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Abstract—The software compilation process has a tendency
to obscure the original design of the system and makes it
difficult both to identify individual components and discern
their purpose simply by examining the resulting binary code.
Although decompilation techniques attempt to recover higher-
level source code from the machine code in question, they are
not fully able to restore the semantics of the original functions.
Furthermore, binaries are often stripped of metadata, and this
makes it challenging to reverse engineer complex binary software.

In this paper we show how a combination of binary decompo-
sition techniques, decompilation passes, and LLM-powered func-
tion summarization can be used to build an economical engine
to identify modules in stripped binaries and associate them with
high-level natural language descriptions. We instantiated this
technique with three underlying open-source LLMs—CodeQwen,
DeepSeek-Coder and CodeStral—and measured its effectiveness
in identifying modules in robotics firmware. This experimental
evaluation involved 467 modules from four devices from the
ArduPilot software suite, and showed that CodeStral, the best-
performing backend LLM, achieves an average F1-score of 0.68
with an online running time of just a handful of seconds.

I. INTRODUCTION

Knowledge of the high-level organization of software—its
functions, files and modules—and how its functionality is di-
vided among these units is crucial to productive programming,
reverse engineering, and other software engineering practices.
While at least some of this information is evident while
examining the source code, it is much more challenging to
recover when working with binaries.

Crucially, the compilation process tends to obscure the
organizational units of software, including information about
its modules, comments, data types, and identifier names (when
working with stripped binaries). Although this is sometimes
desirable (for example, to protect intellectual property), it

severely hinders the understandability of the final binary.
Furthermore, despite impressive advances in decompilation
techniques [1], they are unable to completely recover semantic
details of the original source code [2].

Recent breakthroughs in the development of large language
models (LLMs) have prompted researchers to investigate their
application in various problems related to the semantic under-
standing of (binary) code: i.e., binary code summarization [3],
[4], source-to-binary matching [5], and function identifica-
tion [6]. Several studies have also evaluated their effectiveness
for function summarization tasks [3], [4], [7], [8], [9].

Despite their impressive accuracy, we argue that function
summarization is insufficient for a number of problems related
to understanding the high-level structure of programs. For ex-
ample, engineers may wish to identify portions of the codebase
responsible for implementing communication protocols such
as the serial peripheral interface (SPI), or for managing the
universal asynchronous receiver/transmitter (UART). These
functionalities may be deeply embedded in the code and/or
divided among multiple functions. This limits the effectiveness
of function summarization tools for many reverse engineering
activities, which instead require identifying and navigating
between larger units of the programs, such as its modules.

Another challenge that arises while using LLMs is economic
in nature: Well-known commercial LLMs such as GPT-X [10],
Copilot,1 and Gemini [11] charge money when used on a large
scale. As an example, the authors of BinSum [3] report incur-
ring an expense of $11,000 when evaluating GPT-4. One could
use open-source LLMs instead [12], [13]. However, GPUs
with large amounts of memory are prohibitively expensive,
and this would restrict us to use mid-size language models.
This raises an additional worry that these smaller locally-run
models would be less accurate or effective at discharging their
tasks.

In this paper, we describe a system—called ChatCPS—in
which the user requests parts of the code related to some
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high-level functionality of interest. The code takes the form of
stripped binaries. In response, the system automatically identi-
fies modules/groups of related functions related to the desired
functionality and presents them to the user for examination.
As indicated by the name (· · · -CPS), our primary focus is on
reverse engineering firmware for robot controllers.

Our system relies on a combination of binary decomposition
techniques, function decompilation, and multiple levels of
LLM application. In the first LLM pass, we obtain summaries
of individual functions with the binary. In parallel, we ap-
ply BCD [14], an algorithm for decomposing binary code
into components/modules. (Because the source code of the
original BCD implementation was unavailable, and because
we were working with ARM rather than x86-64 binaries, we
had to reimplement this algorithm). We then group together
summaries for related functions, and use a second pass with
the LLM to obtain a categorization of the module as a whole.
We summarize this workflow in Figure 1. We focus on four
categories in which CPS experts frequently express interest:
data transfer, navigation, controllers, and safety checks. We
describe these categories in more detail in Section III-C.

In our experience, this two-pass approach—first summarize
individual decompiled functions, and then summarize groups
of related function summaries—improves classification accu-
racy when compared to a hypothetical single-pass procedure
(which would presumably attempt to directly summarize en-
tire modules that were previously identified by BCD). This
improvement in accuracy allows us to use less expensive
(i.e., smaller and open-source) LLMs, rather than expensive
commercial offerings.

We instantiated our system with three mid-sized LLMs
drawn from the BigCodeBench leaderboard [15], [16]: Cod-
eQwen [17], DeepSeek-Coder [13] and CodeStral [18]. Our
experimental evaluation with 467 modules from the ArduPilot
software suite [19] indicates that CodeStral provides the most
accurate high-level categorization, with an average F1-score
of 0.68. As a secondary measurement, we also separately
calculated the accuracy of the first LLM pass, i.e., we mea-
sured the accuracy of the generated function summaries. This
measurement required us to build a source code parser that
normalized function bodies by removing comments, variable
and function names. We describe our experimental setup and
our results in Sections IV and V respectively.

