
dAngr: Lifting Software Debugging to a
Symbolic Level

Dairo de Ruck
DistriNet, KU Leuven
3001 Leuven, Belgium

dairo.deruck@kuleuven.be

Jef Jacobs
DistriNet, KU Leuven
3001 Leuven, Belgium
jef.jacobs@kuleuven.be

Jorn Lapon
DistriNet, KU Leuven
3001 Leuven, Belgium
jorn.lapon@kuleuven.be

Vincent Naessens
DistriNet, KU Leuven
3001 Leuven, Belgium

vincent.naessens@kuleuven.be

Abstract—Debugging is a fundamental testing technique that
directly interacts with the functionality and current state of a
running program. It enables the debugger to step through a
program and meanwhile inspect registers and memory as part
of the program state. When debugging, variables and parameters
are assigned concrete values resulting in a specific program path
to be explored. This makes software testing time-consuming
and at the same time requiring substantial expertise. On the
other hand, symbolic debugging can explore multiple paths by
replacing concrete input values by symbolic ones and choose the
paths to be explored.
angr is a dynamic symbolic execution (DSE) platform that

can be programmed to symbolically execute a binary program
with selected, possibly symbolic inputs. The binary is lifted
to an intermediate, architecture independent representation,
preparatory to the symbolic execution.

This paper presents dAngr a tool that builds upon angr, a
symbolic execution platform, enabling the user to debug binaries
by means of GDB-like commands, and enhances this experience
by means of symbolic execution and binary analysis capabilities.
We also abstract the angr framework and symbolic execution by
utilizing these commands. The power of dAngr is demonstrated
on multiple examples including capture-the-flag challenges with
different levels of complexity.

I. INTRODUCTION

Symbolic execution is a program assessment technology
that is applied for various purposes. Formal verification [1],
software testing [2], smart contract assessment [3], [4], [5],
[6] and vulnerability detection [7], [8], [9] are just a few
examples. The technique explores the state space of a program
by executing the program with symbolic values instead of
concrete ones. In this paper, we focus on the software testing
and vulnerability detection capabilities of symbolic execution.
Symbolic execution can explore multiple program paths at
once, amongst others, paths that are hard to reach without
prior knowledge of concrete values that would reach such a
branch. In contrast to traditional testing mechanisms, it can
explore the state space of a program by means of symbolic
values. Moreover, the symbolic execution engine can generate

test cases that cover different parts of a program, and support
bug detection in programs.

This technology was introduced by King et al. [10] in the
1970s, and has been a research subject since. There are many
symbolic execution engines that have been developed over the
years, each with their own strengths and weaknesses, for both
static, concolic, and execution-generated engines. Together
with KLEE [2], S2E [11], and Manticore [6], angr [12]
is one of the most popular symbolic execution engines in the
field. Like Manticore and S2E, angr can execute x86 and
ARM binaries without access to the source code. Unlike the
others, angr can assess binaries compiled to more obscure
architectures, like MIPS and PowerPC. angr itself is more
an extensible and versatile framework than a tool. It requires
a customized Python program to analyze a specific binary.
The code that interacts with it, and how it interacts with the
binary, needs to be written by the user. This means that it
has no predefined objective, and thus the user must define the
analysis using the interfaces angr exposes.

This paper introduces “debugging with angr” (or dAngr).
dAngr is an open-source1 CLI tool that extends angr with
GDB-like debugging capabilities, allowing the user to assess
a binary with symbolic execution. This has several advantages
over traditional debugging techniques. First, it can deal with
symbolic values. This enables the user to explore the entire
program space, including hard to reach branches, and evaluate
the required inputs to take that specific path. This is very useful
to assess unintended program behavior. Second, the user can
define a custom entry state, starting the symbolic execution at
any point in the binary. Hence, testers can easily select the
parts of the program to be executed. In the context of large
or complex binaries, assessors can execute critical functions
directly and skip irrelevant parts. Finally, because angr lifts
the binary to VEX IR, the debugger can be applied across
multiple architectures.

This paper is structured as follows. In Section II we discuss
the broader work in the field of symbolic execution, binary
analysis tools and the combination thereof. Subsequently, we
provide an overview of design objectives in Section III. In
Section IV we discuss the implementation and features of

1GitHub project https://github.com/angr-debugging/dAngr
PyPi package https://pypi.org/project/dAngr/

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23014
www.ndss-symposium.org

https://github.com/angr-debugging/dAngr
https://pypi.org/project/dAngr/

dAngr more specifically, the features and necessary modi-
fications made to accommodate a debugger that satisfies those
objectives. Next, we evaluate dAngr on a set of example
binaries, highlighting the effectiveness of the tool and its
limitations, in Section V. Finally, we conclude the paper and
point to current, and future work (in progress), in Section VI
and VII.

II. BACKGROUND AND RELATED WORK

Symbolic execution has gained significant attention in
recent years due to its ability to explore program behavior
systematically, making it a valuable tool for software testing,
verification and security analysis. At its core, symbolic exe-
cution treats program inputs as symbolic variables rather than
concrete values. This enables exploration of multiple execution
paths and the detection of potential issues.

Symbolic execution can be broadly categorized into static
symbolic execution (SSE) and dynamic symbolic execution
(DSE).

SSE translates program fragments into formulas that repre-
sent the behavior of all possible paths within the fragment.
This approach is often used in program verification tools
such as ProVerif, Dafny and Verifast to formally
prove properties such as the absence of vulnerabilities or
concurrency issues [13], [14], [15].

DSE, on the other hand, generates path-specific constraints
during each step of the execution. This approach is particularly
well-suited for bug detection and test case generation. Tools
such as KLEE, SE2 and angr employ DSE to uncover
potential runtime issues like buffer overflows or division-by-
zero errors [2], [11], [12].

In DSE, symbolic and concrete execution can be interleaved.
This hybrid model, called concolic execution, is not always
necessary. For instance, angr is capable of operating in a
fully symbolic mode, enabling comprehensive path exploration
without concrete values.

In this paper, we focus on dynamic symbolic execution,
which forms the foundation of the symbolic execution engine
used in our debugger.

