
DRAGON: Predicting Decompiled Variable Data
Types with Learned Confidence Estimates

Caleb Stewart, Rhonda K. Gaede, and Jeffrey H. Kulick
The University of Alabama in Huntsville

{cls0027, gaeder, kulickj}@uah.edu

Abstract—We present DRAGON, a graph neural network
(GNN) that predicts data types for decompiled variables along
with a confidence estimate for each prediction. While we only
train DRAGON on x64 binaries compiled without optimization,
we show that DRAGON generalizes well to all combinations
of the x64, x86, ARM64, and ARM architectures compiled
across optimization levels O0-O3. We compare DRAGON with
two state-of-the-art approaches for binary type inference and
demonstrate that DRAGON exhibits a competitive or superior
level of accuracy for simple type prediction while also pro-
viding useful confidence estimates. We show that the learned
confidence estimates produced by DRAGON strongly correlate
with accuracy, such that higher confidence predictions generally
correspond with a higher level of accuracy than lower confidence
predictions.

I. INTRODUCTION

Binary type inference seeks to recover high-level data types
from compiled binary code. Since the data types of program
variables represent vital information about the code and its
functionality, type inference is a critical problem for many
kinds of binary analysis such as decompilation. Additionally,
performing type recovery as a preliminary step has been shown
to enhance other kinds of analysis such as fuzzing [1].

The problem of inferring data types from executable pro-
grams has been studied as early as 1999 when COBOL
program analysis was explored for its utility in solving the
Y2K problem [2]. Since then, the focus has shifted to evaluting
data type recovery methods on programs primarily compiled
from C or C++ source code using both static and dynamic
analysis techniques [3], [4]. More recently, a wide variety of
machine learning approaches have been heavily researched and
applied with great success.

However, while many machine learning approaches have
been proposed, none of them convey information about the
level of confidence associated with individual predictions.
Since no machine learning model is perfect, all models
generate both correct and incorrect predictions which are
indistinguishable in the absence of ground truth. Even though
highly accurate models tend to produce fewer bad predictions

on average, there is no clear way to separate the good from
the bad for arbitrary unlabeled samples.

In this paper, we present a technique to recover data types
from executable code using a GNN model. We incorporate
learned confidence estimates [5], an existing uncertainty quan-
tification technique that augments each prediction with a prob-
ability representing the faith the model has in its prediction.
To our knowledge, we are the first to apply any such technique
to a binary type inference machine learning model.

II. BACKGROUND

While many solutions to binary type inference1 have been
proposed, the application of GNNs remains largely unex-
plored. Additionally, existing solutions present opportunities
for improvement.

Zhu et al. recently proposed TYGR, the first2 GNN model
applied to binary type inference [7]. TYGR performs data
type inference using a data flow graph representation of a
program. The authors demonstrate that TYGR performs at a
level superior to state of the art, and show that GNN models
can be effectively applied to the type inference problem.
However, TYGR presents only one possible method for map-
ping relevant program information to a graph representation.
We explore decompiled abstract syntax trees (ASTs) as an
alternate representation for use with a GNN model.

While the use of GNNs on program representations has
been previously studied in contexts where source code is
available (both for type inference [8] and AST representations
specifically [9], [10]), the problem space for stripped binary
code is distinctly different as it lacks much of the information
available to source representations such as identifier names
and source-level data types. To our knowledge, we are the
first to use a GNN model on decompiled ASTs for binary
type inference.

A. Syntactic Simple Type Recovery

Type inference can be semantic, recovering a meaningful
type name in addition to its definition, or simply syntactic,
recovering only the structural form of the type. Furthermore,
we differentiate syntactic types as being either simple or
complex. Simple types only represent the essential form of
their data types, including the native type or category (e.g.

1We use the terms inference, prediction, and recovery interchangeably
2TIARA [6] notably used a GNN model to classify C++ container types.

We consider this to be a related but different problem.

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23025
www.ndss-symposium.org

Ghidra

Binary

DRAGON
GNN Model

Decompiled Function AST Variable Graph

v

2. Decompile function
to extract AST

4. Merge k-hop neighborhoods
of each reference to variable v
into a single variable graph

Training Methodology

Binary

DWARF Debug Info

1. Strip debug info to create
parallel stripped/debug

binary pairs

void FUN_00400a8() {
 undefined u, v;
 u = v + 3;
 x = &v;
 ...
}

=

u +

v 3

=

x &

v

Ghidra

bool test_func(char* s) {
 char* tmp_buf, p = s;
 char code = p[3];
 tmp_buf = &p;
 ...
}3.a. Align variables

by signature

5. Predict data types and
estimate confidence

8, 28 tmp_buf char*

24 code char

24,28 p char*

6. Compare with ground truth data type labels
during training or testing

3.b. Extract ground
truth labels

BinaryBinaryBinary

PyG Dataset

Dataset CreationBinaryBinaryBinary

-- Stripped --
Signature Name Truth Type

4,8 config STRUCT

4,24,120 idx int

Signature Name Truth Type

4,8 config STRUCT

4,24,120 idx int

Signature Name Truth Type

4,8 config STRUCT

4,24,120 idx int

 Predicted Type: char*

 Estimated Confidence: 82.5%

Signature Name Truth Type

Generate a PyG dataset from a
collection of binaries

Fig. 1. Overview of DRAGON architecture shows the flow of data as it moves from the stripped binary (top left) through the Ghidra decompiler to the variable
graph extracted from the AST and into DRAGON which predicts the data type and confidence estimate. The Training Methodology shows the extensions that
allow us to build a labeled dataset, including parallel debug and stripped binary pairs and the variable alignment method developed by [11]. Finally, Dataset
Creation shows that we convert many binaries to a complete Pytorch Geometric [12] dataset for training and testing.

int, double, struct, or union) as well as any pointer
or array components, but do not include aggregate type in-
formation such as structure definitions. Complex types also
include simple type information but add structure definitions.
In this paper, we study the problem of syntactic simple type
prediction and do not recover structure definitions or semantic
type names.

