
Inspecting Compiler Optimizations on Mixed
Boolean Arithmetic Obfuscation

Rachael Little
University of New Hampshire

rachael.little@unh.edu

Dongpeng Xu
University of New Hampshire

dongpeng.xu@unh.edu

Abstract—Software obfuscation is a form of code protection
designed to hide the inner workings of a program from reverse
engineering and analysis. Mixed Boolean Arithmetic (MBA) is
one popular form that obscures simple arithmetic expressions
via transformation to more complex equations involving both
boolean and arithmetic operations. Most prior works focused
on developing strong MBA at the source code or expression
level; however, how many of them are resilient against compiler
optimizations still remain unknown. In this work, we carefully
inspect the strength of MBA obfuscation after various compiler
optimizations. We embed MBA expressions from several pop-
ular datasets into C programs and examine how they appear
post-compilation using the compilers GCC, Clang, and MSVC.
Surprisingly, we discover a notable trend of reduction in MBA
size and complexity after compiler optimization. We report our
findings and discuss how MBA expressions are impacted by
compiler optimizations.

I. INTRODUCTION

Mixed Boolean Arithmetic (MBA) is a form of software
obfuscation which has been a prominent focus of research in
software security over the last two decades[1][2][3]. Software
obfuscation is the process of transforming program instruc-
tions into a semantically equivalent but much harder to analyze
form; depending on the tools used, it can be applied at the
binary or source code level. MBA specifically involves rewrit-
ing algebraic instructions by inter-mixing boolean operators
so that SMT solvers are unable to solve them or greatly
slowed down in their analysis. MBA have been in use both in
commercial DRM and protection scheme[4] and by the authors
of malware[5].

Numerous MBA simplification techniques have been de-
vised to attempt to break MBA obfuscation and measure their
strength, including those employing pattern matching [6], pro-
gram synthesis[7] [8], machine learning [9], and adaptation for
SMT solving[4]. The majority of these work at the expression
or C source code level, with some support for binary analysis,
with the exception of the recent tool GooMBA. GooMBA uses
a combination of heuristics, solving and program synthesis to
solve MBA at the binary level [10]. In response to several

of these techniques, recent works have also focused on im-
proving the strength, size, and complexity of MBA[3][11]. In
particular, non-linear (also known as polynomial) MBA, which
heavily increase the semantic complexity of MBA expressions,
have been shown to thwart a number of popular tools[5] [12].
Problem. Interestingly, a number of MBA expressions embed-
ded at source code level can be removed by compiler optimiza-
tions. Although a few works have discussed this possibility in
general detail[1], none have comprehensively examined the
persistence of popular MBA datasets post-compilation. In this
paper, we test this using three popular industry compilers,
GCC, MSVC, and Clang, and how they affect MBA at various
optimization levels. We give an overview of these compilers
and their optimizations, and show the size reduction and
simplification of both polynomial and linear MBA from a
diverse set of recent works.
Findings. We find that compiler optimizations are able to
reduce a considerable number of MBA, at times even entirely
reducing them to their original expressions. Across all datasets
we tested, over 50% of the MBA were reduced in size post-
compilation using aggressive optimization settings. Compilers
are able to simplify lengthy sub-expressions generated by
term rewriting rules. Many MBA datasets are created using
term-rewriting, which leaves redundancies that compilers can
easily identify and remove. Our dataset and analysis scripts
are available at https://github.com/mbacompilation/inspecting-
compiler-opts.

II. BACKGROUND

Mixed Boolean Arithmetic(MBA) expressions are a form
of software obfuscation applied to mathematical operations
to obscure their semantics and deter analysis. Specifically,
they feature boolean (or bitwise) operations intermixed with
arithmetic (addition, division, multiplication, and subtraction).
Typical mathematical solvers such as Z3 are unable to process
them correctly, and as a result, several software protection
companies have employed them for protection.[13].

MBA appear majorly in two forms, linear and polynomial.
Linear MBA is typically generated by exchanging arithmetic
operations (such as plus and minus) with equivalent boolean
expressions. Fig. 1 shows an example of some MBA transfor-
mations provided by the Tigress obfuscator[14].