Our hope is that ChatCPS would streamline the reverse
engineering process and enable users to efficiently identify
and distinguish parts of the codebase related to different
functionalities. We also hope that module categorization would
enhance the user’s understanding of the binary’s underlying
structure. Finally, we expect that this top-level categorization
would form a basis for more fine-grained categorization of the
functions within each module. This would help to distinguish
different kinds of algorithms, including Kalman filters [20]
from PID controllers [21], both of which may be found in
modules related to navigation and control. At an even lower
level, after groups of functions related to individual algorithms
have been identified, users could run more specific queries.

To our knowledge, this is the first such code query-based
system that utilizes LLMs to retrieve specific functionalities
within stripped binaries. We summarize our contributions:

1) We have developed a query system that defines and
retrieves module categories using LLM-generated sum-
maries.

2) We implement a new variant of the BCD algorithm
adjusted for our needs and evaluate its effectiveness in
decomposing robotic firmware into modular components
within cyber-physical systems.

3) We evaluate the effectiveness of three open-source LLMs
(DeepSeek-Coder, CodeQwen and CodeStral), in summa-
rizing decompiled functions within modules for stripped
firmware.

4) We establish the ground truth categories for 467 modules
across four devices in the ArduPilot [19] dataset, includ-
ing QuadCopter, HeliCopter, Rover, and Submarine.

The ChatCPS implementation may be downloaded from https:
//github.com/SimaArasteh/chatcps.

II. RELATED WORK

Code semantics analysis has been widely studied by re-
searchers. Traditionally, researchers have relied on signature-
based methods to detect specific, well-known functions, such
as mathematical operations. For example, advanced binary
analysis tools like IDA Pro [22], Ghidra [23], and angr [24]
are designed to recognize the usage of common libraries
within binaries, such as standard math functions. More so-
phisticated techniques employ semantic pattern matching to
identify known functions. Studies such as those by Kim
et al. [25] and Xu et al. [26] have focused on extracting
and recognizing semantic patterns associated with specific
mathematical functions, including cryptographic operations.

However, these traditional approaches are generally con-
strained to a predefined set of patterns and are incapable of
detecting unknown functions.

To address these limitations, recent research has begun
leveraging LLMs. LLMs have demonstrated remarkable ef-
fectiveness across a variety of tasks in the area of soft-
ware engineering, including function identification and code
summarization. For example, BinaryAI [5] leverages LLMs
to correlate binary code snippets with their original source
code, aiding in tasks like detecting reused third-party libraries.
Similarly, FoC [6] focuses on identifying known cryptographic
functions within stripped binaries via LLMs.

Moreover, LLMs can extract code semantics and soft-
ware functionality. Before the widespread adoption of
LLMs, researchers used smaller transformer models such
as CodeT5 [27], BinT5 [7] and CodeBERT [28] for code
summarization tasks to enhance comprehension of both binary
and source code [29], [8], [30], [31], [7]. Smaller transformer
models like CodeT5, BinT5, and CodeBERT may offer less
detailed code summaries due to their limited parameters, which
can restrict their ability to handle diverse coding languages
and scenarios effectively. Larger LLMs, with their extensive
training and advanced architectures, provide more accurate and
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Fig. 1. The Workflow of the ChatCPS system. A) ChatCPS decomposes the binary firmware into its modules. B) Shows the decompilation process. Fn

indicates binary functions, while F ∗
n indicates the corresponding decompiled functions. C) ChatCPS summarizes each function in a module using three

open-source LLMs (CodeQwen, CodeStral, DeepSeek-Coder) and D) categorizes modules based on function descriptions.

comprehensive summaries. As a result, researchers have begun
to explore the capabilities of larger LLMs in understanding
the code semantics. For example, [3], [9], [32], [33], [34]
and [30] conducts evaluations of different LLMs such as
ChatGPT, Llama2 [35], and Code-Llama [36] for the task of
code summarization.

While code semantic summarization is useful for under-
standing individual components of a software system, it does
not offer a comprehensive view of the software’s overall
architecture and interactions. In reverse engineering, especially
with large and complex software, analyzing every function
can be overwhelming and unnecessary. Instead, focusing on
specific functionalities that are crucial can be more effective.
Developing a system that selectively highlights these key
functionalities would greatly enhance the efficiency of the
analysis.