III. RELATED WORK

Traditional approaches to binary type inference have con-
trasted algorithmic approaches using static or dynamic analysis
[3], [4], [13]. OSPREY recently demonstrated significant im-
provement in accuracy over Howard by using a probabilistic
approach based on a static analysis path-sampling technique
called BDA [14].

More recently, the focus of the field has heavily shifted to
applying machine learning techniques. TypeMiner [15] uses
machine learning classifiers to predict up to 17 simple types,
and Debin [16] uses a conditional random field model to both
recover variables and predict their name and data type. Other
approaches have focused on function prototype recovery [17],
[18]. CATI uses convolutional neural network classifiers to
predict 19 simple data types [19]. StateFormer recovers 35
simple types using generative state modeling to pretrain a
model which they finetune for type inference [20].

DIRTY [21] is in many aspects quite similar to DRAGON.
Both DRAGON and DIRTY accept decompiled function ASTs
as input, while DIRTY uses a Transformer model architec-
ture as opposed to the GNN of DRAGON. As described in
Section V-A1, we employ the variable alignment technique
used by both DIRTY and DIRE [11] to align variables from
our stripped binaries with their corresponding ground truth
labels available in the same binaries with DWARF debug
information.

STRIDE [22] is another interesting approach that questions
the unchallenged trend of continually increasing model sizes
and levels of complexity. By using a simplistic n-gram model
for type recovery, STRIDE is able to perform competitively
with DIRTY while requiring much less overhead in both model
size and execution time. TYGR presents the first application of
GNNs to binary type inference, and outperforms both DIRTY
and OSPREY [7]. RESYM [23] presents the first application
of large language models (LLMs) to binary type inference
and also demonstrates superior performance to DIRTY and
OSPREY.

Graph neural networks have successfully been applied to
source code analysis in a variety of ways. [9] and [10] use
GNNs on source code ASTs to address problems such as
code clone detection. [8] tackles the type inference needed
to support gradual typing using GNNs on a type dependency
graph representation of TypeScript code.

2

While there is synergy between the two areas of study,
particularly with respect to effective strategies of mapping
AST data to GNN models, the form of an AST decompiled
from a binary functions is fundamentally different than that of
an AST compiled from source code. For example, since mod-
ern decompilers still do not recover structures from stripped
binaries (other than as a result of library function recognition
techniques), the ASTs in a decompiled function lack structure
member expressions almost completely, while these are quite
common in source code ASTs.

A. Learned Confidence Estimation

We use learned confidence estimates, a technique developed
by DeVries and Taylor [5] which is shown to outperform
simple softmax output thresholding as well as an out-of-
distribution detection technique called ODIN [24]. While we
do not perform a study comparing alternatives for uncertainty
quantification, this presents an interesting future area for
investigation.

IV. APPROACH

A. Overview

We develop DRAGON3, a multi-task [25] GNN model
to predict simple syntactic data types for variables from a
decompiled AST. As seen in Figure 1, DRAGON accepts
a variable graph derived from a decompiled AST as input.
The variable graph combines the local neighborhoods of each
reference to a target variable within a function, and presents
it to the model as input. For each such graph, DRAGON uses
a GNN model to predict both the variable’s data type as well
as the level of confidence DRAGON has in the prediction.
We recover data types for both local variables and function
parameters.

B. Abstract Syntax Tree Representation

As Ghidra does not internally use a traditional AST for
decompiled functions (instead, they directly convert the final
Pcode into a stream of C code tokens), we modify the Ghidra
decompiler to output decompiled ASTs to a JSON format
inspired by the Clang AST [26] but simplified to support the
subset of C language elements actually produced by Ghidra.

C. Graph Neural Network Architecture

A graph (G) is defined as a set of vertices (V), or nodes,
and a set of edges (E) that connect them, and is represented
as G = (V,E). Graph neural networks are composed of a
sequence of layers, with each layer computing a hidden state,
or embedding,

−→
h i for each node vi in the graph. Each node

embedding
−→
h i aggregates information from its immediate

neighborhood Ni and passes the resulting vector through an
activation function. GNNs propagate information throughout
the graph by iteratively computing node embeddings for every
layer.

3(Data type Recovery from decompiled ASTs using GNNs with learned
cONfidence)

We use graph attention network (GAT) layers for the GNN
portion of our model [27]. Equation 1 computes the unnor-
malized attention score ϵij for an edge (vj , vi) as described
in the original paper. We denote the transpose of x as xT and
concatenation as ∥.

ϵij = LeakyReLU
(−→a T [W

−→
h i∥W

−→
h j]

)
(1)

We compute the attention coefficients αij for edge (vj , vi) as
shown in Equation 2. Note that Ni is augmented with i as we
use self-loops for all nodes.

αij =
exp (ϵij)∑

k∈Ni∪{i} exp (ϵik)
(2)

Finally, the overarching equation that uses the attention co-
efficients to compute the embedding

−→
h ′

i of node i for layer
(as a function of terms from the previous layer) is given in
Equation 3:

−→
h ′

i =
K

∥
k=1

ReLU

 ∑
j∈Ni∪{i}

αk
ijW

k−→h j

 (3)

where K is the number of attention heads. We use an extended
form of Equation 1 to incorporate edge feature information
into the embedding, as shown in Equation 4:

ϵij = LeakyReLU
(−→a T [W

−→
h i∥W

−→
h j∥W−→e ij]

)
(4)

where −→e ij represents the edge features associated with edge
(vj , vi).

While we compute the forward pass on all nodes in the
input graph to allow data to flow freely, we only pass

−→
h ′

t, the
final embedding vector for the target node vt from the GNN
layers to the shared layers as shown in Figure 4. As Ghidra
recovers an initial data type for the target node, we forward the
concatenation of the GNN embedding and this encoded data
type to the shared layers. This ensures the shared layers may
always observe the original decompiled data type, uninhibited
by any potential loss during graph layer propagation.