Over the last two decades, numerous works have been
developed to advance the state of knowledge of MBA, both

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23007
www.ndss-symposium.org

https://github.com/mbacompilation/inspecting-compiler-opts
https://github.com/mbacompilation/inspecting-compiler-opts

x+ y = (x ∨ y) + (x ∧ y)

= x− ¬y − 1

= (x⊕ y) + 2 · (x ∧ y)

Fig. 1: Linear MBA from the Tigress Obfuscator.

from both defending and attacking sides; initial survey works
detail the construction and means of breaking early forms of
MBA[1][2]. Later works including MBA-Obfuscator[3] and
Loki[11] improve upon these and boast powerful advance-
ments in the complexity of available MBA formula.

One area which has received less study is the application of
typical compiler optimizations upon MBA. Modern compilers
apply transformations to code which improve its performance
and, optionally, tremendously reduce its size. Although no-
table works such as Eyrolles’ thesis[1] notes that compiler
optimizations are able to remove some MBA, and some build
upon compiler optimization theory to reduce MBA[15], no
works focus specifically on the effects of standard compiler
optimization passes on MBA datasets at a widespread level.
In the following sections, we describe some MBA formula
in more detail, and give an overview on typical compiler
optimizations.

A. MBA Formula

1) Tigress: The Tigress obfuscator, which offers a number
of software obfuscation types, includes MBA as part of its
data protection options. Tigress takes arithmetic expressions
at the C source code level and then transforms them to several
possible MBA equivalents. At its most basic, default settings,
it applies a transformation to each operation it encounters
(addition or subtraction) but does not support multiplication
or division. Tigress also includes options for increasing the
size and complexity of its MBA outputs using depth level
(effectively, the number of times it applies transformations
on each operation), splitting the output into multiple pieces,
and adding opaque predicates, among others[14]. Its MBA
transformations are derived from a set of boolean identities
detailed in the book Hacker’s Delight[14][16].

Tigress’ transformations have been used in several works on
MBA, including Syntia[7], a synthesis-based tool for software
deobfuscation, QSynth, a later work which refines and builds
upon the concept of oracle-driven synthesis for simplifying
MBA expressions[8], and Saturn, a deobfuscation tool which
lifts binaries to LLVM and applies compiler optimizations on
them for deobfuscation[15]. However, it has a limited number
MBA rewriting rules, containing 16 unique MBA expressions
which are reapplied, making it prone to pattern matching
attacks[7].

2) MBA Obfuscator: MBA-Obfuscator[3] attempted to ex-
pand the complexity and resilience of MBA obfuscations by
introducing non-linearity. Where linear MBA is defined as

a sum of terms consisting of a boolean operation combined
with a constant, polynomial MBA extend this definition to
include the multiplication of a boolean expression with each
term. Polynomial MBA are much harder to factor than linear
MBA, and several prominent MBA deobfuscation tools are
unable to solve them. Fig. 2 presents a polynomial MBA as
shown by [4]. Unlike the linear MBA shown in Fig. 1, the
polynomial MBA may include multiplied boolean terms, for
instance, ”(x ∧ y) ∗ (x ∨ y)”.

(x ∧ y) ∗ (x ∨ y) + (x ∧ ¬y) ∗ (¬x ∧ y)− 41

Fig. 2: An example of Polynomial MBA.

MBA Obfuscator describes methods to generate unlimited
polynomial MBA which are difficult to factor and reverse,
including term rearranging, recursive rewriting, the use of
linear combinations. Many MBA tools including NeuReduce
and MBA-Blast are unable to simplify the resulting poly
MBA, and can only reduce the linear MBA in the MBA
Obfuscator dataset[3][5]. Newer works which build upon the
MBA-solving and program synthesis techniques in [4] [7][8],
SiMBA[12] and GAMBA[5] are able to solve both the poly-
nomial MBA and linear MBA within the MBA Obfuscator
dataset. The dataset includes over one thousand poly MBA
samples and several linear ones.