III. THE DESIGN OF CHATCPS

Reverse engineering complex software without access to
the source code is a challenging and labor-intensive task. To
facilitate this process, we introduce ChatCPS, a code-based
query system designed specifically for cyber-physical systems.
This system aims to assist reverse engineers in focusing on
critical software functionalities. ChatCPS consists of a three-
layer pipeline. First, we decompose binary firmware into its
software components called modules. Then, we summarize
the decompiled version of functions in the modules using
LLMs. Finally, we categorize modules based on the function
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Fig. 2. Illustration of how the BCD algorithm uses information about the
call graph, data references, and code locality to decompose the binary into
groups of functions. Fn indicates functions in the binary. The image shows
a final weighted graph generated by the BCD algorithm. Green edges show
the function call relationship between functions. Red edges show the code
locality, and the purple edges indicate the data references.

descriptions by leveraging LLMs. Figure 1 shows the overall
workflow of ChatCPS.
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 void FUN_08088230(undefined4 param_1, uint param_2,
  byte* param_3, uint param_4, undefined param_5){
  
  int iVar4 = FUN_08087838();
  byte bVar1 = *(byte*)(iVar4 + 0xc);
  bool flagCondition = false;
  
  if (*(byte**)(iVar4 + 0x10) != (byte*)0x0 &&
 (**(byte**)(iVar4 + 0x10) & 1) != 0) {
    flagCondition = true;
  }

  param_4 = FUN_080878ec(param_3, param_5);
  
  for (int i = 0; i < some_limit; i++) {
    ...
  }
  
  if (flagCondition) {
    ....
  }
  FUN_080881c8(param_1, calculated_value);
        FUN_080881bc(param_1,

&some_data,
data_length);

  FUN_0808820c(param_1);
   }

Prompt 

This function is part of
an embedded system

like Copter. What
does this function do?
Can you describe it in

two to three
sentences?

(Decompiled Code)

A. Example of a Decompiled code

B. Prompt used for summarization 

C. Examples of summaries of different LLMs

C1: DeepSeek: 
This function is a part of a communication protocol. It
seems to be used for sending data over a
communication channel. The function takes in several
parameters including a pointer to a buffer, a size, and
some other parameters. It then processes the data in
the buffer and sends it over the communication
channel. The function also seems to be using a CRC
(Cyclic Redundancy Check) to ensure the data is
transmitted correctly.
C2: Codestral:
This function is a part of a larger system, likely for
communication or data processing. It takes several
parameters, including a pointer to data, a count, a
byte array, a size, and two additional bytes. The
function performs a series of bitwise operations and
calculations on the input data, likely to encrypt or hash
it. It then sends the processed data using a function
called `FUN_080881bc`, and finally calls
`FUN_0808820c` to complete the operation. In
summary, this function appears to be responsible for
processing and transmitting data in a secure manner.

C3: CodeQwen:
Certainly! The function `FUN_08088230` appears to
be responsible for encoding and sending a data
packet over a communication interface in an
embedded system, such as a drone's flight controller.
It processes input parameters including a data buffer
and length, applies a checksum or CRC-like
calculation, and then sends the encoded data using
other helper functions.

Fig. 3. The process of summarizing decompiled functions using LLMs. Section A– presents a decompiled example of the function
mav finalize message chan send from the ArduPilot project, extracted from the stripped binary of a copter device compiled for the fmuv3 board. Section B–

depicts the prompt used to summarize decompiled functions. Section C– displays the function descriptions of mav finalize message chan send, as returned
by three distinct LLMs.

A. Binary Modularization

We start by decomposing binary firmware into its con-
stituent modules using a modified version of the BCD method
as described by Karande et al. [14]. While the original source
code was unavailable and required us to re-implement the
technique, the modifications were made specifically to address
the incompatibility of the original BCD method with ARM
binaries. In this section, we outline the original workflow of
the BCD method and detail the changes we introduced to adapt
it for ARM binaries.

To decompose a binary into its modules, the BCD method
constructs a directed graph from the binary program, where
nodes represent functions and edges capture three types of
relationships between functions: code locality, data references,
and function calls. It then applies the Newman algorithm [37]
to cluster the graph into smaller components, referred to as
modules.

BCD relies on three facts to decompose a binary program.
1) Code Locality: Functions within a module typically

share similar functionalities and are physically located close
to each other. This proximity is maintained by the compiler in
the binary program, where functions are organized sequentially
from lower to higher memory addresses. BCD utilizes this
characteristic to construct a directed graph known as SG (for
sequence graph), which illustrates these relationships. In this
graph, an edge extends from a function at a lower memory

address to a function at a higher address, effectively mapping
the sequential organization of functions within the binary.

2) Data References: Functions within a module often
access and share the same data. BCD examines this access for
global and static variables, as well as constant string literals
located in the .data, .bss, and .rodata sections. In this process,
BCD constructs a graph known as the Data Reference Graph
(DRG). In this graph, an edge is drawn between two functions
if they access at least one common variable. Consequently,
this shared access results in a mutual edge being established
between these functions within the graph.

3) Function Calls: The principle underlying BCD is the
observation that functions within a module tend to call each
other more frequently than they do functions outside the mod-
ule. To leverage this insight, BCD constructs a graph called the
Call Graph CG, wherein it assigns a weight to each edge based
on the number of calls between functions. Additionally, BCD
synthesizes a comprehensive weighted graph by integrating the
CG with two other graphs: (SG) and (DRG).