D. Data Type Encoding

A data type can be thought of as a combination of pointer
levels and a terminal type, or leaf type. The pointer levels
describe how many pointer indirections are present, and the
leaf type is the pointed-to type that remains after all pointer
levels have been dereferenced. We extend the pointer level
concept to also include levels of arrays, which may be freely
interspersed with pointers in our scheme.

Our data type encoding is inspired by the multi-stage
classification designs of TypeMiner [15] and CATI [19]. We
encode the pointer hierarchy and leaf type separately, as shown
in Figure 2. We select a fixed length of three pointer levels.
The full data type vector is the concatenation of the pointer
level vectors with the leaf type vector. Additional details of
the encoding are described in Appendix A.

3

Pointer Levels

P1 P2 P3

Pi = PTR | ARR | LEAF

Leaf Type

Size SignedCategory Floating Boolean

Category = BUILTIN | STRUCT | UNION | FUNC | ENUM
Size = 0 | 1 | 2 | 4 | 8 | 16
Signed = True | False
Floating = True | False
Boolean = True | False

Fig. 2. The DRAGON data type encoding scheme separates the pointer levels
of a data type from its leaf type, and defines each element as shown.

E. Node Encoding

Each node in the graph is encoded using its kind, data type,
and operation. The node kind is its class of AST node, such
as BinaryOperator, DeclRefExpr, or VarDecl. The data type is
the type associated with this node if one exists, or an empty
vector of all zeroes. For example, we encode IntegerLiteral
nodes with the associated integer data type, and DeclRefExpr
nodes with the data type of the referenced variable. For
BinaryOperator and UnaryOperator nodes, the operation field
encodes the associated C operation such as +, -, ==, and
&. For all other nodes, we encode a special operation value
representing an empty operation.

F. Edge Features

We encode edge features to help the model differentiate
between situations where the order of child nodes is signifi-
cant. As pointed out by [10], a homogenous GNN architecture
cannot natively distinguish between the expressions a - b
and b - a in an AST graph because all edges appear the
same. We one-hot encode an edge type for each edge in the
graph to help address this issue. Rather than encode every
possible edge type uniquely, we encode the edges we perceive
as requiring distinction with unique edge types, and encode
all other edges with a Default edge type. We encode each of
the following kinds of edges with unique edge types:

• Edges to children of binary operators.
• Edges to children of if statements.
• Edges to children of a function call expression, up to the

first six arguments
• Edges to children of array subscript expression
• Edges to children of do, while, for, and switch

statements.

 if (x == var + 12)
 return;

Source Code Snippet:

AST Snippet:

BinaryOperator
==

IfStmt
if

DeclRefExpr
x

BinaryOperator
+

DeclRefExpr
var

IntegerLiteral
12

ReturnStmt

Fig. 3. K-hop neighborhood for node var where k=2 (nodes included in this
neighborhood are shown in blue)

G. Variable Graphs (Inputs)

We generate a variable graph for a specific decompiled
target variable by collecting the k-hop neighborhood of every
reference to the target variable within the decompiled AST. In
our AST, these appear as DeclRefExpr nodes. We merge each
of these k-hop neighborhoods into a single input graph by
merging each reference node into a single node. This merged
node will function as the target node when presented to the
GNN, and we compute its embedding to be passed on to
the shared layers and through to the output. To create the
final graph, we follow the common practice of adding edges
bidirectionally to facilitate the flow of data throughout the
graph. Figure 3 shows the 2-hop neighborhood of a reference
to variable var in the AST snippet.

H. Multi-Task Outputs

We use a multi-task architecture [25] to split the embedding
output from the shared layers into individual outputs that map
to elements of our data type encoding, as shown in Figure 4.
Although not explicitly shown in Figure 4, we also forward
some of the individual task outputs to the inputs of other task-
specific layers by concatenation with the shared embedding.
This was chosen ad hoc based on observation during model
development, with some higher-performing outputs being fed
into other task layers to boost overall performance. Specifically
for the Boolean layers, we augment the shared embedding with
the original encoded Ghidra data type vector as well as the out-
put logits from the Category, Signed, and Floating branches.
Similarly, the Size layers receive this same augmented input
vector plus the output of the Boolean branch itself.

We correct invalid pointer level predictions by extending the
first predicted LEAF element to all subsequent elements. For
example, an invalid prediction of LEAF, PTR, LEAF would be
converted to a data type with no pointers or arrays.

4

Graph Attention Layers

Linear Layers

Shared embedding for v

v

PTR

PTR

LEAF

BUILTIN

1

True

False

False

62.5%

Task-Specific Layers

char**

k-hop neighborhood for all
references to v

Forward only the graph
embedding of v

char

**

Size

Confidence

P1

Category

Signed

Floating

Boolean

P2

P3

Pointer
Levels

Leaf Type

Predicted
Type

Confidence
Estimate

Predict data type
for variable v

Fig. 4. The DRAGON model architecture 1) computes a graph embedding
for variable v, 2) passes this embedding into the shared linear layers, and 3)
passes the shared embedding to each task-specific branch as well as to the
learned confidence branch to 4) generate a predicted data type and confidence
estimate for v.

I. Learned Confidence and Loss Functions

We use the approach described by DeVries and Taylor [5]
to incorporate learned confidence estimates into DRAGON.
This technique augments each predicted data type with a
confidence value between zero and one, representing the level
of faith the model has in its own prediction. Rather than simply
interpreting the softmax outputs of a model as a measure
of confidence, this approach specifically modifies the training
process such that the model learns to recognize the level of
uncertainty associated with a particular input. This is primarily
achieved by allowing the model to “ask for hints” during
training based on its confidence estimate. As explained in
detail in [5], we implement this by interpolating between
the prediction and ground truth, with the confidence estimate
controlling the weighting between the two. A lower confidence
estimate weights the output more heavily towards ground
truth, while a high confidence estimate primarily uses the
prediction. The interpolated vector is provided as input to the
loss function, which also balances the training incentives such
that the model does not simply predict confidence estimates
of zero to “view” ground truth while learning nothing useful.