3) Loki: The 2023 obfuscation tool Loki, which primar-
ily focuses on virtualization obfuscation, also uses MBA to
diversify its handlers. It generates a large number of seman-
tically equivalent arithmetic expressions using synthesis to
verify their accuracy, and then randomly selects from them to
recursively rewrite expression terms up to a given complexity
level. The dataset includes 30 ”depth” levels, where the depth
indicates the number of times an expression has had recursive
rewriting applied[11]. In total, Loki’s MBA dataset includes
approximately thirty-thousand individual samples; of these, the
authors find that MBA-Blast is only able to simplify 0.5% of
these.

B. The Use of Optimization Techniques in MBA Deobfuscation

In her thesis’ thorough exploration of MBA formula,
Eyrolles observes several MBA which may be removed
post-compilation, and discusses some changes which might
strengthen them[1]. However, the work does not perform an
in-depth survey of the effects of compilation on MBA, and
since publication, new MBA datasets have been created. As
far as we find, no work has performed a comprehensive survey
of industry compiler effects on MBA. Eyrolles also discusses
works which incorporate compiler optimization theory to
reduce MBA, but these are highly specific tools which are
constrained by several limitations which make their general
use infeasible. For example, Souper, a superoptimizer which
can synthesize MBA expressions, requires prior knowledge
about the MBA expressions[1][17].

2

Another work which takes advantage of LLVM optimiza-
tion is Saturn, which performs general deobfuscation cov-
ering MBA, virtualization, and ROP-chain obfuscation. Its
authors find that existing compiler optimizations are quite
effectively able to simplify obfuscated code by removal of
junk instructions.[15]. However, this work similarly does not
include a comprehensive evaluation of MBA which survive
compilation, as it is somewhat outside of its scope as a general
deobfuscation tool using LLVM.

Aside from Saturn, Souper, and MBA-Blast, most MBA
generation and evaluation tools work at the expression or C
source code level, rather than at the binary level and do not
test the survival rate of MBA post-compilation.

We thus identify a hole in the state of MBA research
concerning the real-world reliability in MBA works. Although
a range of complex, dense MBA samples are available, their
practicality of use in executables is less clear. Evidently,
a work examining this is needed, as it has major security
implications for the use of MBA as a protective mechanism
in software.

C. Compiler Optimizations

Popular industry compilers typically include optimizations
to speed the execution of generated programs by default, as
well as additional settings for reducing the size or speed of
compiled code. Optimizations can perform arithmetic simplifi-
cations, function inlining, and compressing functions of small
size into main code when the functions are smaller than typical
assembly prologue and cleanup code[18][19].

Particular optimizations such as constant folding, dead code
removal, and constant propagation are especially effective
at simplifying arithmetic sequences. These have been an
established practice for several decades and the focus of
several works on compiler theory[20][21]. They are so in-
grained that the GCC, a widely-used compiler initially released
in 1987[22], applies them by default, and Clang, another
popular compiler, applies them during its first pass of its
compilation[19]. Additional ”aggressive” levels, enabled by
special compiler settings, apply additional rounds of these op-
timizations at higher levels of intermediate representation(IR),
which enable much more efficient optimization.

These optimizations and additional options vary across
compiler type; we describe them in more detail below.

D. GCC

By default, GCC performs basic arithmetic optimizations
such as constant folding and dead code elimination with no
additional optimizations enabled. GCC, as part of its compila-
tion process, also transforms code to GIMPLE, its intermediate
representation (IR), and its backend representation Register
Transfer Language (RTL). At more aggressive settings, GCC
performs arithmetic optimizations on these representations in
order to achieve maximum efficiency.[18]

GCC provides optimization options for both size and gen-
eral performance improvements, typically at the cost of higher
compilation time. Most of these settings concern program

structure, including compressing functions and skipping func-
tion stack setup where possible, optimizing loop structures,
inlining code, and many others; however, they also enable
arithmetic simplification on its intermediate representations.

