
Towards Better CFG Layouts
Jack Royer‡∗, Frédéric Tronel‡§, Yaëlle Vinçont†¶
‡CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA

†Univ Rennes, Inria, CNRS, IRISA
∗jack.royer@centralesupelec.fr

§frederic.tronel@centralesupelec.fr
¶yaelle.vincont@inria.fr

Abstract—Reverse engineering of software is used to analyze
the behavior of malicious programs, find vulnerabilities in soft-
ware, or design interoperability solutions. Although this activity
largely relies on dedicated software toolbox, it is still largely
manual. In order to facilitate these tasks, many tools provide
analysts with an interface to visualize Control Flow Graph
(CFG) of a function. Properly laying out the CFG is therefore
extremely important to facilitate manual reverse engineering.
However, CFGs are often laid out with general algorithms rather
than domain-specific ones. This leads to subpar graph layouts.
In this paper, we provide a comprehensive state-of-the-art for
CFG layout techniques. We propose a modified layout algorithm
that showcases the patterns analysts are looking for. Finally, we
compare layouts offered by popular binary analysis frameworks
with our own.

I. INTRODUCTION

A Control Flow Graph (CFG) is a visual representation of
the different execution paths of a program. These graphs are
widely used in binary analysis, with many binary analysis
programs [1], [7], [10], [13] allowing the user to interact with a
program’s CFG. Although domain-specific visualization tools
exist, such as CFGConf [4], many binary analysis tools still
use the generic layered graph drawing technique described by
Sugiyama [14] in 1985. Such is the case of rev.ng [12],
according to private communications with the authors.

Through this paper, we hope to shed some light on the
considerations taken into account when designing a CFG
layout and compare real world binary analysis programs. We
hope that this can lead to more transparency when it comes to
laying out CFGs and better layouts for all. To this end, we will
publish our sources, and highly encourage future discussions
on CFG layouts.

In this paper, we: 1) propose a domain specific algorithm for
CFG layouts based on Single Entry Single Exit (SESE) regions
[8]; 2) compare this new layout with the layouts offered
by various binary analysis tools; 3) discuss the challenges
faced when making such comparisons; 4) offer a new way
of evaluating CFG layout algorithms by using CFGs provided
by LLVM.

II. CONTEXT

Reverse engineering frameworks often allow analysts to
read assembly in a graph view. In this mode, instructions are
not displayed linearly but rather inside a 2D graph: the Control
Flow Graph.

This representation helps an analyst identify common pat-
terns in the assembly code such as loops, if statements,
etc. Figure 1 contains some of these patterns. Without this
representation, the analyst would have to manually untangle
the blocks based on the control flow instructions.

(a) if (b) if else

(c) loop (d) switch

Fig. 1: Common, visually identifiable, patterns in CFGs

It is therefore no surprise that this representation is ex-
tremely prominent in reverse engineering tools. As a matter of
fact, a similar graph view exists in major binary analysis tools
such as IDA [7], Ghidra [10], Binary Ninja [1], rev.ng [12]
and Iato [11].

A. Graph layout metrics

To maximize the knowledge gained from this representation,
it is important that the graph be laid out as clearly as possible.
However, clarity is not an objective criteria, and thus not easy
to measure. Instead, here are a couple of metrics which can
serve as indicators of the clarity of a graph’s layout:

• Edge crossings: fewer edge crossings facilitate the com-
prehension of relationships within the graph;

• Compactness: smaller, more compact graphs are often
preferable to larger ones with a lot of empty space;

• Edge straightness: simple straight edges are easier to
follow than crooked ones.

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23011
www.ndss-symposium.org

(a) Good layout (b) Layout with crossings

(c) Tall layout (d) Wobbly edges

Fig. 2: Imperfections in graph layout

Figure 2 illustrates the impacts of these metrics on the
clarity of a graph’s layout.