During Dynamic Symbolic Execution, program memory and
state are symbolically and concretely traced, enabling detailed
analysis of potential erroneous interactions. Previously
unseen variables (e.g., memory, registers, . . .) are initially
unconstrained, meaning they could embody any value
within the domain of the variable. The symbolic values are
propagated throughout the program, thereby accumulating
constraints with each operation. When it encounters a
branching condition, symbolic execution creates states for
each potential path. For instance, an if statement may result
in two states in which the branch condition is added to
the constraints of one state, and its negation to the other
state. By systematically solving constraints for unexplored
paths, DSE ensures thorough testing and the discovery
of hard-to-find issues. When a bug is detected, symbolic
constraints capturing the program state at the point of failure

can be solved to generate concrete inputs, facilitating efficient
bug reproduction and debugging.

As the symbolic engine explores the state space using
the program’s control flow, the engine essentially navigates
through the program’s Control Flow Graph (CFG). The choice
of the next state after each step heavily impacts exploration
performance. Breath-first-search (BFS) approaches prioritize
the oldest states to be handled first, while depth-first-search
(DFS) keeps working with the most recently generated states.
As a result, BFS has difficulties in memory usage as it may
result in a large amount of states kept in the engines memory,
while, on the other hand, DFS may get stuck in loops.

A. Debugging tools

Debugging allows the assessor to understand the inner work-
ings of the binary. Popular examples are the GNU Debugger
(GDB) [16], Microsoft Visual Studio and lldb [17]. Debugging
enables the user to gain an unusual insight into the binary,
going from program flow, to register workings, and memory
values at any point in the debugging session. Experienced
users are able to manipulate the program under analysis by
defining their own values into registers and memory regions,
testing the limits of the program.

We identify the following important features of command-
line debuggers:

• Breakpoints allow the user to interact with the program
during execution. Breakpoints can be set at specific lines
or functions in the source code or addresses in the
binary, with the possibility of adding a conditions. The
program execution pauses when it reaches the breakpoint
(matching the condition, when specified).

• Step Execution enables the user to execute the program
one line or instruction at a time, which helps in closely
monitoring the program’s behavior.

• Variable Inspection provides the ability to inspect the
values of variables at different points during program
execution.

• Stack Inspection allows the user to inspect the stack
at any point during the program execution, which helps
to understand what variables and calls are stored on the
stack.

• Backtrace displays the call stack at any point during
the program execution, which helps in understanding the
sequence of function calls that led to a particular state.

• Core dumps allow the user to analyze snapshots of a
program’s memory at the time of a crash.

• Thread Debugging provides tools to debug multi-
threaded applications, including setting breakpoints in
specific threads and inspecting thread-specific data.

GDB is extended with several plugins over time. Popular
plugins include gdb-peda [18] and gdb-gef [19]. They
visualize information, such as the stack, current instruction and
registers, including color coding and dereferencing addresses.
This results in a user-friendly and readily available display
of information, enabling reverse engineers to monitor the
current state of the program. In addition, GDB allows for

2

simple arithmetic operations and conversions, which are handy
for pointer arithmetic and offset calculations. We keep these
features in mind when designing dAngr, as we want to
provide the user with a similar experience like GDB. GDB,
by default, can only debug binaries intended for the same
architecture as the host machine. Debugging binaries for
different architectures requires utilizing emulation software
like QEMU, which increases the complexity of the debugging
process.

Symbolic debugging tools are relatively rare. Most existing
symbolic debugging tools are primarily designed to assist in
resolving issues encountered during software verification or
formal proofs. Notable examples include symbolic debugging
tools developed for the KEY-project (SED), Verifast and
Gillian [20], [15], [21]. While SED and Gillian could
be used during software development and testing, it is not
their primary goal, and defer greatly from standard debugging
approaches.

B. Reverse engineering tools

Reverse engineering tools are used to disassemble
and decompile binaries. Ghidra [22], IDA [23], and
BinNinja [24] are popular reverse engineering tools, provid-
ing a more readable representation of the binary. In addition,
they support debugging functionality, which makes these tools
very useful for reverse engineers. These tools can be extended
with plugins to further enhance their functionality.

Both Ghidra and IDA have been extended to inter-
face with angr. angryGhidra [25] is a plugin made for
Ghidra, which allows users to leverage angr’s functionality
and rely on symbolic execution to explore the binary. The
plugin exposes some angr functionalities, but lacks the ability
to debug a binary with symbolic execution, as the plugin
constrains most of angr’s functionalities by only presenting
the user the ability to execute snippets of code with concrete
arguments. Another example is angrdbg [26]. This is a pack-
age that synthesizes a state for angr based on a debugging
session in tools like GDB, IDA and Radare2. This is useful
to mimic the program state when invoking a specific part of
the binary, for example, skipping an unsupported function.
In contrast to our approach, it does not create an abstraction
layer over angr, nor does it provide an interface to create a
debugging experience that leverages the advantages symbolic
execution brings with it. Finally, angr-cli [27] is a Python
package that creates an interactive CLI environment, with
the possibility to get a visual representation in the style of
gdb-gef. Since it is a package, users are required to write
Python code to configure and define the angr project. The
package is also limited in the available angr features it
exposes.

To our knowledge, there is no tool that allows debugging
with symbolic execution in a GDB-like manner.

III. GENERAL OVERVIEW

While symbolic execution was initially introduced as a
technique for program testing [28], its primary applications

have evolved to include testcase generation, vulnerability
detection, program verification, and formal proofs. Software
debuggers on the other hand, are widely used, particularly
during the testing phase of software development.
dAngr aims to bridge these two paradigms by combining

the strengths of symbolic execution and debugging. We chose
angr as our symbolic execution engine over alternatives like
KLEE, Manticore and S2E for a few reasons:

1) angr is a comprehensive and extensible framework for
binary analysis,

2) it is architecture-independent and supports less common
architectures such as MIPS,

3) it can analyze binaries without requiring source code,
making it ideal for reverse engineering and security
research.

This section outlines the capabilities and features of angr
that dAngr relies upon, the modifications we made to facil-
itate the debugging, and the design considerations employed
to reduce the complexity, and improve user experience with
symbolic execution.

A. The angr Framework

Since the seminal paper of Shoshitaishvili et al. [12],
angr has undergone significant evolution. It now supports an
increasing amount of architectures, boasts overall stability and
efficiency, and includes advanced features such as automatic
ROP chain generation, and automated exploit generation.
angr combines several key components to deliver a pow-

erful symbolic execution framework.
• CLE loader: The CLE loader [29] initializes a project by

loading the binary and its libraries into an abstract mem-
ory model. This serves as the foundation for subsequent
analysis.