E. Clang

Like GCC, Clang includes basic arithmetic optimizations
by default, and only enables more intensive transformations
at higher levels. Although most of Clang’s size and speed
settings also concern general code reduction not relevant to
MBA simplification, there are several enabled arithmetic opti-
mizations, including those performed on Clang’s intermediate
representation, ”LLVM-IR”[19].

F. MSVC

The MSVC compiler includes two families of optimizations
which separately optimize for speed and size. By default,
when optimizations are enabled MSVC tends towards speed-
improving optimizations. Conversely, MSVC can also opti-
mize for smaller binaries (fewer instructions), sometimes at
the cost of compilation time and overall program performance,
using /O1.

III. IMPLEMENTATION

For our MBA compilation analysis, we pass a selection of
MBA through three industry compilers, GCC, MSVC, and
Clang, with and without additional optimizations, and then
examine the compiled MBA expressions for comparison.

In this section, we detail our process for compiling the
MBA and then lifting the result from the binary level for
comparison. We also describe some of our techniques for
measuring complexity and size reduction.

A. Complexity Metrics

Measuring MBA complexity varies across usage examples
and generally has no singular definition[1]. The authors of
MBA-Blast, which can also lift MBA from the binary level,
[13] describe measuring the semantic complexity of MBA
expressions by representing them as trees or as directed
acyclic graphs (DAG)s and then examining the number of leaf
nodes(constants) and operations.

Eyrolles defines a measure of complexity using DAGs where
a DAG node is an operation between two other nodes and
does not appear more than once in any given graph. Instead,
duplicate operations are replaced with directed links which
point to a single instance of that operation. This provides a
more precise definition of the MBA’s complexity, as once a
single term is solved, identical terms may easily be rewritten
as the solved term, without requiring repeat analysis[1].

We use a hybrid approach and record several metrics across
our samples: the overall number of operations, the number of
DAG nodes as defined by Eyrolles, the number of DAG node
reductions across MBA datasets, and the proportion of DAG
nodes to total operations, as this gives insight to how many
operations within the MBA are unique or repeated.

Fig. 4 shows a sample AST representation of the MBA ex-
pression (A + B) ˆ (A - (A + B)). The total number

3

int mba 1(int x, int y) {
return x ^ (y * 2) | x * (y + ...

}

int mba2(int x, int y) {
return (x & y) ^ x + y *...

}

int mba3(int x, int y, int z) {
return (x + 1) << (x + y) *

...

MBA Dataset

GCC

GCC -O3

Clang

 1. x ^ (y * 2) | x * (y + ...

 2. (x & y) ^ (x + y) * ...

 3. (x + 1) << (x + y) * ...

...

...

CompilationC File Embedding Ghidra Decompiler

GCC_mba 1(int x, int y):
return x + y

...

Compiled Expressions

GCC_O3_mba 1:
return x + y

...

...

CLANG_mba 1:
return x + y

...

Python AST

MBA
Statistics:

Fig. 3: Overview of MBA Analysis Pipeline

of operations for this expression is 4, but the number of unique
sub-trees, or DAG nodes, is 3. Boxed operations represent
duplicate appearances of a DAG node.

∧

+

A B

−

A +

A B

Fig. 4: An MBA expression represented as an Abstract Syntax
Tree (AST). Duplicate nodes, which comprise a single DAG
node, are indicated by the boxed branches.

B. Pipeline

Our method is as follows: First, we create a C file for
the MBA dataset in which each MBA is returned from a
function. We compile this C file using the GCC, Clang, and
MSVC compilers, first with no optimizations enabled, and then
with aggressive optimization and size-minimization settings.
Then, we use the Ghidra decompiler[23] to lift each function
back to expression level representation and extract the post-
compilation MBA for analysis using the Python AST library.
Fig. 5 presents an example of a decompiled MBA expression
in Ghidra’s format and in our lifted format as it is stored in our
dataset. Once we have the expression represented as an AST,
we perform additional processing to calculate the number of
DAG nodes, total operations, and other metrics.

i n t mba 5 (void)
{

i n t in R9D ;
i n t param 8 ;

re turn (param 8 | in R9D) * 2 −
(in R9D ˆ param 8) ;

}

mba 5 :
(e | c) * 2 − (c ˆ e)

Fig. 5: An example of Ghidra decompilation output for an
MBA expression from the QSynth dataset, and our represen-
tation post-conversion its original terms.