B. Additional CFG specific layout constraints

Laying out CFGs comes with an additional constraint: it
is important that the layout makes semantic sense. Using
graphviz’s circo engine to display the CFG of the pro-
gram shown in fig. 3a, one can obtain the graph in figure
fig. 3c. This layout scores highly with the previously described
metrics: the edges are short, there are no crossings, and the
graph is compact. However, it is very difficult to understand
what program this CFG represents. With a little reorganization,
as done in fig. 3b, we can see that this program contains a
do while style loop with an if statement in the loop.

a
do

if b then
c

end if
d

while e
f

(a) Example program (b) Corresponding CFG, manually laid out

(c) Same graph, different layout
(using graphviz circo)

digraph G {
c −> d
d −> e
e −> f
e −> b
b −> d
b −> c
a −> b

}

(d) Code for the graphviz
circo graph

Fig. 3: Impact of graph layout on the clarity of a CFG

III. RELATED WORK

According to private communications initiated by the au-
thors with several binary reverse engineering software main-
tainers, and work done by Sabin Devkota et al. [5], CFGs

are often laid out using layered graph drawing. Described in
Sugiyama et al.’s paper Methods for visual understanding of
hierarchical system structures [14], this algorithm creates the
structures analysts are looking for in CFGs.

A. Layered Graph Drawing

The Sugiyama algorithm breaks down graph layout into
multiple smaller problems.

1) Cycle removal: During this step, cycles are (temporarily)
removed from the graph, facilitating the next steps.

2) Layer assignment: During layer assignment, each node
is attributed a layer in order to mimic the execution order of
nodes. Some edges might span multiples layers, for example
if an edge connects a node from layer 0 to one from node 2.
Such edges are called long edges. These edges are split by
creating additional dummy nodes.

3) Node ordering: Once each node has been assigned a
layer, nodes of the same layer are permuted in order to reduce
the amount of edge crossings.

4) Coordinate assignment: The final step consists in trans-
forming layers and cycles into coordinates. Several criteria
can be chosen during this step, including attempting to align
nodes, or create straight long edges.

Unfortunately, this algorithm also comes with its drawbacks:
both in terms of performance and minimizing the amount of
edge crossings.

In 2005, Eiglesperger et al. [6] provided an improved
version of Sugiyama’s algorithm, bringing the worst case
time complexity from O(|V | ∗ |E| ∗ log(|E|)) to O((|V | +
|E|) ∗ log(|E|)). This was achieved by reducing the amount
of dummy nodes created and by allowing edges to span
multiple layers. Despite the significant speed-up provided by
this algorithm, to the best of our knowledge it is not used in
any CFG layout program.

B. CFG Layout Considerations

As discussed by Devkota et al. [5], general graph drawing
layouts do not properly represent CFGs. Moreover, they argue
that domain experts don’t allocate time to improve CFG
visualization and instead “spend hours following labyrinthine
lines” [5]. To resolve these issues, Devkota et al. experimented
with many aesthetic changes, such as collapsing functions,
collapsing loops, coloring back edges and coloring loops.
Instead of starting from scratch, Devkota et al. base themselves
on Dagre or dot [3]. They also never compare their work with
existing binary analysis visualization tools.

C. Two Terminal Layouts

After having written a first version of our tool, we came
across an approach very similar to our own by Andrey
Mikhailov et al. [9]. Their approach is based on separating a
CFG into Two Terminal regions, and then applying templates
for known regions. Although the article discusses Single Entry
Single Exit (SESE) regions (used by our approach and detailed
in the next section), they do not seem to use them nor do they
explain the advantages of Two Terminal regions. Last but not

2

Fig. 4: Splitting a graph into its SESE regions

least, we were unable to find their implementation nor any sort
of evaluation on real world binaries.

IV. CONTRIBUTION

We decided to split the layout problem into multiple smaller
layout problems using Single Entry Single Exit (SESE) re-
gions.

A. Single Entry Single Exit regions

SESE regions were described by Johnson et al. along with
an algorithm to identify these regions in linear time (with
regard to the amount of edges in the graph) [8].