• VEX IR Lifting: The binary is lifted to VEX IR [30],
a RISC-like intermediate representation. This abstrac-
tion decouples the symbolic execution from architecture-
specific details, enabling cross-platform analyses. angr
includes the ability to lift binaries from a wide range of
architectures.

• Symbolic Execution Initialization: Users define symbolic
variables (bit-vectors) and assign them to memory loca-
tions or registers. An initial state is specified, serving as
the entry point for symbolic execution.

• Simulation Manager: This component manages the actual
symbolic execution by propagating symbols throughout
the program, maintaining access to program states pro-
duced during the execution. It facilitates in-depth analysis
of memory, basic blocks, and program behavior.

• Control Flow Graph (CFG) Generation: angr supports
CFG generation, enabling users to visualize program
structure and identify interesting locations for further
analysis or steer the exploration of the program..

While dynamic symbolic execution engines, such as KLEE,
may operate at the instruction level, angr executes by default
at the granularity of basic blocks. However, angr can be

3

configured to step with instruction-level precision, offering
greater flexibility for specific use cases. These foundational
features underpin the design and functionality of dAngr,
allowing it to combine the power of symbolic execution with
the interactivity of debugging.

B. dAngr’s Design Objectives

The primary goal of dAngr is to create a user-friendly in-
teractive debugger leveraging symbolic execution. The design
objectives of dAngr are as follows:

1) Interactive debugging: The debugger combines the key
capabilities of angr and GDB through a comprehensive
command line interface (CLI). It offers an interactive
experience, by providing instant responses to easily
understandable commands, enabling users to manipu-
late and control execution seamlessly. Users are not
required to redo time-consuming preparatory steps, such
as loading the project or generating a control flow graph,
ensuring an efficient debugging process.

2) Dynamic feedback: The tool offers dynamic feedback by
allowing users to inspect the program state at any point
during execution. Features such as breakpoints enable
users to halt execution and visualize or inspect program
elements, including variables, registers, the stack and
memory. This realtime feedback facilitates a deeper
understanding of the program behavior.

3) Flexibility and Customizability: The tool is designed
to be versatile and extendable, making it suitable for
various tasks such as reverse engineering, vulnerability
detection, and software debugging. Users can expand its
functionality using custom dAngr, Python, and Bash
scripts, enabling tailored workflows to meet specific
needs.

4) Minimal Knowledge Requirement: The debugger is user-
friendly and designed for users with limited symbolic
execution knowledge. It includes features such as ex-
ample challenges, a comprehensive help function, and
a straightforward interface for interacting with symbolic
states.

5) Ease of Experimentation: It prioritizes an intuitive en-
vironment for experimentation with the debugger and
the binary. This is particularly crucial in time-sensitive
contexts such as capture-the-flag (CTF) competitions,
where users need to interactively explore binaries and
understand how the symbolic execution engine operates
without facing unnecessary obstacles.

IV. IMPLEMENTATION AND DISCUSSION

We discuss the functionalities of dAngr, highlighting
how it differs from regular debugging and how symbolic
execution enhances the debugging process. We also discuss
the steps taken to increase the flexibility and user-friendliness
by introducing custom features and abstractions over the angr
framework.

A. dAngr as a Regular Debugger
dAngr integrates the core features of symbolic execution

with the main functionalities of a traditional debugger such
as GDB. By leveraging symbolic execution and the angr
framework, dAngr offers advantages over regular debugging,
which we explore by comparing standard debugging features
in a symbolic debugging context.

a) Breakpoints: In regular debuggers, breakpoints can be
set on several attributes such as function names, line number
and source file combinations, or on instruction addresses.
dAngr supports these methods via filter functions which

check specific conditions during symbolic execution. Users
can write their own filter functions or utilize pre-defined filter
functions (i.e., filters on the address of an instruction, on a
function name or on a line number). In addition, users can
specify a breakpoint for halting execution when a particular
string is printed to the standard output (stdout).

Conditional breakpoints in regular debuggers allow exe-
cution to halt based on a combination of a location and
a condition. dAngr is more flexible and supports logical
combinations of any type of filters, including custom defined
filter functions.

Breakpoints in dAngr have an advantage over regular
breakpoints, due to the manner symbolic execution handles
branch statements (e.g., if-statements). In regular debugging,
the debugger pauses the execution whenever a breakpoint
is hit. Breakpoints that reside inside a branch consequently
dependent on the branch-condition. For example, a breakpoint
in the true-branch, does not get hit whenever the condition
evaluates to false. In dAngr, breakpoints are independent of
these conditions. The symbolic execution engine can explore
both paths regardless of the condition. The engine simply adds
constraints to the paths based on the branch taken. As a result,
the breakpoint gets hit regardless of the required condition,
which allows the assessor to evaluate the required values to
reach past that breakpoint.

b) Step execution: Traditional debuggers allow stepping
through the program at the instruction level, as well as stepping
into, or over function calls. dAngr implements these function-
alities with a key difference: by default it steps per basic block,
reflecting angr’s default behavior. However, single stepping
is possible. Additionally, dAngr provides a run command,
which continues program execution until either a breakpoint
is hit or the program terminates.

c) Variable and stack inspection: Inspecting variables
and memory is crucial for understanding the execution behav-
ior. In angr, this involves accessing symbolic representations
of registers and memory (including the stack and the heap)
which are represented as bit-vectors. However, interpreting
these potentially symbolic bit-vectors may be challenging for
users unfamiliar with symbolic execution.

To simplify this, dAngr abstracts this complexity by pro-
viding intuitive commands for viewing the current state of
memory, registers, and variables. This eliminates the need for
manual interaction with angr in a Python shell or Python
debugging session, improving user experience.

4

d) Visualization: Output visualization helps assessors
follow program execution. dAngr captures and displays
changes to file streams (e.g., stdout), allowing users to monitor
output in real-time. Furthermore, angr only provides a full
dump of the stream so far. dAngr only returns the output
changes since last update (e.g., only the string printed at a
certain step in the execution).

To further enhance visualization, dAngr provides a state
overview inspired by tools like gdb-peda, gdb-gef and
angr-cli. The interface highlights the most common regis-
ters, the stack and current basic block, with features like:

• Color-coding memory to allow an easy identification of
the meaning of an address, mainly assigning colors to
addresses located on the stack, heap or code segment.

• Recursive dereferencing of pointers, displaying the value
they point to, which saves the assessor from having to
manually dereference a pointer.

• Indicating symbolic values in light green or gray whether
the value is initialized or not.