We integrate learned confidence into DRAGON by splitting
a confidence prediction branch off of the shared layers as seen
in Figure 4. This results in a single confidence estimate for
the prediction as a whole, and not separate confidence values
for each task prediction head.

We modify our loss function as described in [5] to combine
the prediction loss with the confidence loss and extend it
for multi-task outputs. We refer to the set of tasks in the
multi-task network as T . We first define the confidence loss
Lc as shown in Equation 5, where c is the single predicted

confidence probability applying to the entire model, as output
by the sigmoid function.

Lc = − log c (5)

We interpolate between the predicted class probabilities pi and
ground truth as described in [5] for each task individually,
rendering a separate p′i per task. Each task’s interpolated
prediction is then passed to the loss function for that task
to obtain the task loss, Lt. We define LT , our overall task
loss, as the sum of task-specific losses for all tasks t ∈ T , and
combine this with Lc as shown in Equation 6 to compute our
final loss, L:

L =
∑
t∈T

(Lt) + λLc (6)

where λ is a hyperparameter used to balance between the
two loss terms. To prevent the confidence estimates from
approaching 1 during training, DeVries and Taylor define
a budget parameter (β). The budget parameter manages the
balance between Lt and Lc by controlling λ dynamically: if
Lc > β then increase λ, and if Lc < β then reduce λ. In
our implementation, we use an initial λ value of 0.1 and a
β value of 0.3. For our task-specific loss functions, we use
binary cross entropy loss for all binary classification outputs
(Signed, Floating, and Boolean) and negative log likelihood
for all others.

V. EXPERIMENTAL SETUP

A. Training Dataset

Rather than create a brand new dataset of training binaries
from scratch, we collect our training binaries from the TYDA
dataset, released as part of [7]. TYDA is a large dataset of over
160,000 debug binaries compiled for a variety of architectures
and optimization levels. To train and evaluate TYGR, the
authors use only a subset of TYDA due to its massive size.
They collect a sample of roughly 8% of the TYDA binaries
which they refer to as TYDAMIN.

Since the exact composition of TYDAMIN is unknown,
we generate a sample from TYDA of similar size called
TYDAMIN-D. We sample only from non-stripped x64 O0 bina-
ries with debug information that were compiled from C code
projects.

We use the scripts released by [7] to deduplicate the
functions across our entire dataset. We then split the dataset
into 80% training, 10% validation, and 10% test splits, with
the validation set being used for model tuning and the test set
held out completely until we evaluate our final model.

In addition to TYDAMIN-D, we use RESYM’s training dataset
to retrain another instance of DRAGON from scratch. This is
described further in Section VII-B2.

1) Aligning Variables by Signature: Due to the inherent
imprecision of variable recovery, it is not always trivial to
align decompiled variables with ground truth in order to create
a labeled dataset. To address this issue, we use the variable
alignment technique described by DIRE [11] and DIRTY [21].

5

Accuracy F1
30

40

50

60

70

80

90

100

84.3 84.2

48.5
46.0

Test Set Comparison with Baseline (%)

DRAGON
Ghidra

Fig. 5. DRAGON achieves a significant improvement in both Accuracy and
F1 as compared with Ghidra on the test set.

2) Excluded Variables: We discard variables that have du-
plicate signatures, as we cannot differentiate them by signature
only. Additionally, Ghidra recovers variables that exist in
a special Unique address space which does not correspond
actual processor storage locations. The Unique address space is
defined by Ghidra to handle temporary values when modeling
the effects of processor instructions in Pcode. However, these
variables will occasionally persist through the decompila-
tion process and be included in the final set of decompiled
variables. As these variables do not correspond to any real
processor storage location and essentially behave as a function
of the other variables in the decompiled code, we exclude
Unique variables as well.

B. Metrics

We evaluate the performance of DRAGON using the metrics
of Accuracy and F1 score. Accuracy is simply the ratio of
correct predictions to the total number of predictions. Precision
and Recall determine F1 score, and are defined as functions
of the number of true positives (TP), false positives (FP),
and false negatives (FN) as shown in equations 7 and 8:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 can be calculated as the harmonic mean of Precision and
Recall according to Equation 9:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(9)

We aggregate F1 score using weighted averaging.

C. Model Training

We instantiate DRAGON with 5 graph attention layers,
2 shared linear layers, and 2 additional linear layers for
each task. Each layer uses ReLU as an activation function.
Confidence contains a single linear layer only. Each graph

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0k

10k

20k

30k

40k

50k

60k

70k

80k

Va

ria
bl

es

Test Set Confidence Distribution

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy per bin (right)

Fig. 6. Histogram of confidence estimates for test set variables. The overlaid
line plot shows the average accuracy of variables falling within each bin.

attention layer has 8 heads, and each graph and shared layer
have a dimensionality of 256 with the task-specific layers
having a dimensionality of 128. We use a dropout of 5% for the
GNN and shared linear layers during training. We train with
a learning rate of 5e−5 and a batch size of 32 for 28 epochs,
choosing the model with the highest validation accuracy at
epoch 20. We train DRAGON on a single NVIDIA H100 GPU
and 64GB of RAM with a 30-hour time limit.

VI. IMPLEMENTATION

We modify the decompiler from Ghidra version 10.3 to ex-
port decompiled function ASTs to JSON. We import binaries
into Ghidra with Decompiler Parameter ID analysis enabled
and the DWARF Debug Item Limit set to 1 billion. We use
Pytorch Geometric (PyG) 2.5 to implement DRAGON [12].
A Github repository containing directions to run our code will
be released here: https://github.com/lasserre/dragon.

VII. EVALUATION

A. Test Set Performance

1) Comparison to Baseline: We evaluate the performance
of DRAGON on the TYDAMIN-D test set using Ghidra as
a baseline. The results are shown in Figure 5. DRAGON
demonstrates a clear performance improvement over Ghidra in
both Accuracy and F1. Because DRAGON accepts decompiled
Ghidra variables as input, this comparison is made on the exact
same set of variables.