We recall here a few notions before defining SESE regions.
In a CFG G, a node a is said to dominate another node b, if
every path starting from the entry node of G and going to b
must pass through a. Said differently, if an execution reaches
b, then it first went through a – and possibly through other
nodes in-between a and b. Similarly, a node b postdominates
a node a if b dominates a in the dual CFG G′ obtained by
reversing edges direction in G.

This notion can be extended to edges: an edge e dominates
an edge f in G if every path – starting from the entry point –
taking f must take e first.

An SESE region of a graph is a region with a single edge
entering the region and a single edge exiting this region.
Formally, Johnson et al. define it as an ordered edge pair (a, b)
of distinct control flow edges a and b such that:

• a dominates b.
• b postdominates a.
• Every cycle containing a also contains b and vice versa.
If (a, b) and (b, c) are SESE regions, then (a, c) is also an

SESE region. Instead of working with all SESE regions, we
only consider canonical SESE regions: these are the smallest
regions for which an edge is an entry or exit edge [8].

SESE regions are interesting as many standard control flow
patterns are contained within an SESE region: if statements,

loops etc. In general, each C construct that does not contain
gotos can be mapped to an SESE region [2]. For this reason,
SESE regions can be used both in program analysis – for
example to convert a program to Static Single Assignment form
[8] – and in decompilation – for example in SAILR’s region
identification [2].

B. Our method: divide-and-conquer based on SESE regions

As noted by Johnson et al., SESE regions can be used as
a base for a divide-and-conquer approach, since calculating
them can be done in linear time. We propose to apply this
divide-and-conquer approach to graph drawing.

We start by identifying canonical SESE regions in the graph
using the algorithm provided by Johnson et al.. We provide in
appendix A an annotated version of Johnson et al.’s algorithm,
which we hope can aid in its comprehension.

Then, for each canonical SESE region Ri in our graph G,
we create a new graph Gi. This graph Gi contains nodes for
each SESE region Rj in Ri as well as the nodes that do not
belong to a sub-region.

Figure 4 shows the rough outline of this step. In the figure,
we start with a graph containing 6 SESE regions, we will
therefore create 6 graphs. The first one, G0 contains the nodes
a and h that are in the SESE region R0, as well as two new
nodes r1 and r2 which represent respectively regions R1 and
R2.

Using Sugiyama’s layered graph drawing, we can now lay
out each of these graphs. We start with the smallest region
graphs – with Gj < Gi if Rj is an SESE region of Ri. This
way, when we get to Ri, we know the dimension for each
region node rj , and can lay GRi

out accordingly. For example,
we can only know the width of r2 after having laid out G2.

Once each graph has been laid out, we can draw each
region graph in its corresponding region node. Finally, we
can reconnect the edges to and from each region’s entry
and exit node. We have provided the source code for our

3

crude implementation on a GitHub repository: https://github.
com/triskellib/triskel. The implementation can get tedious,
notably when connecting edges between SESE regions. Our
C++ implementation, which includes the Sugiyama, and SESE
regions identification algorithms, is around 5k lines of code.

C. Advantages of using Single Entry Single Exit regions

Laying out the CFG using SESE regions guarantees that
these regions are properly highlighted. We therefore have a
guarantee that the layout will contain the patterns we are
looking for in CFGs. Another advantage of using SESE
regions is that, by splitting up the graph layout problem into
multiple smaller problems, we improve the quality of the
layout.

D. Limitations of using SESE regions

In real world binaries, not all regions of interest are SESE
regions. This can be due to optimizations or use of gotos. For
example the CFG in fig. 5 does not contain any large SESE
regions.

Fig. 5: No large SESE region is identified

1) Ghost nodes: We are currently working on rules to add
ghost nodes to help with SESE regions detection. So far, we
have determined that we need to add a ghost node to nodes
with multiple predecessors and successors, as in fig. 6.

(a) Before ghost node (b) With a ghost node

Fig. 6: Process of adding a ghost node

These simple modifications allowed us to identify 5% more
SESE regions. However, it introduced a lot of bugs in our
implementation, so ghost nodes were not used during the
evaluation phase.