Displaying symbolic values, represented as constraint sets,
can be challenging as these constraints may quickly become
long and complex. dAngr addresses this by showing an
evaluation of the symbolic value (a random concrete value that
matches the constraints), alongside a truncated representation
of the constraints.

Figure 1 shows the most important registers and their values
at the top of the screen, followed by the stack and the current
basic block.

B. dAngr as a Symbolic Debugger

Leveraging symbolic execution gives dAngr unique capa-
bilities that go beyond traditional debuggers.

a) Selective execution: In traditional debugging, the user
must define the instruction pointer to start execution at a par-
ticular location in the binary. This often results in segmentation
faults if state initialization, including memory and registers, is
incorrect. dAngr allows to start from any point in the binary,
enabling assessors to focus on specific functions or regions.
Moreover, when defining the entry state, function arguments
can be passed as normal variables, with angr converting
these variables in correct memory and register configurations,
matching the calling convention derived by angr.

The ability of manually setting the initial state, is a feature
that is invaluable for debugging large binaries or particularly
interesting but hard to understand sections in the software.

b) Hooks and SimProcedures: Hooks in dAngr replace
specific code regions with custom implementations, enabling
users to: skip those regions (e.g., in the case of anti-debugging
measures), replace unimplemented functions (e.g., interactions
with hardware) or optimize symbolic execution by avoiding
unnecessary complexity.

While regular debuggers can patch binaries, hooks offer a
more flexible and temporary approach, which is particularly
useful for symbolic debugging workflows.

c) Symbolic variables and constraints: Symbolic execu-
tion’s ability to use symbolic variables instead of concrete ones
allows for powerful analysis.

Symbolic variables accumulate constraints during execution,
enabling the exploration of multiple paths. They facilitate tar-
geted analysis by allowing users to add additional constraints
(e.g., limiting a value’s range). Symbolic variables are also
useful to synthesize the required inputs to reach specific states,
such as those containing vulnerabilities.

d) Platform independence: By lifting the binary to an
intermediate representation in VEX IR, dAngr operates in-
dependently of the binary’s architecture. This eliminates the
need for platform-specific emulators like QEMU and simplifies
debugging of binaries originating from embedded devices or
uncommon architectures.

C. Customizability

dAngr interfaces with Bash and Python to increase flexi-
bility.

• dAngr scripts: Users can write custom functions, that
can be used like built-in dAngr commands. In combi-
nation with control structures like loops and if-checks,
complex scripts can be written to automatically solve cer-
tain tasks, exploiting the capabilities provided by angr.
This is achieved through a formally defined grammar for
commands and control structures, supported by a lexer
that validates inputs and provides immediate feedback to
users about any violations or inconsistencies with that
grammar.

• Python Interface: Users can call custom Python com-
mands (prefixed with “!”), to perform specific compu-
tations not available through dAngr’s commands. For
example, applying regular expressions to variables in
dAngr.

• Bash Integration: Users can execute bash commands
(prefixed with “$”), for instance, to test discovered ex-
ploits.

These features allow users to automate complex workflows,
extending dAngr’s capabilities where needed.

D. Abstraction from angr

While angr offers extensive functionality, its complexity
can overwhelm non-experts in the field of symbolic execution.
dAngr abstracts common angr features into a simplified
GDB-like command structure. Command suggestion and the
help command provides an accessible list of available com-
mands, their syntax and explanations.

At the time of writing, angr implements about 20 different
path exploration techniques, with breadth-first-search as is
default. They generally explore the state space in a way that
deviates from regular program execution, making debugging
less intuitive. Therefor, dAngr implements its own state
exploration based on depth-first-search to better align with
regular execution flows.

5

Legend: | Stack | Heap | Code | Instruction | Symbolic |

[----------------------------- Registers -----------------------------]

rax: 0x1f

rbx: 0x0

rcx: <0x7d> (<BV64 0x0 .. (if (if strlen_2_64 <= 0xff...)

rdx: <0x6b> (<BV64 0x0 .. (if (if strlen_2_64 <= 0xff...)

rsi: <0x34> (<BV64 0x0 .. (if (if strlen_2_64 <= 0xff...)

rdi: 0x403518

rbp: 0x0

rsp: 0x7fffffffffeff30 --> <BV64 mem_7fffffffffeff30_3_64{UNINITIALIZED}>

rip: 0x40083e

r8: <0x72> (<BV64 0x0 .. (if (if strlen_2_64 <= 0xff...)

r9: <BV64 reg_r9_4_64{UNINITIALIZED}>

r10: <BV64 reg_r10_5_64{UNINITIALIZED}>

r11: <BV64 reg_r11_6_64{UNINITIALIZED}>

r12: 0x0

r13: 0x0

r14: 0x0

r15: 0x0

[------------------------------- Stack -------------------------------]

0000| 0x7fffffffffeff30 --> <BV64 mem_7fffffffffeff30_3_64{UNINITIALIZED}> <- sp

0008| 0x7fffffffffeff38 --> 0x400729

0016| 0x7fffffffffeff40 --> <BV64 mem_7fffffffffeff40_7_64{UNINITIALIZED}>

0024| 0x7fffffffffeff48 --> 0x2

0032| 0x7fffffffffeff50 --> 0x7fffffffffeff90 --> <0x46544300656c6966> (<BV64 Reverse(arg1_0_536[535:512]) .. 0x...)

0040| 0x7fffffffffeff58 --> 0x7fffffffffeff95 --> <0x656854307b465443> (<BV64 Reverse(arg1_0_536[535:472])>)

0048| 0x7fffffffffeff60 --> 0x0

0056| 0x7fffffffffeff68 --> 0x0

[---------------------------- Basic Block ----------------------------]

0x40083e: xor edi, edi

0x400840: call 0x400570

Figure 1: State visualization at the end of the solution script for the google2016 unbreakable challenge [31]

V. EVALUATION

To validate the effectiveness of dAngr, we tested it
on a set of CTF challenges, 16 challenges from the angr
documentation [32] and 17 from the Oregon angr CTF [33].
The Oregon CTF challenges are designed to highlight specific
features of angr, whereas the challenges in the angr doc-
umentation are sourced from various CTFs and demonstrate
the vast capabilities of angr, ranging from introductory to
intermediate and complex challenges. Most of these examples
demonstrate the effectiveness of symbolic execution in a
reverse engineering scenario. However, there are examples that
showcase the capabilities for vulnerability detection and even
automated vulnerability exploitation.