At higher optimization levels, some expressions are split up
into variables which are reused in the returned expression. This
affects how unique terms and the total number of operations
may be calculated within an expression compared to its pre-
compiled form, and so to ensure the best comparison, we
combine these variables into a single expression to be lifted
into the Python AST library. Fig. 3 illustrates our overall
process.

We used compiler versions: MSVC 19.32 for x86 on Win-
dows 10, Clang 14.0.0 on Ubuntu, and GCC version 11.4.0
on Ubuntu. For our analysis, we used Python version 3.12 and
Ghidra 11.03.

IV. EVALUATION: COMPILER OPTIMIZATION ON MBA

For our evaluation, we compile expressions from three
large datasets using GCC, MSVC, and Clang and detail the
changes in expression complexity. We explore traits of the
most resilient MBA and discuss those which are most likely
to affect resistance to compilation optimizations.

A. Dataset

We test on three MBA datasets from notable works, includ-
ing the full datasets from the greybox synthesis deobfuscator

4

TABLE I: MBA Removal and Reduction Post-Compilation by Number of Operations
(No. Removed – No. Reduced)

MBA (No. Samples) GCC GCC - O3 Clang Clang - O3 MSVC MSVC - O1

Loki D1 (1250) 1019 – 1215 1160 – 1230 78 – 723 1182 – 1229 266 – 843 772 – 1127

Loki D30 (1250) 150 – 1250 286 – 1250 1 – 1245 637 – 1249 10 – 1247 100 – 1250

QSynth (501) 8 – 496 10 – 497 1 – 416 20 – 496 3 – 441 7 – 485

Poly MBA (1008) 1 – 481 1 – 496 0 – 197 1 – 926 1 – 276 1 – 876

Qsynth[8], which is generated using Tigress, the polynomial
MBA from MBA-Obfuscator[3], and a selection of MBA
from the obfuscation tool Loki[11]. For the Loki dataset,
which consists of expressions ranging from 1 to 30 levels in
complexity for 5 operations, we randomly selected 250 MBA
expressions from all operation types at levels 1 and 30 for
each available operation, totaling 2500 expressions. Across all
datasets, we test 5007 MBA expressions.

B. Compiler Settings

We evaluated the effects of compilation using popular
industry compilers GCC, Clang, and MSVC.

For compiler optimizations, we select GCC and Clang’s
default and aggressive arithmetic 7optimizations (O3). For
MSVC, we test at default settings and with O1, which fa-
vors for size reduction and employs aggressive optimizations
similar to that of GCC and Clang’s O3 settings.

C. Results

Reduction and Removal of MBA Overall, we find a
remarkable reduction in MBA across most datasets when com-
piled with or without optimizations, with a notable exception
in the Poly MBA dataset.

Table I shows the number of complete simplifications and
reductions across datasets, where the compiled number of
operations is the same as that of the ground truth, and partial
reductions, respectively. The Loki dataset exhibits the greatest
number of reductions, with a majority being removed entirely
by Clang’s aggressive optimization settings. All of Loki’s
expressions at the highest complexity level are reduced to a
degree. Although only a small number of QSynth expressions
are fully reduced to the original size of the ground truth, the
majority of expressions experience some reduction in size.
The Poly MBA exhibits the least reduction, with only one
expression fully reduced and less than half of the dataset being
partially reduced by two of the compilers at default settings.

Some QSynth expressions were smaller after compilation
than the original ground truth. This happened in instances
where the ground truth expressions had some terms which
could be easily simplified, for instance, ((a − a) + a). The
smallest number of expressions simplified in this way was seen
with Clang at default settings with three expressions, and the
largest with Clang at aggressive optimizations, which reduced
73 expressions to smaller than their ground truth.