It is important to keep the optimization passes linear to
avoid jeopardizing divide-and-conquer advantages.

2) Other patterns: Unfortunately, some patterns are not
identifiable even with ghost nodes: early returns, multiple
exit loops and the use of gotos can create patterns that do
not fit neatly within SESE regions. This does not invalidate
the current algorithm, however its efficiency is limited in these
situations. Fortunately, identifying gotos and early returns is
a large part of structural decompilation. We believe that this
method can be significantly improved by applying strategies
used in decompilation to graph visualization.

V. MODIFICATIONS TO EXISTING ALGORITHMS

During our research, we also experimented with small mod-
ifications to the existing Sugiyama layering algorithm, which
yielded major improvements. These might not be novel, as
Sugiyama has many implementations and variations, however
we have shown that these modifications specifically impact
CFG layouts.

A. Sliding nodes

If a node with a single entry and single exit edge is placed
before or after a long edge, we try ”sliding” the node along
this long edge (creating 2 long edges instead of 1) in order to
minimize the height of the graph. To do this:

• We start by identifying each potential sliding node – a
node with a single entry and exit edge, one of which is
a long edge ;

• In decreasing node height order, we try assigning the
nodes to each possible layer – between its parent and
its child, measuring the resulting graph height ;

• We pick the layer that minimizes the graph height.
Figure 7 illustrates this process and the resulting gain, with a
single sliding node.

Fig. 7: By sliding the red node, we are able to reduce the
graph height.

This can lead to a wider yet shorter graph, while also
creating shorter edges which are easier to understand.

In our LLVM benchmark for serde, we found that sliding
nodes could be performed 8.6% times, yielding graphs that
were up to 30% shorter, and 3% shorter on average. The
width increase was smaller, at 1% on average when sliding
was performed.

4

https://github.com/triskellib/triskel
https://github.com/triskellib/triskel

Triskel IDA Iato Binary Ninja angr Ghidra 1 Ghidra 2

2B90 1 6 8 18 30 5 ⋄ 2 ⋄
3110 2 1 2 18 23 4 ⋄ 4 ⋄
3220 0 1 5 15 29 3 ⋄ 0
3400 6 0 5 9 > 95 5 ⋄ 3 ⋄
3540 0 1 1 4 5 5 ⋄ 1 ⋄
3C40 4 4 14 35 26 21 ⋄ 11
3D60 0 0 0 1 1 0 0
3E20 0 3 3 4 5 3 ⋄ 0 ⋄
5AC0 4 1 6 11 27 11 ⋄ 1 ⋄
5DE0 17 11 16 77 68 20 ⋄ 14 ⋄

TABLE I: Number of intersections in CFG layouts on selected
md5sum functions
bold items indicate layouts with the fewest crossings, ⋄ indicate layouts
where an edge intersects a node

1 Using Ghidra’s default layout engine: Nested Code Layout.
2 Using Ghidra’s Hierarchical MinCross Network Simplex layout.

B. Increasing node mobility

During node ordering, we found that shuffling the array and
favoring permutations slightly reduced the number of intersec-
tions. This increased mobility led to 0.06 fewer intersections
per function on average, due to most graphs already having 0
intersections. However, if we consider only graphs which had
intersections, we have 0.1 fewer intersections.

VI. EVALUATION

As discussed previously, the ideal graph layout is the one
which maximizes clarity. However, this is a difficult metric
to measure. Instead, we mainly focused on the number of
intersections that were found when laying functions out.

We would like to highlight that our method provides some
additional semantic clarity by construction. Indeed, structures
analysts are after, such as ifs and whiles, will be grouped
by design. This is hard to illustrate in the general case,
however, fig. 19 contains a somewhat cherry-picked example
of this advantage.

A. Binaries

We compared our tool with other layout engines used
in binary analysis frameworks, the results are available in
section VI-A. This evaluation was done on functions1 from
the md5sum Linux utility. These functions were picked to
avoid switch statements and maximize the amount of basic
blocks.

