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Abstract—COVID-19 has fundamentally disrupted the way we
live. Government bodies, universities, and companies worldwide
are rapidly developing technologies to combat the COVID-19
pandemic and safely reopen society. Essential analytics tools
such as contact tracing, super-spreader event detection, and
exposure mapping require collecting and analyzing sensitive user
information. The increasing use of such powerful data-driven ap-
plications necessitates a secure, privacy-preserving infrastructure
for computation on personal data.

In this paper, we analyze two such computing infrastructures
under development at the University of Illinois at Urbana-
Champaign to track and mitigate the spread of COVID-19.
First, we present Safer Illinois, a system for decentralized health
analytics supporting two applications currently deployed with
widespread adoption: digital contact tracing and COVID-19
status cards. Second, we introduce the RokWall architecture for
privacy-preserving centralized data analytics on sensitive user
data. We discuss the architecture of these systems, design choices,
threat models considered, and the challenges we experienced in
developing production-ready systems for sensitive data analysis.

I. INTRODUCTION

COVID-19 has fundamentally disrupted the way we live.
Countless organizations, including government bodies, aca-
demic research groups, and companies, are developing and
deploying technological solutions to combat the spread of
COVID-19 [1], [2], [13], [16], [20], [25], [28]. Worldwide
efforts have reinforced that data must play an integral role for
safely reopening our communities. Technologies such as digital
contact tracing, superspreader event detection and tracking, ex-
posure mapping, migration mapping, live queues at testing lo-
cations, risk assessment, and effective stress management [18]
have been developed to help better understand and mitigate
the spread of disease. These techniques require the collection
of sensitive user information, introducing a delicately balanced
trade-off between data driven functionality and personal pri-
vacy. As more user information is disclosed, the application
can provide more accurate, responsive, and personalized expe-
riences; yet the privacy risk increases accordingly [20]. This
necessitates trustworthy and secure mechanisms to reduce the
risk of compromising sensitive information [15], [17].

We believe that universities can play a crucial role in this

area as they are viewed as relatively trustworthy entities [26].
University-led apps can create legitimate trust by establishing
public auditors and thorough review processes. Furthermore,
universities are not reliant on monetizing private data. We
expect this credibility to encourage widespread adoption.

In early summer 2020, University of Illinois at Urbana-
Champaign announced plans to resume on-campus instruction
for the fall semester. In order to reach this ambitious goal, the
university has taken several initiatives, including the develop-
ment of technologies for managing the spread of COVID-19
using the University of Illinois at Urbana-Champaign RokWire
platform [3]. Started in 2018, RokWire’s goal is to serve
as an open-source platform for smart communities, such as
campuses, cities, and organizations. The prime directive of
RokWire is to provide valuable functionality to users while
enabling fine-grain control of their data. RokWire does not
monetize individual user data and is audited by public author-
ities. With the emergence of COVID-19, we envisioned that
RokWire should become a platform for a scalable, privacy-
preserving computing infrastructure.

In this paper, we detail two secure, privacy-preserving
systems developed in the RokWire platform. First, we describe
Safer Illinois, a system for decentralized health analytics and
computation, focusing on two of its applications successfully
deployed with strong adoption: digital contact tracing based on
the recently released Google/Apple protocol and mobile status
cards displaying COVID-19 risk. We have overcome signif-
icant implementation hurdles to develop a scalable solution,
addressing significant gaps in existing protocols. We provide
details on technical challenges, remaining shortcomings, and
integration into a broader campus workflow.

Safer Illinois’s decentralized architecture enables secure
and anonymous digital contact tracing, but also limits analyti-
cal potential, particularly in aggregated computation. Unfortu-
nately, such population-scale insights are critical to forming
responsive strategies for pandemic management and public
policy. To address this limitation, we describe RokWall, a
generalizable system that can perform centralized privacy-
preserving analytics on sensitive user data. RokWall enables
advanced analytics such as superspreader event detection,
exposure mapping, and risk assessment with strong security
and privacy guarantees.

We discuss the overall architecture of RokWall, considering
both the Intel SGX platform [9] and AWS Nitro Enclaves [5],
and detail several different threat models considered.