These challenges illustrate that dAngr is capable to solve
many challenges that are solvable with angr, lowering the ini-
tial hurdle that symbolic execution provides. This is achieved
by employing the aforementioned higher level of abstraction,
enabling new users to grasp the nuances of symbolic execution
in an interactive GDB-like manner.

We highlight a selective execution example and two CTF-
challenges that demonstrate the capabilities and the simplicity
of using dAngr in both reverse engineering and exploitation
scenarios. We use the solutions from the angr documentation
to enable a direct comparison between the solutions. The

challenges and respective dAngr solutions are available in
the online repository.

A. AES Example
dAngr was created when encountering a (then suspected)

vulnerability in real world firmware, during a reverse engineer-
ing study [34]. The firmware contained an insecure AES key
generation vulnerability, which was used to encrypt privacy-
critical communication. In particular, the key was derived from
two variables which lacked sufficient randomness to be secure.
While static tools like Ghidra provided valuable insights,
decompilation was incomplete which left the code hard to
interpret. Since this was a MIPS based binary, debugging the
binary with traditional methods like GDB was complicated in
the absence of a MIPS environment.

Using a combination of binary analysis and reverse engi-
neering, the value of one of the two variables, and the structure
of the other was discovered. Leveraging the selective execution
in dAngr, a solution is easily found. For ethical reasons, the
repository only includes a binary that resembles the binary
from the case study. Listing 1 shows the solution for that
binary.

The binary includes an “obfuscated” key generation
mechanism of which the inputs are known (derived from the
device configuration).

6

(dAngr)> load "aes_example"
Info: Binary 'aes_example' loaded.

(dAngr)> unconstrained_fill
Info: Fill with zeros.

(dAngr)> set_function_prototype "char* obfuscate(
char* , char*)"↪→

Info: Function signature set for obfuscate
(dAngr)> set_function_call

"obfuscate('VerifySafeSecret','12345678910')"↪→

Info: Function setup at 0x4012ff with
memory:["Value 'VerifySafeSecret' stored at
0x1000", "Value '12345678910' stored at
0x2000"]

↪→

↪→

↪→

(dAngr)> run
Info: Terminated.

(dAngr)> to_str (get_return_value)
3221225472

Listing 1: Solution of the AES real world example

After loading and initializing the binary, we set up our
selective execution by defining a function prototype for the
“obfuscate” function, which can be invoked by dAngr.
Next, we harness that prototype to execute the function call,
which is located somewhere in the binary. This invocation
is conducted concretely, with the two variables that were
identified earlier. That function call invokes the execution of
the function, using the binary implementation itself, which in
turn results in our key being returned.

While the example shows how a user can define a function
prototype and call it with selected, concrete arguments, it is
also possible to create an entry state, using the function address
and the arguments, without defining the function prototype.

B. Fairlight

Next, we illustrate the capabilities of dAngr in a reverse
engineering context, with Fairlight, a reverse engineering
CTF-challenge that requires a valid key as a command-line
argument. The binary employs various checks to validate the
input. After these checks, the challenge provides feedback
about the correctness of the key. Traditionally, this would be
solved with a debugger by resolving these checks or writing
Python code that leverages angr to find a state that reached
the desired path.

We provide two listings. Listing 3 displays a solution in
angr and Listing 2 shows a snippet of the terminal with the
commands and their feedback using dAngr.

Firstly, we present the dAngr solution (Listing 2), fol-
lowed with highlighted differences with the angr solution
(Listing 3).

The first three lines initialize the symbolic execution engine,
by loading the binary and creating a 14 byte symbolic bit-
vector that represents the input key. Once that is done, we
create an entry state, providing the name of the binary and the
bit-vector as arguments. dAngr provides feedback after each
command, i.e., the lines starting with “Info:”. Next, we set a
breakpoint on the basic block that jumps to the success mes-
sage. This is done following the command “breakpoint”,
as seen in Listing 2.

(dAngr)> load 'securityfest_fairlight'
Info: Binary 'securityfest_fairlight' loaded.

(dAngr)> add_symbol argv1 0xe
Info: Symbol argv1 created.
BV with size:112

(dAngr)> set_entry_state args=["./fairlight",
&sym.argv1]↪→

Info: Execution will start at specified entry
point.↪→

(dAngr)> breakpoint (by_address 0x4018f7)
Info: Address Filter: 0x4018f7 added to

breakpoints.↪→

(dAngr)> exclude (by_address 0x4018f9)
Info: Address Filter: 0x4018f9 added to

exclusions.↪→

(dAngr)> run
Info: Break: Address Filter: 0x4018f7.

(dAngr)> evaluate &sym.argv1
b'4ngrman4gem3nt'

Listing 2: Fairlight solution in dAngr

proj = angr.Project('securityfest_fairlight',
load_options={"auto_load_libs": False})↪→

argv1 = claripy.BVS("argv1", 0xe * 8)
initial_state =

proj.factory.entry_state(args=["./fairlight",
argv1])

↪→

↪→

sm = proj.factory.simulation_manager(initial_state)

sm.explore(find=0x4018f7, avoid=0x4018f9)

found = sm.found[0]
found.solver.eval(argv1, cast_to=bytes)

Listing 3: Fairlight solution with angr [35]

In this example, we break using an address filter to maintain
similarity with the solution in angr and exclude the alterna-
tive path that leads to the failure message. Finally, symbolic
execution is invoked until it reaches the breakpoint. Once the
breakpoint is triggered, the execution halts and the user can
inspect the current state. In this case, we evaluate the symbolic
variable “argv1”.

The angr solution is very similar to the dAngr solution,
each being seven commands. However, there are some dif-
ferences. The first difference is that the angr solution is a
Python program, as opposed to the interactive command-line
nature of the dAngr solution. Another difference lays in the
creation of symbolic variables. angr expects the length in
bits, whereas dAngr requires the length in bytes. The last
difference is the inspection of the state. In angr the user has
to review the state from the found stash and evaluates the
symbolic variable, whereas in dAngr the user evaluates the
symbolic variable related to the current state directly.

Listings 4 and 5 show an alternative method to solve
the Fairlight challenge. Instead of setting a breakpoint that
searches for an address, the breakpoint filters on a string
printed to the standard output stream.