The metric we picked for the quality of a layout is the num-
ber of crossings. As discussed in II-A, this metric is imperfect
but is easy to measure. We counted each intersection rather
than simply intersection areas. This means fig. 8 contains 44
intersections.

1we reference them by their address

Fig. 8: An extract of a CFG rendered with angr management
with 44 intersections (black points)

We compared the following tools:
• IDA Free (version 9.0.240925);
• Iato, the GUI of radare2 (version 5.9.9);
• Binary Ninja Free (version 426455-Stable);
• angr Management, the GUI of angr (version
9.2.136);

• Ghidra (version 11.2.1).
Since these tools aim to display CFGs, intended for human

analysts, they do not provide simple APIs to interact directly
with the layout. As a result, we had to manually count
intersections and nodes for each layout, which is why we had
to limit our analysis to 10 functions.

Another major limitation of this evaluation is that, although
the functions are the same, the graphs are not. In particular,
the number of nodes varies significantly depending on the
tool, as shown in appendix D. These fluctuations are caused
by numerous factors. For Binary Ninja, the graph contains
pseudocode rather than the actual assembly listing. In other
cases, differences can arise from the underlying binary analysis
engine detecting, or not, inlined function and long jumps.
These differences might have been even more pronounced had
we chosen functions with indirect jumps.

Overall, these results might not be fully representative of
each tool’s abilities, given that they were obtained on a very
small dataset, and the intersections were counted manually.
However, our tool seems almost on par with IDA, and is often
able to find the best layout out of all the tools in this evaluation.

It is also worth noting that Ghidra’s layout engine allows
edges to intersect with nodes. We did not count such crossings,

5

but they do significantly take away from the graph’s readabil-
ity. An example of this is available in appendix C.

For illustration purposes, we have provided each tool’s
layout of the function at address 3540 in appendix B.

B. LLVM

The first step to laying a CFG out is retrieving it, usually
by disassembling the binary code of the program. As a result,
differing layout results for different tools may be due to
differing disassemblers, rather than differences in their layout
engines. The problems of disassembly and CFG layouts are
orthogonal.

In order to compare layout engines fairly, we experimented
with displaying the LLVM Intermediate Representation (IR)
CFGs.

This offers several advantages:

• Access to the CFG through LLVM’s API;
• Access to structures, which are hard to disassemble but

important in layouts (e.g switch statements);
• Facilitates the creation of a benchmarking tool.

Furthermore, although the CFG will not be exactly the same
as with the machine code, it is very similar and often the
LLVM CFG is more complicated.

In order to properly benchmark our tool, we decided to run
it on functions from serde and curl. serde is a Rust
framework for serialization, its LLVM bytecode is 8.8 MiB.
curl is a C utility for interacting with networks, its LLVM
bytecode is 1.2 MiB.

There needs to be at least 3 blocks for intersections to occur,
so we left out functions with 1 or 2 basic blocks. We also
left out functions with more than 300 edges, for performance
reasons.

This left us with 4,860 functions, which took our layout
engine 11 min 10s to process. In these functions, we found
21,038 SESE regions. Impressively, 3,904 functions (80%)
were laid out without any intersections.

Figures 9 and 10 illustrate statistics on the number of nodes
– aka blocks – per function, and the number of intersections
per nodes. In our dataset, as expected, most functions have
few blocks and can be laid out without intersections, while
the larger functions have more intersections.

VII. LIMITATIONS

The main limitation of our tool, in its current form, is
the performance of our Sugiyama implementation. As shown
in our results, it works well as a proof-of-concept on small
functions, but can take upwards of a minute for functions with
more than 300 edges. This is most likely due to the naive way
we count intersections during the “node ordering” phase.

Another limitation is that our Sugiyama implementation
currently does not support looping edges – edges which
connect a node to itself.

Fig. 9: Distribution of basic blocks across functions

Fig. 10: Box plot of intersections across basic block count

VIII. FUTURE WORK

We hope to fix our performance issues by implementing
Eiglsperger’s improved version [6] of Sugiyama’s algorithm.