2) Learned Confidence Performance: We also use the test
set to evaluate the confidence estimates. Figure 6 shows
a histogram of the confidence values associated with each
prediction from the test set. We overlay the accuracy of the
variables contained in each bin of the histogram.

As seen in Figure 6, the accuracy of each bin steadily in-
creases with bins of increasing confidence values, demonstrat-
ing that high confidence predictions tend to outperform low
confidence predictions. Additionally, while the distribution of
confidence values is not very pronounced for this benchmark,

6

https://github.com/lasserre/dragon

TABLE I
COMPLEX BENCHMARK BINARIES, INCLUDING PROJECT INFORMATION

AND FILE SIZE OF DEBUG BUILDS WITH DWARF.

Project Version Binary ELF File Size (-g)

Apache 2.4.62 httpd 2.0 MB
Nginx 1.26.2 nginx 4.3 MB

OpenSSL 1.1.1k libssl.so 2.0 MB
Redis 7.2.4 redis-server 16.0 MB
Sqlite 34.7.02 sqlite3 3.8 MB

it appears to resemble a bimodal distribution. This makes sense
as the model has been incentivized during training to separate
the samples for which it recognizes (in-distribution) from
samples for which it is much less familiar (out-of-distribution).

B. Comparison with Prior Work

We compare DRAGON with TYGR [7] and RESYM [23],
which are two techniques representing state of the art in binary
type inference.

1) TYGR Comparison: TYGR is a state-of-the-art GNN
type recovery model that predicts data types for nodes from
a data flow graph. TYGR has the ability not only to predict
simple data types but also to recover user-defined structure
definitions. Since DRAGON only predicts simple data types,
we only compare with the simple type recovery capability of
TYGR.

We perform our evaluation using two different benchmarks.
We include Coreutils as it is commonly used for evaluating
type inference techniques [3], [7], [14], [21], [23]. Taking
inspiration from OSPREY [14] we assemble a second Complex
benchmark to represent a higher level of difficulty. To form
our complex benchmark, we combine the two binaries from
OSPREY’s complex benchmark (Apache and Nginx) and add
three additional binaries as seen in Table I. Since TYGR has
a simpler type system than DRAGON, we project both sets of
types to a common type system for comparison, as detailed in
Appendix B.

Another significant difference is that TYGR makes data type
predictions one prediction per data flow graph node, while
DRAGON makes a single prediction per variable regardless
of the number of references to that variable. Thus the number
of TYGR predictions is disproportionately higher than the
number of DRAGON predictions on the same data, as shown
in the sample data from the Coreutils benchmark in Figure 7.
To avoid the sheer number of TYGR samples from dominating
the results, we reduce the TYGR predictions down from
per-instance predictions to per-variable predictions. For each
ground truth variable, we reduce the set of per-node TYGR
predictions by taking the mode (the most commonly predicted
data type). Figure 7 shows that reducing the TYGR predictions
results in a set that is of the same order of magnitude as the
set of DRAGON variables.

Coreutils Benchmark. We use the pre-trained models
provided by TYGR. TYGR provides models trained on each
combination of five different architectures and four optimiza-

ARM64 ARM x86 x64

103

104

Mean Samples per Binary (Coreutils O0)
DRAGON TYGR (Reduced) TYGR

Fig. 7. Reducing the node-level TYGR predictions to variable-level predic-
tions enables a fairer comparison at the same order of magnitude.

tion levels. We compare TYGR and DRAGON across four
architectures (x64, x86, ARM, and ARM64) at the O0 opti-
mization level. However, we only train DRAGON on x64 O0
binaries, and use this single model for all TYGR evaluations.

Figure 8a presents the comparison results between TYGR
and DRAGON on Coreutils. Despite only using a single
DRAGON model trained on x64 O0 binaries, DRAGON
outperforms TYGR on this dataset. This result makes sense
because the inputs presented to DRAGON are directly de-
rived from decompiled ASTs, which lack architecture-specific
information. What is interesting is that DRAGON is able
to maintain a high level of performance without relying on
architecture-specific information such as specific assembly
code instructions and their operands. These results suggest
that training a single model is sufficient for maintaining a
relatively stable level of performance across binaries compiled
for different architectures.

We also observe that our experiment results in a lower
accuracy from TYGR than that described in their previously
published results on the same Coreutils benchmark [7]. We
believe this difference is largely a result of the different eval-
uation techniques used in the two experiments. Specifically,
the OSPREY type system used in the TYGR evaluation is
much simpler than the type system we use for our evaluation.
Additionally, our reduction of TYGR node-level predictions to
a single prediction per ground truth variable greatly reduces
the size of the TYGR prediction set. Finally, the previously
published results exclude functions contained in the TYGR
training set, while we perform no such exclusions. We also
point out that there may be better alternatives for transform-
ing the node-level predictions into variable-level predictions,
which could result in higher accuracy as well.

Complex Benchmark. The results of the complex bench-
mark evaluation are shown in Figure 8b. As seen in Table I,
the Redis binary is significantly larger than the others. This

7

x64 x86 ARM64 ARM
30

40

50

60

70

80

90

100

79.5

65.4

91.4
88.2

60.8

45.8

58.8

47.5

Coreutils O0 Accuracy (%)

DRAGON
TYGR

(a) DRAGON demonstrates a higher level of accuracy than TYGR on Coreutils
compiled at O0 across all architectures.

Apache OpenSSL Nginx Redis Sqlite
30

40

50

60

70

80

90

100

75.8

85.9

77.3

56.9

85.3

68.3 66.4

79.8

53.1

78.5

Complex Benchmark Accuracy (%)

DRAGON
TYGR

(b) DRAGON achieves superior accuracy to TYGR for every binary except
Nginx, on which it remains competitive at only 2.5% less than TYGR.