TABLE II: Average Percent Size Decrease in Total Operations

Dataset GCC - O3 Clang - O3 MSVC - O1

Loki D1 2.1% 1.5% 10.8%

Loki D30 69.9% 46.7% 73.9%

QSynth 62.6% 65.1% 45.9%

Poly MBA 4.3% 17.3% 12.6%

D. Examining Compiled MBA Traits

Table II shows the average percent change in DAG nodes for
samples which were reduced in size, excluding samples which
were fully reduced to ground truth size. MBA datasets which
use repeated expression rewriting, including Loki and QSynth,
appear to be more susceptible to reduction. Conversely, Poly-
nomial MBA, which allows for the multiplication of boolean
expressions across terms, appears to be the most resilient of
all datasets. Loki Depth 1 at a glance experiences a lower
reduction rate, but this is likely because only a few samples
are measured.

Negated Terms In a number of datasets, we found sets of
operations applied to inputs which essentially ”cancel out”, or
more specifically, are easily identified as being equivalent to
zero or to one of the original input variables. An example of
this is shown in Fig. 6, which contains a portion of an MBA
expression from the QSynth dataset. In this expression, d∗(d⊕
d) is equivalent to zero, which renders the overall term equal
to zero. These terms, which we call ”negated” terms as they
essentially self-cancel, add to the overall size of an expression,
but ultimately are easily removed by compiler optimizations.

(a ∗ d)⊕ (a− d)) ∗ ((d ∗ (d⊕ d))

Fig. 6: An example of an MBA term which is easily simplified.

We measured the proportion of DAG nodes for each ex-
pression which constitutes a negated term and show them in
Table III, to determine how much this factor may contribute
to the overall size reduction of each dataset. Overall, the Loki
and QSynth datasets exhibit the highest number of negated
terms, which are greatly reduced by aggressive compiler
optimizations. The Poly MBA contains the lowest number of
negated terms and shows a very small reduction. Recall that
DAG node measurements do not include duplicate terms, and

5

TABLE III: Average Proportion of Negated Terms

Dataset MBA GCC
O3

Clang
O3

MSVC
O1

Loki D1 15.7% 6.9% 5.6% 5.8%

Loki D30 27.6% 15.0% 9.4% 16.8%

QSynth 15.6% 5.0% 4.4% 5.6%

Poly MBA 6.6% 5.6% 6.4% 5.9%

so the overall total proportion of negated terms for expressions
is likely higher.

Unique vs. Repeated Terms A trend that we found among
MBA samples which demonstrated high resistance to com-
piler optimizations is a low proportion of repeated terms.
We measure this by measuring the number of DAG nodes
compared to total operations. For example, the term ”(x +
y) — a + (x + y)” has four total operations, but only two
unique ones; ”(x + y)” is repeated twice and makes up a
significant proportion of the expression. Table IV shows the
average proportion of unique operations across MBA datasets
pre-and post-compilation, calculated by averaging the ratio
of DAG nodes to total operations per expression. With the
exception of the Loki Depth 1 dataset, which contains very
small expressions, the datasets range from averaging 27%
to 78% unique terms per expression. Post compilation, the
proportion of unique terms tends to be higher, suggesting
that compiler optimizations are effective at identifying and
removing duplicated expressions. The Poly MBA dataset’s
overall low reduction by optimizations may be partly explained
by its relatively high proportion of unique terms.

TABLE IV: Average Proportion of Unique Terms

Dataset MBA GCC
O3

Clang
O3

MSVC
O1

Loki D1 98.0% 100.0% 100.0% 99.8%

Loki D30 29.8% 77.2% 90.0% 60.6%

QSynth 34.6% 64.5% 65.7% 54.3%

Poly MBA 82.6% 84.6% 87.2% 86.8%

Average Operation Types We also look at the average
proportion of operation type (arithmetic and boolean) across
each dataset. Because the Loki and QSynth datasets contain
little multiplication, while the Poly MBA dataset employs
it heavily due its polynomial nature, we list multiplication
separately. Fig. 7 and Fig. 8 show the average proportions
of operation type across each post-aggressive compilation.
In general, arithmetic (addition and subtraction) operations
go through the greatest reduction after compilation, with
multiplication being second; for the most part, the greatest
percentage of remaining terms consists of boolean operations.
This aligns with existing research stating that boolean opera-
tions themselves are difficult to simplify.