We also intend to continue our work on adding ghost nodes,
in order to detect more SESE regions.

IX. CONCLUSION

In this paper, we explained and evaluated a divide-and-
conquer based approach for CFG layout using SESE regions.
In our comparison with various binary analysis tools, we found
our tool to be comparable to IDA. We then offered a different
evaluation strategy, using LLVM IR CFGs. The C++ PoC of
our algorithm is open source, and we hope can be used as a
base for CFG layouts.

ACKNOWLEDGMENT

The authors would like to thank the teams behind rev.ng
and Binary Ninja for answering our inquiries and for providing
valuable advice. This work was funded by ”Direction Générale
de l’Armement” through CREACH LABS under the project
”Mermaid” and by the ”France 2030” government investment
plan managed by the French National Research Agency, under
the reference ”ANR-22-PECY-0005”.

6

REFERENCES

[1] Vector 35. Binary Ninja. https://binary.ninja/.
[2] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain,

Derron Miao, Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, and
Ruoyu Wang. Ahoy SAILR! there is no need to DREAM of c: A
Compiler-Aware structuring algorithm for binary decompilation. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 361–378,
Philadelphia, PA, Aug. 2024. USENIX Association.

[3] Sabin Devkota and Katherine E. Isaacs. Cfgexplorer: Designing a visual
control flow analytics system around basic program analysis operations.
Computer Graphics Forum, 37(3):453–464, 2018.

[4] Sabin Devkota, Matthew P. LeGendre, Adam J. Kunen, Pascal Aschwan-
den, and Kate Isaacs. Cfgconf: Supporting high level requirements for
visualizing control flow graphs. ArXiv, abs/2108.03047, 2021.

[5] Sabin Devkota, Matthew P. LeGendre, Adam J. Kunen, Pascal As-
chwanden, and Kate Isaacs. Domain-centered support for layout, tasks,
and specification for control flow graph visualization. 2022 Working
Conference on Software Visualization (VISSOFT), pages 40–50, 2021.

[6] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An
efficient implementation of sugiyama’s algorithm for layered graph
drawing. Journal of Graph Algorithms and Applications, 9(3):305–325,
Jan. 2005.

[7] HexRays. IDA. https://hex-rays.com/ida-pro.
[8] Richard Johnson, David Pearson, and Keshav Pingali. The program

structure tree: computing control regions in linear time. SIGPLAN Not.,
29(6):171–185, Jun. 1994.

[9] Andrey Mikhailov, Aleksey Hmelnov, Evgeny Cherkashin, and Igor
Bychkov. Control flow graph visualization in compiled software en-
gineering. In 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
pages 1313–1317, 2016.

[10] NSA. Ghidra. https://ghidra-sre.org/.
[11] radare. Iato. https://rada.re/n/iaito.html.
[12] rev.ng Labs. rev.ng. https://rev.ng/.
[13] SoftSec Lab, Korea Advanced Institute of Science & Technology. B2R2.

https://github.com/B2R2-org/B2R2.
[14] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for vi-

sual understanding of hierarchical system structures. IEEE Transactions
on Systems, Man, and Cybernetics, 11(2):109–125, 1981.

7

https://binary.ninja/
https://hex-rays.com/ida-pro
https://ghidra-sre.org/
https://rada.re/n/iaito.html
https://rev.ng/
https://github.com/B2R2-org/B2R2

APPENDIX A
ALGORITHMS

1: procedure CYCLEEQUIV(G)
2: for each node n in reverse depth-first order do
3: /* compute n.hi */
4: hi0 := min{t.dfsnum | (n, t) is a backedge};
5: hi1 := min{c.hi | c is a child of n}; ▷ child refers to DFS child in the undirected graph
6: nhi := min{hi0, hi1};
7: hichild := any child c of n having c.hi = hi1; ▷ hichild is a node not a set
8: hi2 := min{c.hi | c is a child of n different than hichild}; ▷ since hichild is a node, we can have hi1 = hi2
9:

10: /* compute bracketlist */
11: n.blist := create();
12: for each child c of n do ▷ child refers to DFS child in the undirected graph
13: n.blist := concat(c.blist, n.blist);
14: end for
15: for each capping backedge d from a descendent of n to n do ▷ descendent refers to DFS descendent in the

undirected graph
16: delete(n.blist, d);
17: end for
18: for each backedge b from a descendent of n to n do ▷ descendent refers to DFS descendent in the undirected

graph
19: delete(n.blist, b);
20: if b.class undefined then
21: b.class := new class();
22: end if
23: end for
24: for each backedge e from n to an ancestor of n do ▷ ancestor refers to DFS ancestor in the undirected graph
25: push(n.blist, e);
26: end for
27: if hi2 < hi0 then
28: /* create capping backedge */
29: d := (n, node[hi2]);
30: push(n.blist, d);
31: end if
32:
33: /* determine class for edge from parent(n) to n */
34: if n is not the root of the dfs tree then
35: let e be the tree edge from parent(n) to (n) ▷ parent refers to DFS parent in the undirected graph
36: b := top(n.blist)
37: if b.recentSize ̸= size(n.blist) then
38: b.recentSize := size(n.blist)
39: b.recentClass := new class()
40: end if
41: e.class = b.recentClass
42:
43: /* check for e, b equivalence */
44: if b.recentSize = 1 then
45: b.class := e.class;
46: end if
47: end if
48: end for
49: end procedure

Fig. 11: An annotated version of the cycle equivalence algorithm from Johnson et.al. [8]

8

APPENDIX B
GRAPHS

Fig. 12: md5sum’s function at 3540, laid out by our tool

9

Fig. 13: md5sum’s function at 3540, laid out by IDA

10

Fig. 14: md5sum’s function at 3540, laid out by Iato

Fig. 15: md5sum’s function at 3540, laid out by Binary Ninja

11

Fig. 16: md5sum’s function at 3540, laid out by angr2

2When zooming out, angr management removes the instructions from the blocks.

12

Fig. 17: md5sum’s function at 3540, laid out by Ghidra’s default layout engine: Nested Code Layout

13

Fig. 18: md5sum’s function at 3540, laid out by Ghidra’s Hierarchical MinCross Network Simplex layout engine

14

Fig. 19: Our layout of a fizzbuzz program compiled with no optimization (-O0) to clearly highlight the SESE regions.

15

APPENDIX C
EDGE CROSSING A NODE

Fig. 20: An example of an edge (the green one in the middle) crossing a node in Ghidra’s layout.

16

APPENDIX D
VARYING BASIC BLOCK COUNT

Our tool IDA Iato Binary Ninja angr Ghidra

2B90 22 22 21 28 22 22
3110 16 15 15 18 15 16
3220 18 17 17 15 17 17
3400 19 19 19 14 19 19
3540 8 8 8 8 8 8
3C40 23 22 22 37 23 22
3D60 14 5 5 5 5 5
3E20 10 10 10 10 10 10
5AC0 19 19 19 19 19 19
5DE0 38 38 38 52 38 38

TABLE II: Number of nodes in CFG layouts on selected md5sum functions

17

	Introduction
	Context
	Graph layout metrics
	Additional CFG specific layout constraints

	Related work
	Layered Graph Drawing
	Cycle removal
	Layer assignment
	Node ordering
	Coordinate assignment

	CFG Layout Considerations
	Two Terminal Layouts

	Contribution
	Single Entry Single Exit regions
	Our method: divide-and-conquer based on SESE regions
	Advantages of using Single Entry Single Exit regions
	Limitations of using SESE regions
	Ghost nodes
	Other patterns

	Modifications to existing algorithms
	Sliding nodes
	Increasing node mobility

	Evaluation
	Binaries
	LLVM

	Limitations
	Future Work
	Conclusion
	References
	Appendix A: Algorithms
	Appendix B: Graphs
	Appendix C: Edge crossing a node
	Appendix D: Varying basic block count

