: movzbl -0x120(%rbp),%eax
4056c4: movzbl %al,%eax
4056c7: test %eax,%eax
4056c9: je 40580f
. . .

IDA PRO can not
determine indirect jump
addresses, so assumes this
is the last instruction of
the function.

©2022 by Jim Alves-Foss and Varsha Venugopal

DWARF
We have seen several papers state that they use debug data for ground

truth, but never elaborate further.

When looking at Dwarf debug data, we have seen several issues.

• First involves correctly interpreting the data. The HIGH PC value in a

subprogram is the byte after the end of the function. However, it may be

an absolute value or a relative value (length), which is not parsed

correctly by some libraries/tools.

• Second, not all compilers include complete information in the DWARF

data.

DWARF data is a good source, but researchers have to be careful.

©2022 by Jim Alves-Foss and Varsha Venugopal

COMPILER HACKS
There are a couple of tools that generate ground truth by hacking the

compiler.

• Pang et al. where the authors revise the compiler to emit all of the

ground truth information they need.

• Li et al. use intermediate representation, such as generated assembly

code listings, to assist in the generation of their ground truth for

disassembles.

These techniques only work for the compilers they are designed for, and

therefore can not be reliably used for generalization of ground truth, even

with newer versions of the same compilers.

©2022 by Jim Alves-Foss and Varsha Venugopal

CONCLUSION (1)
Knowing the ground truth is essential when evaluating the effectiveness of

binary analysis tools. We have seen a few instances where the ground truth

was incomplete, misleading, misinterpreted or even hacked to get results

that the authors wanted. We are not saying that the authors deliberately

misled the community, but rather did not focus on the importance of making

sure the ground truth was correct. Most authors do not communicate the

details of their generation of ground truth or the assumptions they made

when doing the evaluation.

©2022 by Jim Alves-Foss and Varsha Venugopal

CONCLUSION (2)
Without the existence of well vetted tools and/or data sets for ground truth, we will

struggle with the ability to accurately build, evaluate and gauge binary analysis tools.

If researchers then use incorrect ground truth when using machine learning or other

automated analysis, the problem will just get worse.

We recommend a discussion among the community about the types of ground truth

metrics we need, the best ways to develop them, and a process for vetting and

sharing ground truth generation tools.

We do not believe custom tools, such as compilers modifications, as a good long

term solution to ground truth generation.

Use of DWARF debug data and the compiler generation symbol tables is a good

start, but their limits need to be fully explored.

©2022 by Jim Alves-Foss and Varsha Venugopal

CONCLUSION (3)

It would be really useful to have a fully vetted library of
binaries, complete with source code, full debug data and
database containing all of the ground truth data we are
interested in – for a wide variety of microprocessor
architectures, operating systems, compilers, and
programming languages.