In this composite graph, the weight of each edge is deter-
mined by a linear combination of its weights from SG, DRG,
and CG. During the final stage of the process, BCD employs an
algorithm known as the Newman algorithm to cluster the graph
into smaller graphs refer as a module. Based on this algorithm,
each node is considered an independent cluster. Subsequently,
nodes are merged based on the optimal connectivity indicated
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Function Summary 2: The function `FUN_080b1348` appears to be
responsible for processing and updating the state of a system, possibly
related to navigation or control in a drone or similar device

Function Summary 3

LLM-Input 

"point me to module X"

knowledge="""
Here is the definition of module categories category in a
copter system.
Navigation: .....
Data Transfer: .....
Controller: ...
Safety Check: ...
Other: any other category that does not have any sign of
the mentioned categories.
"""
prompt_instruction="""The following functions are part of a
module in an embedded system like Copter. Which major
component of the system is more likely to contain this
module? Can you rank them based on likelihood?
A) Navigation
B) Data Transfer
C) Controller
D) Safety Check
E) Calibration
F) Other
"""
+
 (Function Summaries )

Retrieved Categories 
 Function Summary 1:This function appears to be calculating a control
value for a system, possibly related to a drone's stabilization or
navigation. It checks the absolute values of several input parameters
against a threshold (`DAT_08047604`) and computes the output based
on these conditions, likely involving some form of proportional control
logic. 

Fig. 4. Module Retrieval Process. We provide function summaries and module categories as an input prompt to an LLM. Then, we instruct the LLM to
decide based on the function descriptions and ranked the categories.

by their edges, ultimately forming the final clusters. For a
detailed explanation of this methodology, we refer the reader
to the original paper [14]. Figure 2 shows the workflow of the
BCD algorithm.

B. Function Summarization in Binary Modules

In this step, we leverage open-source LLMs to summarize
decompiled functions in each module. Within our codebase,
some functions are relatively small, primarily serving as
interfaces that call numerous other functions. These smaller
functions typically reveal less about the program’s seman-
tic structure. To focus on more substantively informative
functions, we exclude functions with a line count below a
specified threshold. This approach ensures that our analysis
concentrates on functions that provide significant insights into
the software’s architecture. Figure 3 shows the prompt and
the process that we used for summarizing functions. In this
Figure, you can observe summaries generated by three open-
source LLMs(Codeqwen, Codestral, and DeepSeek-Coder) for
function mav finalize message chan send within a module of
a helicopter device.

C. Module Retrieval

In this step, our goal is to identify modules with specific
functionalities within cyber-physical systems. Given their wide
range of applications and unique capabilities, these systems
serve as our primary focus, though our methodology is
applicable to various types of applications. We define five
distinct module categories based on common functionalities
across cyber-physical systems (e.g., robots): 1) Data transfer
(crucial for real-time communication between vehicle sensors
and systems), 2) navigation (essential for route optimization
and precise positioning), 3) control (manages operational ca-
pabilities such as steering and braking), and 4) safety checks
(monitors systems and environment to prevent accidents). We
also consider the modules that do not align with these defined
categories and label them with category other. Notably,
these categories are not mutually exclusive, as some modules

belong to multiple categories, adding complexity to the module
retrieval process.

To identify the module category using LLMs, we construct
a prompt for each module. The prompt contains three sections
to provide the LLM with sufficient information to accurately
infer the category of the module:
Category Definition/Knowledge: This section includes the
precise definition of module categories, which are curated by
an expert. We include this section to ensure that LLM uses the
intended semantics of categories rather than relying on their
semantic prior.
Functions Summaries: In this section, we include the sum-
maries of the functions contained in the module, which are
generated in the previous stage of the pipeline.
Prompt Instruction: This section provides the LLM with
specific instructions, including the context of the code and
a clear description of the task it is expected to perform.
Specifically, these instructions guide the LLM to rank the
categories based on the likelihood of the module belonging to
each. This approach also allows the LLM to retrieve multiple
categories when a module aligns with more than one. Figure 4
shows the prompt and the process we use for this phase.

IV. EXPERIMENTAL SETUP

In this section, we describe the benchmarks and experimen-
tal setup, including detailed information on the configurations
and methods applied in our experiments.

A. Benchmark

To evaluate our approach, we use the open-source and
well-known autopilot dataset called ArduPilot. This dataset
is a comprehensive collection of data and configurations that
supports the development and testing of autonomous vehicle
software across various platforms. Developers created ArduPi-
lot to boost research and development in unmanned vehicle
systems, offering a solid base for simulation, testing, and the
practical application of autonomous control algorithms. The
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TABLE I
THE EFFECTIVENESS OF THE BCD ALGORITHM IN DECOMPOSING BINARY

FIRMWARE INTO ITS MODULES IN ARDUPILOT.

Device # of Modules # of Functions Pw Rw F1w

QuadCopter 121 8556 0.77 0.69 0.72
HeliCopter 121 7583 0.75 0.73 0.74

Rover 112 7258 0.72 0.72 0.72
Submarine 113 6994 0.76 0.68 0.71

dataset includes a wide range of vehicles, such as Quad-
Copters, HeliCopters, Planes, Rovers, and Submarines. As an
open-source software, ArduPilot is widely used to innovate
and improve unmanned vehicle technology.