In dAngr this is achieved by setting a breakpoint based
on a stream and providing the string that needs to be found.
In angr, a user has to create a function that inspects the

7

...
(dAngr)> breakpoint (by_stream "ACCESS GRANTED")

Info: Standard Stream Filter: 1 added to
breakpoints.↪→

(dAngr)> exclude (by_stream "ACCESS DENIED")
Info: Standard Stream Filter: 1 added to

exclusions.↪→

(dAngr)> run
> OK - ACCESS GRANTED: CODE{4ngrman4gem3nt}

Listing 4: Fairlight alternative solution in dAngr

...
def find(state):

return b"ACCESS GRANTED" in
state.posix.dumps(1)↪→

def exclude(state):
return b"ACCESS DENIED" in state.posix.dumps(1)

sm.explore(find=find, avoid=exclude)

Listing 5: Fairlight alternative solution with angr

state and checks for the string in the standard output stream
(stdout). The latter is less intuitive and may result in errors,
as the dump is the full stream output so far for the followed
path. In the former case, it is as easy as breaking based on
an address. Finally, dAngr prints the stdout to the console,
containing the key. In angr the user has to write additional
code to inspect and print the binary’s standard output.

C. Simple AEG

We showcase an example where dAngr can be leveraged
in an exploitation scenario, using the AEG challenge from
the 2016 insomnihack CTF [36]. The dAngr solution can
be found in Listing 6. To solve this challenge, a Automated
Exploit Generation script (AEG-script) is written. The first
part of the script searches the required input to gain control
over the program counter (PC), and the second part leverages
that input, to inject a payload and point the PC to the injected
shellcode.

In the previous example, we displayed the dAngr solution
by providing the commands with their feedback, in this exam-
ple we show a dAngr script that solves the challenge. dAngr
can execute dAngr “scripts”. This is done by providing a
path to a text file or Markdown script, as an argument to the
dAngr command. The engine parses the markdown file, and
sends the commands in the markdown code segments into the
CLI. Alternatively, a user can paste the code segments into the
prompt and dAngr handles the code at once.

The solution to this challenge is more intricate than the
previous example. The binary contains a buffer overflow
vulnerability. The angr framework automatically finds the
vulnerability by saving unconstrained states. By default angr
discards unconstrained states. The user has to instruct the
simulation manager to keep the unconstrained states. Once
a state reaches a buffer overflow angr’s simulation manager
moves that state to the unconstrained stash. In dAngr, the
“keep_unconstrained” command enables this feature. In

load 'demo_bin'
keep_unconstrained
set_entry_state

add_options=['REVERSE_MEMORY_NAME_MAP',
'TRACK_ACTION_HISTORY']

↪→

↪→

verbose_step False

...

def fully_symbolic(state):
fully_sym = True
for s in (chop_symbol ®.pc):

if not (is_symbolic s):
fully_sym = False

return fully_sym

exploitable_state_index = -1
while exploitable_state_index < 0:

step
unconst = len (list_states unconstrained)
for i in range(unconst):

select_state i unconstrained
if fully_symbolic &state:

exploitable_state_index = i
break

else:
move_state_to_stash i 'unconstrained'

'pruned'↪→

shell_code =
0x6a68682f2f2f73682f62696e89e331c96a0b5899cd80↪→

control_buffer_addr = get_controlled_buffer_addr 22

if satisfiable ®.pc == control_buffer_addr &&
&mem[control_buffer_addr->22] == shell_code &&
control_buffer_addr > 0:

↪→

↪→

add_constraint &mem[control_buffer_addr->22] ==
shell_code↪→

add_constraint ®.pc == control_buffer_addr

to_hex (dump_stdstream stdin)

print "Required input to spawn a /bin/bash
shell: "↪→

println (dump_stdstream stdin)
else:

println "Could not place the shellcode in the
buffer and set the PC to the buffer address"↪→

Listing 6: AEG solution in dAngr

the entry state, extra options are set that allow us to get the
address of our input.

Next, we step through the program and search for an
unconstrained state in which the program counter becomes
fully symbolic.

Finally, to build an exploit, two supplementary constraints
are added to the input. One that constrains our program counter
to point to the input buffer, and the second to set our input
buffer to contain our shellcode. Once the constraints are added,
we can display the exploit string.

There are minor differences between the solution using
angr [37], and the one leveraging dAngr. One of the notable
differences is the way the dAngr solution handles states.

8

dAngr uses a single current state on which symbols, memory,
registers, etc. are manipulated. Therefor, the unconstrained
state is first selected to become the current state. This example
shows that dAngr is capable of solving a complex challenges,
even with the limitation in the capabilities of dAngr compared
to angr.

The solutions to the other challenges can be found in our
online repository2.

D. Limitations

dAngr still has a number of limitations.
a) The angr framework: Most library calls have Sim-

Procedures in the angr framework. But, sometimes the user
has to write their own SimProcedures. This can be perfectly
achieved in dAngr but may have a negative impact on the
performance due to overhead from the additional dAngr code.

b) The design and implementation of dAngr: Another
limitation inherent to the building blocks of dAngr is path
explosion. Path explosion always provides a challenge for
symbolic execution. dAngr is no exception to this, in angr
resource consumption can be reduced by writing custom
exploration techniques leveraging smart stash management.
These are currently not available in dAngr.

Likewise, the DFS approach of dAngr can be problematic.
For instance, in the case of large or infinite loops, too many
states may be kept in memory leading to a crash due to
resource hogging or even exhaustion.

The custom stepping approach checks for updates in the
output in every step. This creates additional overhead, resulting
in a slower performance compared to angr.

c) The abstractions made: A problem resulting from the
abstractions, is limitation on functionalities and capabilities of
angr exposed in dAngr. angr has many different features
and functionalities, and new ones are still being developed.
Providing access to each and every one of them, is a chal-
lenging and difficult task. The interface with Python can be
used to overcome some of these limitations. However, the
current interface does not expose the simulation manager or
the current angr project in use, preventing direct invocation
of these angr features through the Python interface.

d) Symbolic execution: Some problems are inherent to
symbolic execution. These are difficult problems to solve in
dAngr. Currently, symbolic execution provides no ability
to execute different threads and simulate race conditions.
Those bugs cannot be found using our debugger. Symbolic
execution also struggles with cryptographic functions, due to
their randomness. This limits the use cases where our tool can
be applied.