Dataset

0

20

40

60

80

Loki D1 Loki D30 Poly MBA QSynth

Arithmetic Boolean Multiplication

Fig. 7: Average Proportions of Operation Types Before
Compilation

Dataset

0

20

40

60

80

Loki D1
Compiled

Loki D30
Compiled

Poly MBA
Compiled

QSynth
Compiled

Arithmetic Boolean Multiplication

Fig. 8: Average Proportions of Operation Types After
Compilation

E. Summary

Overall, we find that many popular MBA expressions can
be effectively reduced by compiler optimizations, which has
tremendous implications for their usage as a security feature.
Some factors which likely contribute to susceptibility include
duplicated or easily negated terms. Based on these findings, we
theorize that MBA generation may be strengthened by rigorous
term rewriting, and suggest this as potential future works.

V. CONCLUSION

We collected the most popular MBA datasets in recent years
and surveyed their resilience through compilation. We used
GCC, MSVC, and Clang at both default and aggressive opti-
mization settings and discovered that many MBA expressions
may be dramatically reduced in size or even removed entirely,
even with no optimizations enabled. Aggressive optimizations
are quite effective in simplifying MBA expressions.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their insightful
feedback. This research was supported by NSF grants 2211905
and 2022279.

6

REFERENCES

[1] N. Eyrolles, “Obfuscation with Mixed Boolean-Arithmetic Expressions
: reconstruction, analysis and simplification tools,” Theses, Université
Paris Saclay (COmUE), Jun. 2017. [Online]. Available: https:
//theses.hal.science/tel-01623849

[2] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding
in software with mixed boolean-arithmetic transforms,” in Information
Security Applications, S. Kim, M. Yung, and H.-W. Lee, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 61–75.

[3] B. Liu, W. Feng, Q. Zheng, J. Li, and D. Xu, “Software obfuscation
with non-linear mixed boolean-arithmetic expressions,” in Information
and Communications Security: 23rd International Conference, ICICS
2021, Chongqing, China, November 19-21, 2021, Proceedings, Part I
23. Springer, 2021, pp. 276–292.

[4] D. Xu, B. Liu, W. Feng, J. Ming, Q. Zheng, J. Li, and
Q. Yu, “Boosting smt solver performance on mixed-bitwise-arithmetic
expressions,” ser. PLDI 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 651–664. [Online]. Available:
https://doi.org/10.1145/3453483.3454068

[5] B. Reichenwallner and P. Meerwald-Stadler, “Simplification of
general mixed boolean-arithmetic expressions: Gamba,” in 2023
IEEE European Symposium on Security and Privacy Workshops
(EuroSP;PW). IEEE, Jul. 2023. [Online]. Available: http://dx.doi.org/
10.1109/EuroSPW59978.2023.00053

[6] A. Guinet, N. Eyrolles, and M. Videau, “Arybo: Manipulation, Canon-
icalization and Identification of Mixed Boolean-Arithmetic Symbolic
Expressions,” in GreHack 2016, 2016.

[7] T. Blazytko, M. Contag, C. Aschermann, and T. Holz, “Syntia: Syn-
thesizing the Semantics of Obfuscated Code,” in Proceedings of the
26th USENIX Conference on Security Symposium (USENIX Security’17),
2017.

[8] R. David, L. Coniglio, and M. Ceccato, “Qsynth - a program synthesis
based approach for binary code deobfuscation,” 01 2020.