We compile the ArduPilot dataset for four
devices—including QuadCopters, HeliCopters, Rovers,
and Submarines— specifically for the FMUV3 board. The
FMUV3 is a critical flight management unit version that
supports various processors and sensors. This versatility
enhances its utility across different unmanned vehicle
platforms within the ArduPilot framework. Though Ardupilot
provides many different boards, we only focus on building
the ArduPilot dataset for just one board due to the inherent
challenges of establishing ground truth for all boards. Also,
Different boards share common functionalities and modules.
We plan to extend our analysis to additional boards in future
work.

B. Binary Modularization Setup

We decompose binaries into modules using the BCD algo-
rithm [14]. As the original source code was unavailable, we
adapted the approach outlined in the paper with some modi-
fications. Originally, BCD was based on IDA-Pro [22], which
is not free. Therefore, we opted to implement BCD using
angr [24]. Also, the original BCD algorithm was designed for
x86 binaries. However, as ArduPilot binaries utilize the ARM
architecture, we modify the BCD implementation to align
with our dataset. This adaptation specifically addresses the
differences in CPU architecture, which affect the identification
and processing of shared data references between functions.
Due to the distinct ways ARM and x86 architectures handle
these references, our implementation requires customization to
effectively manage these architectural variations.

C. Decompilation Process Setup

We decompile binary functions extracted from stripped
binaries in ArduPilot using Ghidra [23], a free and open-
source reverse engineering tool developed by the National
Security Agency (NSA). Ghidra offers a wide range of features
for analyzing compiled code across multiple platforms and
architectures.

For each module, we select functions that contain at least
15 lines of code to ensure they are large enough to provide
meaningful semantic insights. Some functions in a module
are limited to calling other internal or external functions,
providing limited semantic insight by themselves. As a result,

we filter out such functions in our evaluation. Furthermore,
we focus solely on the body of the function itself without
delving into the bodies of callee functions. This approach is
justified for several reasons. Firstly, larger functions typically
contain enough content to disclose their semantic purpose.
Secondly, a single function might invoke numerous other
functions with entirely different semantics. For example, a
controller function might call a data-transfer function to send a
message. Including the bodies of these callee functions could
skew the results of our categorization and potentially mislead
our analysis.

D. LLM-based Unit Setup

To retrieve modules with specific functionalities, we
evaluate three open-source LLMs: Deepseek-Coder[13],
CodeQwen[17], and CodeStral [18]. DeepSeek-Coder, Cod-
eQwen, and CodeStral are specialized versions of well-known
language models designed for code analysis and development
tasks. DeepSeek excels at interpreting both language and
code, significantly aiding in the review of complex code and
the creation of documentation. CodeQwen, built to improve
coding help, provides features such as real-time debugging
and code optimization. CodeStral builds on the capabilities of
the Mistral model family and specializes in analyzing code
in multiple languages. It supports a variety of programming
environments and helps ensure that code works well across
different languages.

Based on their good performance on the CodeBench leader-
board [15], we selected these LLMs for our study and plan
to analyze additional LLMs in future work. To ensure a
fair comparison, we chose models with similar parameter
counts, specifically Qwen2.5-Coder-32B-Instruct, DeepSeek-
Coder-33B-Instruct, and Codestral-22B-v0.1. The context win-
dow for these models is 128000, 16000, and 32000 tokens,
respectively. Our experiments were conducted on a CentOS-
based server equipped with two GPUs, using parallel process-
ing across both GPUs and featuring 48 GB of RAM. We
take advantage of the versions of these open-source LLMs
available through HuggingFace2. For inference, we use the
widely adopted lm-eval-harness library [38]. This evaluation
framework provides a streamlined and flexible interface for
benchmarking LLM performance across diverse tasks, en-
abling systematic and reproducible evaluations.

Our implementation of ChatCPS including the modified
version of BCD contains approximately 2000 lines of Python.

V. EXPERIMENTAL RESULTS

Our assessment of ChatCPS addresses the following re-
search questions:
RQ1. How effectively can BCD decompose binaries into

modules within the autopilot dataset?
RQ2. How effectively do CodeQwen, Codestral, and

DeepSeek-Coder create function summaries that
demonstrate their proficiency in understanding code?

2https://huggingface.co/
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TABLE II
LLM FUNCTION SUMMARIZATION EVALUATION. THE NUMBERS

INDICATE THE AVERAGE COSINE SIMILARITY OF THE ENCODED SUMMARY
OF THE NORMAL CODE AND THE DECOMPILED CODE OF THE FUNCTION

GENERATED BY THE LLMS IN THE COLUMNS.

Device Deepseek-Coder CodeStral CodeQwen

QuadCopter 0.76 ± 0.16 0.62 ± 0.20 0.68 ± 0.20

HeliCopter 0.75 ± 0.18 0.62 ± 0.20 0.68 ± 0.21

Rover 0.75 ±0.17 0.62 ± 0.21 0.67 ± 0.21

Submarine 0.76 ± 0.16 0.62 ± 0.21 0.68 ± 0.21

RQ3. How proficiently does ChatCPS retrieve module cate-
gories?

RQ4. How long does it take for each LLM to complete
function summarization?