VI. WORK IN PROGRESS

In this paper, we demonstrate that dAngr leverages sym-
bolic execution to offer powerful debugging capabilities that
are hard or even impossible to achieve with traditional de-
buggers. However, dAngr is still work in progress, and

2GitHub project: https://github.com/angr-debugging/dAngr/tree/main/
examples

several enhancements could be made to further improve its
usability and efficiency. The following are (potential) areas of
development.

a) Exploration Techniques: The fixed DFS approach
limits the tool in how the binary can be explored. While
it aligns well with normal program execution, it limits the
tool’s speed and scalability. To mitigate resource exhaustion,
such as excessive memory or time consumption, dAngr could
support the selection of alternative exploration techniques or
the definition of custom strategies:

• Targeted Exploration: Supporting targeted exploration
techniques [38], which prioritize the shortest paths to a
target location, could guide the execution more efficiently
toward breakpoints or specific program states.

• State Pruning and Merging: Incorporating techniques for
pruning uninteresting states [39], [40], [41], [7] or merg-
ing regions of the binary that do not impact the symbolic
store [42] could improve performance. Unfortunately,
these techniques often produce more complex constraints,
which could increase the computational burden on the
constraint solver.
b) IDE Integration: While the GDB-style command line

interface is comprehensible, debugging support in an IDE
would make the tool even more appealing for both beginners
and advanced users.

c) Dissemination and Education: Several hands-on ses-
sions are planned in which students of both bachelor and
master level will be educated in leveraging the dAngr sym-
bolic debugger on several binaries and CTFs. This will serve
as an introduction to advanced program analysis, reverse
engineering, and the world of CTFs. This allows us to improve
upon the user-friendliness of the tool, by aggregating and
implementing their feedback.

VII. CONCLUSION

With dAngr, we set out to make the powerful capabilities
of symbolic execution accessible to non-experts in vulner-
ability detection, reverse engineering, and debugging, while
maintaining the intuitiveness and functionality of GDB-like
debuggers. We achieved these goals by abstracting selected
angr functionalities, and integrating them into comprehen-
sive, user-friendly commands. Through an interactive inter-
face, we reduced the reliance of Python scripting for utilizing
angr, eliminating tedious and time-consuming steps such as
reloading the binary for every execution attempt.

To enhance user interaction, we introduced features like
state visualization, which provides an intuitive overview of
memory and register states during debugging. Additionally,
we implemented a DFS execution strategy, which mirrors
regular program execution, making symbolic execution more
comprehensible.

For flexibility, dAngr incorporates interfaces with both
bash and Python. This allows users to extend its functionality
for specific use-cases.

The support for custom functions and control flow structures
allows dAngr to be used in a scripting-like manner, automat-

9

https://github.com/angr-debugging/dAngr/tree/main/examples
https://github.com/angr-debugging/dAngr/tree/main/examples

ing parts of the debugging and vulnerability detection process.
Furthermore, a command grammar checks for syntax errors,
providing immediate feedback to the users and improving ease
of use.

The combination of these features results in a versatile
tool capable of both debugging and automating (parts of) the
vulnerability detection and exploitation pipeline. We validated
dAngr by solving 35 CTF-challenges and exploiting one real
world vulnerability, demonstrating its usability, effectiveness
and reduced expertise requirements. These example challenges
also serve as learning material for new users, showcasing the
potential of symbolic execution in debugging contexts.

REFERENCES

[1] R. B. Dannenberg and G. W. Ernst, “Formal program verification using
symbolic execution,” IEEE Transactions on Software Engineering, no. 1,
pp. 43–52, 1982.

[2] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Association,
2008, p. 209–224.

[3] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, 2019, pp. 531–548.

[4] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[5] S. So, S. Hong, and H. Oh, “SmarTest: Effectively hunting vulnerable
transaction sequences in smart contracts through language Model-
Guided symbolic execution,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1361–1378. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/so

[6] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-
friendly symbolic execution framework for binaries and smart
contracts,” CoRR, vol. abs/1907.03890, 2019. [Online]. Available:
http://arxiv.org/abs/1907.03890

[7] J. Vadayath et al., “Arbiter: Bridging the static and dynamic divide
in vulnerability discovery on binary programs,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 413–430. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/vadayath

[8] C. Yagemann, M. Pruett, S. P. Chung, K. Bittick, B. Saltaformaggio,
and W. Lee, “ARCUS: Symbolic root cause analysis of exploits
in production systems,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1989–2006. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/yagemann

[9] C. Yagemann, S. P. Chung, B. Saltaformaggio, and W. Lee,
“Automated Bug Hunting With Data-Driven Symbolic Root Cause
Analysis,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. Virtual Event Republic
of Korea: ACM, Nov. 2021, pp. 320–336. [Online]. Available:
https://dl.acm.org/doi/10.1145/3460120.3485363

[10] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Transactions on software engineering, no. 3, pp. 215–
222, 1976.

[11] V. Chipounov, V. Kuznetsov, and G. Candea, “The s2e platform:
Design, implementation, and applications,” ACM Trans. Comput.
Syst., vol. 30, no. 1, Feb. 2012. [Online]. Available: https:
//doi.org/10.1145/2110356.2110358

[12] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, 2016.

[13] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends® in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, 2016. [Online]. Available:
http://dx.doi.org/10.1561/3300000004

[14] K. R. M. Leino, “Accessible Software Verification with Dafny,” IEEE
Software, vol. 34, no. 6, pp. 94–97, Nov. 2017, conference Name:
IEEE Software. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8106874

[15] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens, “Verifast: A powerful, sound, predictable, fast verifier for
c and java,” in NASA Formal Methods, M. Bobaru, K. Havelund, G. J.
Holzmann, and R. Joshi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 41–55.

[16] GNU-Project, “GDB: The GNU Project Debugger.” [Online]. Available:
https://www.sourceware.org/gdb/

[17] LLVM-Project, “LLDB.” [Online]. Available: https://lldb.llvm.org/

10

https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
http://arxiv.org/abs/1907.03890
https://www.usenix.org/conference/usenixsecurity22/presentation/ vadayath
https://www.usenix.org/conference/usenixsecurity22/presentation/ vadayath
https://www.usenix.org/conference/usenixsecurity21/presentation/ yagemann
https://www.usenix.org/conference/usenixsecurity21/presentation/ yagemann
https://dl.acm.org/doi/10.1145/3460120.3485363
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
http://dx.doi.org/10.1561/3300000004
https://ieeexplore.ieee.org/abstract/document/8106874
https://ieeexplore.ieee.org/abstract/document/8106874
https://www.sourceware.org/gdb/
https://lldb.llvm.org/

[18] PEDA-Team, “Peda github repository,” https://github.com/longld/peda,
2012.