Fig. 8. TYGR comparison results show that DRAGON maintains competitive or superior performance.

seems to challenge both DRAGON and TYGR equally, as their
accuracies collectively plummet below 60%.

DRAGON exhibits competitive performance with TYGR on
each of the binaries in the Complex benchmark, exceeding the
accuracy of TYGR on all but Nginx, for which it only lags
by about 2.5%. This demonstrates that DRAGON can predict
simple types effectively on binaries of non-trivial complexity
as compared with state of the art.

2) RESYM Comparison: RESYM [23] is an LLM-based
approach that is comprised of multiple components for variable
type prediction, structure field recovery, and a reasoning
algorithm which post-processes the final results. We compare
only with the VarDecoder model, which predicts data types for
decompiled variables from Hex Rays just as DRAGON does
from Ghidra. We compare DRAGON with the results released
by RESYM.

For this comparison, we retrain DRAGON from scratch on
the functions from RESYM’s training set.4 We reserve 10% of
the data for validation and select the model with the highest
validation accuracy for comparison. We train for 35 epochs
within a 24-hour time limit. Epoch 32 provides the highest
validation accuracy. All other hyperparameters are kept the
same as with training on the TYDAMIN-D dataset (Section V-C).
This retrained DRAGON model is DRAGONR below.

Since the outputs of VarDecoder are simple strings, we
perform some post-processing to interpret and project the
RESYM-predicted data types to our type system. First we
remove all variables whose ground truth is labeled with a dash
("-"). RESYM uses this label for decompiled variables that do
not align with the start of a ground truth variable. Since our
alignment technique (Section V-A1) excludes such variables
naturally, we exclude ground truth dashes from the RESYM
test set.

4Ghidra failed to import six of the binaries and their functions were
excluded

TABLE II
DRAGONR DEMONSTRATES COMPETITIVE PERFORMANCE WITH RESYM.

Accuracy F1

DRAGONR 0.8702 0.8725
RESYM 0.8595 0.8613

We begin by processing DWARF debug information from
all binaries in both the training and test sets to create a lookup
table mapping user-defined type names to their canonical data
type definitions. We validate that this covers all ground truth
types present in the test set. For each VarDecoder test set
prediction, we remove any qualifiers such as const, parse the
form of the data type, and look up the named portion of the
type (such as a typedef or structure name) in our previously
generated lookup table. This form of the data type is then
recorded in the equivalent format as the usual DRAGON data
types. For example, if T is a typedef to a structure, we convert
the type T** to PTR, PTR, STRUCT. During the type name
lookup step, we ignore any possible ambiguity in type names,
since VarDecoder itself does not distinguish beyond the name
of the predicted type as the output.

As VarDecoder fine-tunes an existing model, its vocabulary
includes type names from data outside the RESYM dataset.
While all ground truth types map to a known definition in
our lookup table, some VarDecoder predictions do not. While
RESYM would have considered these as incorrect predictions
due to the type name being incorrect, we only consider the
syntactic type. Since we have no knowledge of the form
of these data types (e.g. enum, structure, typedef, etc.), we
exclude these RESYM predictions from the evaluation. These
cases account for only 1.35% of the original set of predictions.

Table II presents the results of the evaluation on the RESYM
test set binaries. DRAGONR demonstrates a competitive level

8

TABLE III
DRAGON GENERALIZES WELL ACROSS ALL COMBINATIONS OF ARCHITECTURE AND OPTIMIZATION LEVEL ON THE COREUTILS BENCHMARK.

O0 O1 O2 O3

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

ARM 0.870 0.867 0.813 0.807 0.842 0.841 0.856 0.854
ARM64 0.905 0.902 0.864 0.856 0.839 0.829 0.838 0.829

x64 0.768 0.766 0.721 0.715 0.711 0.698 0.676 0.670
x86 0.624 0.602 0.672 0.656 0.669 0.644 0.637 0.618

of performance, just exceeding the Accuracy and F1 of
RESYM. While this VarDecoder model from RESYM was
originally trained for both variable name and semantic type
prediction, DRAGONR performs competitively for simple type
prediction.

C. Generalizability

We further evaluate the generalizability of DRAGON on
the Coreutils benchmark compiled for each combination of
architecture (x64, x86, ARM64, and ARM) and optimization
level (O0, O1, O2, and O3). Table III shows the Accuracy
and F1 score for each combination. Note that while the O0
column is the same configuration as in the TYGR comparison,
we do not project DRAGON types to the (simpler) common
type system (and thus the accuracy is slightly lower).

DRAGON demonstrates consistent generalizability across
all combinations of architecture and optimization level. In-
terestingly, the ARM and ARM64 configurations outperform
the x64 architecture on which DRAGON was trained. As
decompilers routinely produce different-looking pseudocode
for different architectures, we speculate the higher accuracy
exhibited by DRAGON on ARM may be a downstream result
of differences in Ghidra’s analysis on ARM vs. x64 such
as fundamental differences in variable recovery. However, we
leave a detailed investigation of these effects for future work.

D. Learned Confidence Evaluation

We evaluate the behavior of the learned confidence es-
timates by comparing the distribution of confidence values
with prediction accuracy for three binaries from the Complex
benchmark. We select Redis, Apache, and OpenSSL as these
three binaries represent low, medium, and high levels of overall
accuracy. Figure 9 presents the results of this comparison. Fig-
ure 9a shows the confidence distributions of each binary, sorted
by the overall prediction accuracy achieved by DRAGON on
that binary. The median confidence values shown in the box
plot can be seen steadily increasing with increasing accuracy,
demonstrating that the learned confidence estimates convey a
meaningful sense of the quality of results we can reasonably
expect. Figures 9b-9d show a histogram of confidence values
produced for each binary, along with the average accuracy of
the variables contained within each bin.