A. RQ1: Binary modularization Effectiveness

We evaluate how well the BCD algorithm can decompose
Ardupilot binaries into its corresponding modules. Table I
presents statistics for four devices in ArduPilot, including the
number of modules created in the binaries, the number of
functions, and the performance of modularization. We compare
the predicted modularization with the ground truth. We then
define the true positives (TP) as the fraction of functions that
were correctly placed in the current module, the false positives
(FP) as the fraction of functions that were incorrectly placed in
the current module, and the false negatives (FN) as the fraction
of functions that were not included in the current module but
were expected to be. From here, similar to the original paper,
we calculate a weighted version of precision, recall, and F1

score shown in equations 1, 2 and 3 respectively.

Pw =

∑Nc

i=1 Pi · ni

Nf
(1)

Rw =

∑Nc

i=1 Ri · ni

Nf
(2)

F1w =

∑Nc

i=1 F1i · ni

Nf
(3)

In these formulas, Pi, Ri, and F1i are the precision, recall,
and F1 score for module Ci, ni is the number of functions
in module Ci, Nf is the total number of functions in all
modules, and Nc is the total number of modules. We use
weighted metrics due to the significant variation in the number
of functions each module contains. This method assigns the
appropriate importance to each module based on its size,
ensuring that modules with a larger number of functions have
a greater impact on the overall metrics. This approach is vital
as it prevents smaller modules from disproportionately influ-
encing the results, which could distort the system’s perceived
effectiveness. By adjusting scores relative to the number of
functions, the evaluation more precisely reflects the system’s
performance across modules of varying sizes and complexities,

providing a balanced and detailed assessment of its binary
decomposition capabilities.

As suggested by Table I, the modified version of the BCD
algorithm achieved acceptable performance in decomposing
binaries into modules. It is important to note that modular-
izing large binary firmware is a challenging task, yet our
implementation of the BCD algorithm has attained a satisfac-
tory level of effectiveness. Even though recovering modules
from binary code may be imperfect, it does not significantly
impact the effectiveness of categorization. For instance, two
different modules in ArduPilot, such as AC_circle and
AC_WPNav, can both fall under the same category, namely
navigation. Furthermore, upon manual inspection, we find
that this imperfection in modularization does not substantially
cause functions from different modules that belong to distinct
categories to be grouped into the same module.

B. RQ2: Function Summarization Effectiveness

Module categories are established based on function sum-
maries, underscoring the importance of their reliability. There-
fore, we evaluate the function summarization generated by
LLMs separately. To evaluate the effectiveness of function
summaries, we compare the similarity between decompiled
function summaries and the summaries derived from the
normalized version of the original source code. The normal-
ized version of the source code contains the original code,
but function names and variables are stripped. Removing
function names and variable names before using LLMs to
summarize code helps isolate the LLM’s ability to understand
and summarize code based purely on its structure and logic
rather than relying on potentially descriptive names. Function
names and variables can give significant hints about what
the code does, which may lead LLMs to rely more on these
cues rather than analyzing the underlying code patterns. To
evaluate an LLM’s raw capability to understand code, we
minimize external influences like descriptive names. Ideally,
LLM creates a similar textual summary for the decompiled
code and the normalized code of the same function.

To obtain the normalized version of the source code, we
develop a source code parser specifically designed to extract
function bodies directly from the source code. Then, we parse
the ArduPilot source code [39] to extract function bodies,
using the Clang [40] tool to identify the function and vari-
able instances. We replace these identifiers with anonymized
names. Additionally, to align the source code with the decom-
piled functions, we extract mappings between function names
and their addresses from binaries that contain debug symbols
(DWARF). Using these mapped names and addresses, we
identify the corresponding function bodies in the source code.
Lastly, we remove all comments from the source code to focus
exclusively on evaluating the code understanding capabilities.

To compute the textual summary similarity between the
normalized code and decompiled code for each function, we
encode the text using an embedding model. The embedding
model generates a vector for each of the textual summaries.
Then, we compare the similarity of generated embedding vec-
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TABLE III
THE EFFECTIVENESS OF RETRIEVING MODULE CATEGORIES BY THREE OPEN-SOURCE LLMS IN THE CHATCPS DESIGN. NUMBERS BETWEEN

PARENTHESES INDICATE THE UPPER BOUND OF MODULE CATEGORIZATION. THESE NUMBERS SHOW THE RESULT OF MODULE CATEGORIZATION
OBTAINED FROM NORMALIZED SOURCE CODE.