[19] GEF-Team, “Gef github repository,” https://github.com/hugsy/gef/, 2015.
[20] M. Hentschel, R. Bubel, and R. Hähnle, “The Symbolic Execution

Debugger (SED): a platform for interactive symbolic execution,
debugging, verification and more,” International Journal on Software
Tools for Technology Transfer, vol. 21, no. 5, pp. 485–513, Oct. 2019.
[Online]. Available: https://doi.org/10.1007/s10009-018-0490-9

[21] N. Karmios, S.-E. Ayoun, and P. Gardner, “Symbolic Debugging with
Gillian,” in Proceedings of the 1st ACM International Workshop on
Future Debugging Techniques. Seattle WA USA: ACM, Jul. 2023,
pp. 1–2. [Online]. Available: https://dl.acm.org/doi/10.1145/3605155.
3605861

[22] “Ghidra.” [Online]. Available: https://ghidra-sre.org/
[23] “IDA Pro.” [Online]. Available: https://hex-rays.com/ida-pro
[24] “Binary Ninja.” [Online]. Available: https://binary.ninja/
[25] Nalen98, “Angryghidra github repository,” https://github.com/Nalen98/

AngryGhidra, 2020.
[26] A. Fioraldi, “Symbolic execution and debugging synchronization,” 2020.
[27] F. Magin, “angr-cli github repository,” https://github.com/fmagin/

angr-cli, 2018.
[28] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
https://dl.acm.org/doi/10.1145/360248.360252

[29] Angr-Team, “angr/cle,” Jan. 2025, original-date: 2015-05-27T09:53:48Z.
[Online]. Available: https://github.com/angr/cle

[30] “smparkes/valgrind-vex.” [Online]. Available: https://github.com/
smparkes/valgrind-vex/tree/master

[31] Google, “Google ctf,” https://github.com/ctfs/
write-ups-2016/tree/master/google-ctf-2016/reverse/
unbreakable-enterprise-product-activation-150, 2016.

[32] Angr-Team, “angr/angr-examples: Example scripts using angr.” [Online].
Available: https://github.com/angr/angr-examples

[33] J. Springer, “jakespringer/angr ctf,” Jan. 2025, original-date: 2017-
07-05T20:50:19Z. [Online]. Available: https://github.com/jakespringer/
angr ctf

[34] V. Goeman, D. de Ruck, T. Cordemans, J. Lapon, and V. Naessens,
“Reverse engineering the eufy ecosystem: A deep dive into security
vulnerabilities and proprietary protocols,” in Proceedings of the WOOT
Conference on Offensive Technologies (WOOT ’24). WOOT Conference
on Offensive Technologies, Aug 2024.

[35] chuckleberryfinn, “Fairlight solution,” https://github.com/angr/
angr-examples/blob/master/examples/securityfest fairlight/solve.py,
2016.

[36] Insomnihack-Team, “Insomnihack/Insomnihack-2016,” Aug. 2024,
original-date: 2016-03-24T10:22:28Z. [Online]. Available: https:
//github.com/Insomnihack/Insomnihack-2016

[37] Angr-Team, “Angr-examples github repository,” https://github.com/angr/
angr-examples/blob/master/examples/insomnihack aeg/solve.py, 2024.

[38] K.-K. Ma, “Directed Symbolic Execution,” in Static Analysis. Springer
Berlin Heidelberg, 2011, pp. 95–111, series Title: Lecture Notes in
Computer Science.

[39] D. A. Ramos and D. Engler, “Under-Constrained symbolic execution:
Correctness checking for real code,” in 24th USENIX Security Sympo-
sium (USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 49–64. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/ramos

[40] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send Hardest Problems
My Way: Probabilistic Path Prioritization for Hybrid Fuzzing,”
in Proceedings 2019 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2019. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/2019/
02/ndss2019 04A-5 Zhao paper.pdf

[41] C. Paduraru, M. Paduraru, and A. Stefanescu, “Optimizing decision
making in concolic execution using reinforcement learning,” in 2020
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). Porto, Portugal: IEEE, Oct. 2020, pp.
52–61.

[42] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” Acm Sigplan Notices, vol. 47, no. 6,
pp. 193–204, 2012.

11

https://github.com/longld/peda
https://github.com/hugsy/gef/
https://doi.org/10.1007/s10009-018-0490-9
https://dl.acm.org/doi/10.1145/3605155.3605861
https://dl.acm.org/doi/10.1145/3605155.3605861
https://ghidra-sre.org/
https://hex-rays.com/ida-pro
https://binary.ninja/
https://github.com/Nalen98/AngryGhidra
https://github.com/Nalen98/AngryGhidra
https://github.com/fmagin/angr-cli
https://github.com/fmagin/angr-cli
https://dl.acm.org/doi/10.1145/360248.360252
https://github.com/angr/cle
https://github.com/smparkes/valgrind-vex/tree/master
https://github.com/smparkes/valgrind-vex/tree/master
https://github.com/ctfs/write-ups-2016/tree/master/google-ctf-2016/reverse/unbreakable-enterprise-product-activation-150
https://github.com/ctfs/write-ups-2016/tree/master/google-ctf-2016/reverse/unbreakable-enterprise-product-activation-150
https://github.com/ctfs/write-ups-2016/tree/master/google-ctf-2016/reverse/unbreakable-enterprise-product-activation-150
https://github.com/angr/angr-examples
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer/angr_ctf
https://github.com/angr/angr-examples/blob/master/examples/securityfest_fairlight/solve.py
https://github.com/angr/angr-examples/blob/master/examples/securityfest_fairlight/solve.py
https://github.com/Insomnihack/Insomnihack-2016
https://github.com/Insomnihack/Insomnihack-2016
https://github.com/angr/angr-examples/blob/master/examples/insomnihack_aeg/solve.py
https://github.com/angr/angr-examples/blob/master/examples/insomnihack_aeg/solve.py
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-5_Zhao_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-5_Zhao_paper.pdf

	Introduction
	Background and related work
	Debugging tools
	Reverse engineering tools

	General overview
	The angr Framework
	dAngr's Design Objectives

	Implementation and Discussion
	dAngr as a Regular Debugger
	dAngr as a Symbolic Debugger
	Customizability
	Abstraction from angr

	Evaluation
	AES Example
	Fairlight
	Simple AEG
	Limitations

	Work in Progress
	Conclusion
	References