VIII. DISCUSSION

Our evaluations demonstrate that DRAGON performs com-
petitively with state-of-the-art approaches, including both an-
other GNN-based model operating at the data flow graph level
as well as an LLM-based model. DRAGON’s competitiveness
with TYGR is interesting because it demonstrates that the
information contained in the more abstract AST representation
is sufficient for effective syntactic type recovery, rather than
the lower level of abstraction used by TYGR.

One important point is that, as with any machine learning
approach, the quality of the training dataset can have a
profound impact on the utility of the resulting model. While
our training dataset could definitely be enhanced in the future,
we believe our dataset is sufficiently robust both relative to
state of the art (we use datasets of nearly identical size and
complexity) as well as to real-world programs, on which we
demonstrate a high level of accuracy.

We observe that the distribution of confidence values can
help provide insight on the relative complexity of an unknown
dataset. While the particular confidence values produced by
a model are unique to that particular model, its training
parameters, and the dataset it was trained on, comparing the
confidence distribution of different datasets using the same
model provides a possible method of comparison.

In [5], DeVries and Taylor address challenges to effectively
training a model to estimate confidence. One such challenge
occurs when there are insufficient misclassified samples during
training, which happens when the model is able to correctly
classify the vast majority of inputs. To combat this problem,
they apply data augmentation techniques to synthetically gen-
erate hard to classify inputs. While we do not apply data
augmentation to train DRAGON, we believe our training
dataset was sufficiently complex, as demonstrated by our
evaluation results of the confidence estimates.

IX. CONCLUSION

We describe DRAGON, a multi-task GNN model for pre-
dicting syntactic simple data types from decompiled ASTs
with confidence estimates. We demonstrate that DRAGON
performs competitively with TYGR and RESYM, two state-
of-the-art binary type inference models. DRAGON is able to
generalize well to binary code compiled both for different
architectures and optimization levels than the data that was
used to train DRAGON. We show that the confidence estimates

9

Redis Apache OpenSSL
0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
54% Accuracy 73% Accuracy 84% Accuracy

Confidence Distributions by Increasing Accuracy

(a) Box plots of confidence estimates sorted by increasing accuracy
correlate with corresponding increase in median confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

600

800

1000

Va

ria
bl

es

Apache

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy per bin (right)

(b) Confidence estimate histogram and per-bin accuracy for Apache
show a comparable number of predictions in the 10-20% and 90-100%
confidence ranges. Per-bin accuracy is correlated with confidence value.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0k

2.5k

5.0k

7.5k

10.0k

12.5k

15.0k

17.5k

Va

ria
bl

es

Redis

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Accuracy per bin (right)

(c) While the dominant percentage of low confidence predictions for
Redis is indicative of its low overall accuracy of 54%, the highest
confidence bin achieves an accuracy of roughly 80%.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

250

500

750

1000

1250

1500

1750

Va

ria
bl

es

OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy per bin (right)

(d) OpenSSL achieves the highest overall accuracy of 84%, consistent
with its confidence distribution having the largest proportion of sam-
ples in the highest confidence bin.

Fig. 9. Comparison of learned confidence distributions and accuracy on Redis, Apache, and OpenSSL. DRAGON produces a higher ratio of low confidence
predictions for benchmarks with lower overall accuracy, yet maintains a strong correlation between predicted confidence value and accuracy in all cases.

returned by DRAGON provide useful information, with higher
confidence predictions resulting in an overall higher level of
accuracy than those with low confidence.

There are several promising areas for future work. Most
obviously, DRAGON could be extended to recover structure
definitions. In addition, the confidence estimates offered by
DRAGON provide an opportunity for incorporation into other
binary analyses that consume type information. This might
include things like excluding low confidence type predictions
from downstream analysis or using the confidence values as
a weighting. We intend to extend DRAGON for structure
recovery incorporating the simple type confidence estimates
in the near future.

ACKNOWLEDGMENT

This work was made possible in part by a grant of high per-
formance computing resources and technical support from the
Alabama Supercomputer Authority. We thank Logan Cannan

for his collaboration and feedback from testing and running
all the components required to use DRAGON.

We offer our sincere appreciation to the TYGR authors for
their assistance and recommendations for effectively running
TYGR. Additionally, we express our gratitude for the public
availability of TYDA, which we feel is of great benefit to the
binary analysis community.

REFERENCES

[1] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “TIFF: Using Input
Type Inference To Improve Fuzzing,” in Proceedings of the 34th
Annual Computer Security Applications Conference, ser. ACSAC ’18.
New York, NY, USA: Association for Computing Machinery, Dec. 2018,
pp. 505–517.

[2] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. Sørensen, and
M. Tofte, “AnnoDomini: From type theory to Year 2000 conversion
tool,” in Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’99. New York,
NY, USA: Association for Computing Machinery, Jan. 1999, pp. 1–14.

10

[3] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse engineer-
ing of types in binary programs,” in Network and Distributed System
Security Symposium, 2011.

[4] J. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures,” in Proceedings of NDSS’2011,
2011.

[5] T. DeVries and G. W. Taylor, “Learning Confidence for Out-of-
Distribution Detection in Neural Networks,” Feb. 2018.

[6] X. Wang, X. Xu, Q. Li, M. Yuan, and J. Xue, “Recov-
ering Container Class Types in C++ Binaries,” in 2022
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), Apr. 2022, pp. 131–143.

[7] C. Zhu, Z. Li, A. Xue, A. P. Bajaj, W. Gibbs, Y. Liu, R. Alur,
T. Bao, H. Dai, A. Doupé, M. Naik, Y. Shoshitaishvili, R. Wang, and
A. Machiry, “TYGR: Type inference on stripped binaries using graph
neural networks,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024, pp.
4283–4300.

[8] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “LambdaNet: Probabilistic
Type Inference using Graph Neural Networks,” Apr. 2020.

[9] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to Rep-
resent Programs with Graphs,” May 2018.

[10] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to
Represent Programs with Heterogeneous Graphs,” in 2022 IEEE/ACM
30th International Conference on Program Comprehension (ICPC), May
2022, pp. 378–389.