Device Category
DeepSeek-Coder CodeStral Code-Qwen

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

QuadCopter

Data Transfer 0.33 (0.52) 0.14 (0.42) 0.20 (0.46) 0.78 (0.76) 0.73 (0.92) 0.75 (0.83) 0.61 (0.72) 0.55 (0.55) 0.58 (0.62)

Navigation 0.24 (0.25) 0.68 (0.86) 0.36 (0.39) 0.63 (0.73) 0.70 (0.80) 0.66 (0.76) 0.24 (0.30) 0.82 (0.93) 0.37 (0.46)

Controller 0.93 (0.93) 0.65 (0.67) 0.77 (0.77) 0.92 (0.94) 0.92 (0.82) 0.92 (0.87) 0.87 (0.88) 0.44 (0.52) 0.59 (0.64)

Safety Check 0 (0) 0 (0) 0 (0) 0.25 (0.5) 0.16 (0.5) 0.2 (0.5) 0 (0) 0 (0) 0 (0)

HeliCopter

Data Transfer 0.5 (0.66) 0.36 (0.54) 0.42 (0.6) 0.73 (0.77) 0.73 (0.73) 0.73 (0.75) 1.0 (1.0) 0.25 (0.33) 0.4 (0.5)

Navigation 0.05 (0.13) 0.5 (1) 0.09 (0.23 ) 0.82 (0.9) 0.83 (0.9) 0.82 (0.9) 0.37 (0.65) 0.75 (0.9) 0.5 (0.75)

Controller 0.8 (0.88) 0.4 (0.53) 0.53 (0.66) 0.92 (0.92) 0.9 (0.9) 0.91 (0.91) 0.81 (0.84) 0.9 (0.91) 0.85 (0.87)

Safety Check 0 (0) 0 (0) 0 (0) 0.38 (0.5) 0.33 (0.56) 0.35 (0.53) 0 (0) 0 (0) 0 (0)

Rover

Data Transfer 0.23 (0.71) 0.42 (0.45) 0.3 (0.55) 0.72 (0.83) 0.81 (0.83) 0.76 (0.83) 0.5 (0.55) 0.5 (0.71) 0.5 (0.62)

Navigation 0.21 (0.4) 0.8 (1.0) 0.33 (0.57) 0.68 (0.70) 0.68 (0.73) 0.68 (0.71) 0.55 (0.6) 0.83 (0.75) 0.66 (0.66)

Controller 0.75 (1.0) 0.23 (0.53) 0.35 (0.69) 0.78 (0.0.89) 0.92 (0.92) 0.85 (0.91) 0.83 (1.0) 0.71 (0.75) 0.76 (0.85)

Safety Check 0 (0) 0 (0) 0 (0) 0.38 (0.44) 0.50 (0.67) 0.43 (0.53) 0 (0) 0 (0) 0 (0)

Submarine

Data transfer 0.38 (0.44) 0.45 (0.8) 0.41 (0.57) 0.77 (0.78) 0.83 (0.85) 0.80 (0.81) 0.53 (0.75) 0.41 (0.69) 0.46 (0.71)

Navigation 0.17 (0.23) 1.0 (1.0) 0.29 (0.37) 0.73 (0.8) 0.78 (0.81) 0.75 (0.80) 0.6 (0.73) 0.6 (0.58) 0.6 (0.64)

Controller 1.0 (0.66) 0.28 (0.42) 0.44 (0.52) 0.78 (0.81) 0.96 (0.96) 0.86 (0.88) 0.77 (0.9) 0.87 (0.52) 0.82 (0.66)

Safety Check 0 (0) 0 (0) 0 (0) 0.30 (0.44) 0.43 (0.80) 0.35 (0.57) 0 (0) 0 (0) 0 (0)

tors via cosine similarity. We use NV-Embed-v2 [41] due to
its high performance in the leaderboard3 of embedding model
quality[42]. The results of this experiment are represented in
Table II.

C. RQ3: Module Retrieval Effectiveness

For the evaluation of module retrieval, we establish the
ground truth for 476 modules from four devices in ArduPilot:
QuadCopter, HeliCopter, Submarine, and Rover. We estab-
lish ground truth for all modules within the binaries, which
requires approximately 100 human hours. We compare the
module categories retrieved by the LLMs using this ground
truth. In personal communication, the ArduPilot developers
expressed their belief that module categorization was funda-
mentally hard, even for developers with expert insight.

In all cyber-physical systems, certain functionalities are
essential and typically implemented within components known
as modules. For clarity and structured analysis, we define
four common module categories within this domain. Autopilot
devices, for instance, include modules dedicated to commu-
nication protocols such as MAVLink, which facilitates the
exchange of data between the device and ground stations or
other Unmanned Aerial Vehicles (UAVs). These communi-
cation modules ensure seamless integration and coordination
across the network.

Navigation modules play a crucial role in determining
and maintaining the position and orientation of the vehicle,
integrating sensors and GPS data to guide its path accurately.
Additionally, control modules are fundamental in defining the

3https://huggingface.co/spaces/mteb/leaderboard

vehicle’s behavior and managing the dynamics and responses
based on operational inputs and environmental conditions.

Safety modules are designed to monitor the integrity and
operational status of the vehicle, implementing fail-safes and
checks that prevent malfunctions. Lastly, some modules do not
neatly fit into these categories, encompassing functionalities
that are unique or less common. Thus, our categories are
defined as data transfer, navigation, safety check, controller,
and others. It is crucial to explicitly define each category for
the LLM, recognizing that each model may have different
understandings and interpretations of these categories, which
influences their functionality.