[9] W. Feng, B. Liu, D. Xu, Q. Zheng, and Y. Xu, “NeuReduce:
Reducing mixed Boolean-arithmetic expressions by recurrent neural
network,” in Findings of the Association for Computational Linguistics:
EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds. Online: Association
for Computational Linguistics, Nov. 2020, pp. 635–644. [Online].
Available: https://aclanthology.org/2020.findings-emnlp.56

[10] A. Petrov, “Hands-free binary deobfuscation with goomba,” 2023. [On-
line]. Available: https://hex-rays.com/blog/deobfuscation-with-goomba/

[11] M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler,
T. Holz, and A. Abbasi, “Loki: Hardening code obfuscation against
automated attacks,” in USENIX Security Symposium, 2022.

[12] B. Reichenwallner and P. Meerwald-Stadler, “Efficient deobfuscation of
linear mixed boolean-arithmetic expressions,” in Proceedings of the 2022
ACM Workshop on Research on Offensive and Defensive Techniques in
the Context of Man At The End (MATE) Attacks, ser. Checkmate ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
19–28. [Online]. Available: https://doi.org/10.1145/3560831.3564256

[13] B. Liu, J. Shen, J. Ming, Q. Zheng, J. Li, and D. Xu, “MBA-Blast:
Unveiling and simplifying mixed Boolean-Arithmetic obfuscation,” in
30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1701–1718. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin

[14] C. Collberg, “Tigress - encode arithmetic,” 2023, [Online: accessed 10-
May-2024]. [Online]. Available: https://tigress.wtf/encodeArithmetic.
html

[15] P. Garba and M. Favaro, “Saturn – software deobfuscation framework
based on llvm,” 2019.

[16] H. Warren, Hacker’s Delight. Addison-Wesley, 2003.
[17] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja, and

J. Regehr, “Souper: A synthesizing superoptimizer,” 2017. [Online].
Available: https://arxiv.org/abs/1711.04422

[18] A. Petrov, “A gnu manual,” [Online: accessed 11-May-2024]. [Online].
Available: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

[19] “Clang user manual,” [Online: accessed 05-19-2024]. [Online].
Available: https://clang.llvm.org/docs/UsersManual.html

[20] J. Knoop, O. Rüthing, and B. Steffen, “Optimal code motion: theory
and practice,” ACM Trans. Program. Lang. Syst., vol. 16, no. 4,
p. 1117–1155, jul 1994. [Online]. Available: https://doi.org/10.1145/
183432.183443

[21] J. Cocke, “Programming languages and their compilers,” 1969. [Online].
Available: https://api.semanticscholar.org/CorpusID:61034705

[22] “Gcc releases,” [Online: accessed 29-May-2024. [Online]. Available:
https://www.gnu.org/software/gcc/releases.html

[23] “Ghidra,” [Online: accessed 25-May-2024]. [Online]. Available:
https://ghidra-sre.org/

7

https://theses.hal.science/tel-01623849
https://theses.hal.science/tel-01623849
https://doi.org/10.1145/3453483.3454068
http://dx.doi.org/10.1109/EuroSPW59978.2023.00053
http://dx.doi.org/10.1109/EuroSPW59978.2023.00053
https://aclanthology.org/2020.findings-emnlp.56
https://hex-rays.com/blog/deobfuscation-with-goomba/
https://doi.org/10.1145/3560831.3564256
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://tigress.wtf/encodeArithmetic.html
https://tigress.wtf/encodeArithmetic.html
https://arxiv.org/abs/1711.04422
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://clang.llvm.org/docs/UsersManual.html
https://doi.org/10.1145/183432.183443
https://doi.org/10.1145/183432.183443
https://api.semanticscholar.org/CorpusID:61034705
https://www.gnu.org/software/gcc/releases.html
https://ghidra-sre.org/

	Introduction
	Background
	MBA Formula
	Tigress
	MBA Obfuscator
	Loki

	The Use of Optimization Techniques in MBA Deobfuscation
	Compiler Optimizations
	GCC
	Clang
	MSVC

	Implementation
	Complexity Metrics
	Pipeline

	Evaluation: Compiler Optimization on MBA
	Dataset
	Compiler Settings
	Results
	Examining Compiled MBA Traits
	Summary

	Conclusion
	References