[11] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig,
and B. Vasilescu, “DIRE: A Neural Approach to Decompiled Iden-
tifier Naming,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov. 2019, pp. 628–639.

[12] “Pytorch Geometric,” https://pyg.org//.
[13] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data

structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium, ser. Cerias ’10. West Lafayette, IN:
CERIAS - Purdue University, 2010.

[14] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon, Y. Aafer, and
X. Zhang, “OSPREY: Recovery of Variable and Data Structure via
Probabilistic Analysis for Stripped Binary,” in 2021 IEEE Symposium
on Security and Privacy (SP), May 2021, pp. 813–832.

[15] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “TypeMiner:
Recovering Types in Binary Programs Using Machine Learning,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. Lecture Notes in Computer Science, R. Perdisci, C. Maurice,
G. Giacinto, and M. Almgren, Eds. Cham: Springer International
Publishing, 2019, pp. 288–308.

[16] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev,
“Debin: Predicting Debug Information in Stripped Binaries,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, Oct. 2018, pp. 1667–1680.

[17] Z. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in Proceedings of the 26th
USENIX Security Symposium, 2017, pp. 99–116.

[18] Y. Lin, D. Gao, and D. Lo, “ReSIL: Revivifying Function Signa-
ture Inference using Deep Learning with Domain-Specific Knowl-
edge,” in Proceedings of the Twelfth ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’22. New York, NY,
USA: Association for Computing Machinery, Apr. 2022, pp. 107–118.

[19] L. Chen, Z. He, and B. Mao, “CATI: Context-Assisted
Type Inference from Stripped Binaries,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Jun. 2020, pp. 88–98.

[20] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-
King, V. Ummadisetty, J. Yang, B. Ray, and S. Jana, “State-
Former: Fine-grained type recovery from binaries using generative
state modeling,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2021. New York,
NY, USA: Association for Computing Machinery, Aug. 2021, pp. 690–
702.

[21] Q. Chen, J. Lacomis, E. J. Schwartz, C. L. Goues, G. Neubig,
and B. Vasilescu, “Augmenting Decompiler Output with Learned
Variable Names and Types,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 4327–4343.

[22] H. Green, E. J. Schwartz, C. L. Goues, and B. Vasilescu, “STRIDE:
Simple Type Recognition In Decompiled Executables,” Jul. 2024.

[23] D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang,
“ReSym: Harnessing LLMs to Recover Variable and Data Structure
Symbols from Stripped Binaries,” in Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’24. New York, NY, USA: Association for Computing
Machinery, Dec. 2024, pp. 4554–4568.

[24] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” arXiv preprint
arXiv:1706.02690, 2017.

[25] R. Caruana, “Multitask Learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, Jul. 1997.

[26] “Introduction to the Clang AST,”
https://clang.llvm.org/docs/IntroductionToTheClangAST.html.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in International Conference on
Learning Representations, Feb. 2018.

APPENDIX

A. Data Type Encoding Implementation

This section provides additional details about the data type
encoding, as shown in Figure 2.

The leaf type vector is encoded as a concatenation of all
its attributes (e.g. Category, Size, etc.) where each attribute is
itself one-hot encoded. The proper encoded leaf type form for
all non-BUILTIN data types is a vector of zeroes.

The pointer levels are interpreted in order, left-to-right. Each
level is one of PTR, ARR, or LEAF, indicating whether that
level represents a pointer, array, or leaf type respectively. The
first occurrence of LEAF signals the end of any further PTR
or ARR levels, and we fill the levels (to the right) that follow
with LEAF. For example, we encode the pointer levels for
FILE*[] as ARR, PTR, LEAF, and char as LEAF, LEAF,
LEAF. We one-hot encode this vector for each of the pointer
levels.

Most C data types 5 have an obvious mapping directly
to our encoding, like int32_t which would be repre-
sented as LEAF, LEAF, LEAF, Category=BUILTIN, Size=4,
Signed=True, Floating=False, Boolean=False. A couple of
notable exceptions include void, which is indicated by
BUILTIN type with a size of zero, and function point-
ers, which do require at least one pointer level (i.e. PTR,
LEAF, LEAF, Category=FUNC, Size=0, Signed=False, Float-
ing=False, Boolean=False).

In our current implementation that converts between our
encoding and a named type, we do not differentiate between
10B and 16B floating point numbers but treat them both as
long double.

B. Type Projection for TYGR Comparison

This section describes the type projection performed to
convert TYGR and DRAGON data types to a common type
system. As we do not compare with the structure recovery
capability of TYGR, we convert all data types to simple type
representations common to both tools.

5As we encode type size explicitly, we assume the size of integral types is
known or chosen (e.g. sizeof(int)=8)

11

For TYGR, we simply convert all struct_xyz type
entries into STRUCT, since DRAGON does not retype internal
structure components.

For DRAGON, we apply the following transformations:
• Convert uchar to char as TYGR does not represent
uchar.

• Convert function pointers to void*, as TYGR does.
• Convert array element types to void, as TYGR does not

represent them.
• Convert types with two or more pointer levels to
void**, as TYGR does.

12

	Introduction
	Background
	Syntactic Simple Type Recovery

	Related Work
	Learned Confidence Estimation

	Approach
	Overview
	Abstract Syntax Tree Representation
	Graph Neural Network Architecture
	Data Type Encoding
	Node Encoding
	Edge Features
	Variable Graphs (Inputs)
	Multi-Task Outputs
	Learned Confidence and Loss Functions

	Experimental Setup
	Training Dataset
	Aligning Variables by Signature
	Excluded Variables

	Metrics
	Model Training

	Implementation
	Evaluation
	Test Set Performance
	Comparison to Baseline
	Learned Confidence Performance

	Comparison with Prior Work
	TyGr Comparison
	ReSym Comparison

	Generalizability
	Learned Confidence Evaluation

	Discussion
	Conclusion
	References
	Appendix
	Data Type Encoding Implementation
	Type Projection for TyGr Comparison