It is important to note that some modules may overlap
across categories, such as those fitting both the navigation and
controller categories, which manage route planning and vehi-
cle control simultaneously. To evaluate the module retrieval
performance of the LLM based on the provided ranking, we
select the top k categories from the LLM’s output, where
k corresponds to the number of categories to which the
module belongs. To assess the effectiveness of the module
retrieval unit, we employed precision, recall, and F1 score
as our evaluation metrics. Table III displays the performance
results for each LLM. For each module category, we show the
number of modules and the results of the evaluation metrics
for each LLM. We calculate the precision, recall, and F1

score for module categorization based on summaries from
both decompiled functions and normalized source code. The
results from the normalized code serve as the upper bounds for
each evaluation metric, as indicated in parentheses in Table III.
Our experimental results show that Codestral could outperform
DeepSeek-Coder and CodeQwen. Recall that, according to
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Table III, the evaluation metrics for safety check modules are
not high due to the limited number of these modules.

D. RQ4: LLM Time Analysis

Evaluating the time performance of the LLMs DeepSeek-
Coder, CodeQwen, and CodeStral is crucial due to the signif-
icant time required for tasks such as summarizing decompiled
functions and retrieving modules. As these LLMs are free
to use, the main cost involved is the computational and
operational time, which can be substantial. This is particularly
important in environments where efficient resource utilization
affects project timelines and costs.

We calculate the total seconds each LLM requires to
generate function summaries for all decompiled functions
per device. We present this analysis in hours in Figure 5.
This evaluation indicates that CodeStral takes an average
of 20 hours, while DeepSeek-Coder is the fastest, requiring
approximately 5 hours to complete the summarization task.
We believe that the speed efficiency in DeepSeek-Coder is
because of our use of the structured (user vs. assistant) chat
template style while prompting the LLM. In our experience,
this usually yields shorter outputs from the language model.
Note that this template was used to resolve some complications
in DeepSeek-Coder in which inconsistencies in the special end
token resulted in extremely long and repeated outputs.

The module categorization process is notably efficient,
typically completed in a relatively short period and not more
than two hours in the most extended cases. Given the minimal
variability and the generally swift completion time, we have
opted not to include a detailed analysis of time differences in
this paper.
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Fig. 5. Comparison of time required for function summarization by three
open-source LLMs (CodeStral, CodeQwen, and DeepSeek-Coder) across four
ArduPilot devices.

VI. CHALLENGES AND LIMITATIONS

This section highlights the limitations of our approach.

• ArduPilot encompasses a comprehensive dataset with
numerous functions and modules that often overlap across
multiple categories. This overlap between module cate-
gories complicates our analysis because it can lead to
inconsistencies in how modules are categorized.

• Given the complexity and the specific nature of our
dataset, we have deliberately limited the number of
categories. Despite this limitation, the categories we have
defined are highly useful and provide essential insights
that researchers can leverage for effective analysis.

• The categories we choose for our evaluation in this paper
are tailored specifically to the domain of cyber-physical
systems. Two objections might be raised in this context:
First, that these categories are overly coarse-grained and
that developers might want to see a more fine-grained
categorization of functions within the binary. We chose
these categories because they were of broad interest to
CPS researchers, and also because of ease of establishing
ground truth. The second objection is that they have
a narrow focus on robotics firmware. This choice was
purely a historical accident. However, we believe that
the concept can be readily adapted to other domains.
For example, malware analysts might be interested in
categories such as network communication, key-logging,
or process monitoring.

• We also did not perform prompt engineering to optimize
our results. It is possible that with more effort put into
prompt design, one or more LLMs might achieve better
accuracy.

VII. FUTURE WORK

In this section, we outline our future plans for expanding
both our evaluation and the conceptual framework of our
research.

• We intend to broaden our evaluation by incorporating
well-known and proprietary LLMs such as GPT-4, Copi-
lot, and Claude into our assessment, comparing their
effectiveness in function summarization and module re-
trieval.

• As part of our future plans, we aim to enhance our eval-
uation by identifying the most effective prompts through
a prompt engineering process.

• We aim to enrich the semantic context of modules by
using some tools such as SensorLoader [43]. These
frameworks could potentially label modules with sensor-
specific data flows or peripheral access patterns, enhanc-
ing the module categorization process.

• Our current system handles a limited number of general
queries. Moving forward, we plan to refine our approach
to accommodate more specialized queries, particularly
those targeting specific functions within modules. For
example, we aim to enable queries that identify well-
known mathematical functions commonly utilized in
cyber-physical systems.
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• We aim to further validate our approach by conducting
evaluations on the PX4 dataset, widely recognized in the
field of autopilot systems.

VIII. CONCLUSION

In this research, we design a code-based query system called
ChatCPS to retrieve different module categories from stripped
binary firmware. ChatCPS first decomposes binary firmware
into its constituent modules using the BCD algorithm. It
then categorizes these modules based on function summaries
from decompiled firmware functions, generated by three open-
source LLMs: CodeQwen, CodeStral, and DeepSeek-Coder.
This system can isolate specific functionalities within binary
firmware, facilitating the analysis and understanding of its
architecture. Our experimental results demonstrate that Code-
Stral surpasses other LLMs in module retrieval, achieving the
best performance in our comparisons.
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