We have successfully deployed Safer Illinois within
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RokWire and released it to university members in advance
of the Fall’2020 semester at University of Illinois at Urbana-
Champaign. We present some early Safer Illinois app usage
statistics in this paper. While the data collected so far is
limited, we already observe strong adoption and acceptance of
Safer Illinois app among the campus community. Even though
Safer@Illinois is an entirely optional service, we measure that
approximately 82.5% of the campus population have used the
app at least once during Fall’2020. Furthermore, we measure
that 53% of these users also voluntarily opt-in to the contact
tracing application. Note that this figure likely underestimates
the true adoption rate, as the university students currently
living away from campus should not be expected to use the
app but are counted in the total university population.

The RokWall infrastructure is still undergoing active de-
velopment and not yet available for public use. During the
RokWall architecture implementation process, we encountered
and continue to face several technical challenges such as early-
stage tool chains, limited availability of trusted execution envi-
roment (TEEs) in the cloud and the lack of COVID-19 specific
datasets. To address this, we are actively collaborating with
industry and the Initiative for Cryptocurrencies and Contracts
(IC3) to develop tools for TEEs. In particular, we have noticed
that there is a lot of pending innovation in enclave tool chains
and encourage the community to further explore this segment.

To summarize, we make the following main contributions:

1) Safer Illinois, a decentralized computation system,
currently supporting a digital contact tracing applica-
tion for privacy-preserving exposure notification and
mobile COVID-19 status cards.

2) RokWall, an architecture for secure, privacy-
preserving computing using secure enclaves.

3) Discuss several technical challenges we face in devel-
oping secure, privacy-preserving computing systems.

We hope this paper fosters discussion on developing a
privacy-preserving computing infrastructure within the re-
search community.

II. SAFER ILLINOIS: DECENTRALIZED COMPUTATION

Exposure notification technologies have become integral
components of public health strategies worldwide to curb the
spread of COVID-19 infections, often as a digital supplement
to manual contract tracing. Early successes at staving off the
virus in South Korea and Singapore prompted researchers
worldwide to develop protocols for effective contact tracing
through smartphone devices without significantly compromis-
ing individual privacy. As with other public health strategies to
combat the pandemic, such as facemasks and social distancing,
exposure notifications rely on high community adoption rates.
Simulation-based studies estimate that nearly 60% of individ-
uals within a region need to be actively using digital exposure
notification in order to be effective [18]. Our goal with the
RokWire project was to develop an exposure notification so-
lution that could be deployed at scale to around 100,000 users
within the University mobile app. The University requested
a production ready system by August 2020 to inform public
health policies throughout the Fall semester.

Safer Illinois is built around a simple concept: it holds
a digital version of your COVID-19 health status. If you
are tested on campus, or by a provider in the surrounding
community, the results are stored on your mobile device. The
app then manages the test results by invalidating them after a
certain time period determined by county health officials, say 4
days, prompting the user to get re-tested [24]. The results can
also be invalidated by a recent encounter with someone whom
is later determined to have been infectious at the time, through
digital exposure notification. In addition to digital contact
tracing, Safer Illinois provides mobile status cards displaying
a user’s COVID-19 exposure risk. To enter a University space,
for example, you might be asked to present your digital health
status to show that you pose minimal infection risk to others.
Those who opt-out would be asked to show test results by
paper or digital image [12]1.

As security-conscious consumers ourselves, we adopted a
privacy-centric philosophy from the onset. We chose decen-
tralized, privacy-preserving protocols when available. We keep
our codebase open-source, for additional transparency [11].
We adopted a minimal data policy, gathering as little data as
possible to meet the functionality of the application.

The Safer Illinois architecture involves five components: (a)
exposure notification, (b) integration with testing facilities, (c)
administration panel for public health authorities, (d) upload
server for positive diagnoses and (e) COVID-19 status cards.
The complexity of our system is primarily in the exposure
notification system, so we will focus discussion in this paper
on that component, with briefer discussions on the others.

The design space for exposure notification includes a
choice of proximity estimation (i.e, Bluetooth, WiFi, ultra-
sonic, GPS, etc), centralized vs. decentralized vs. hybrid
architecture, cryptographic protocol, etc. Our approach was
to leverage the ongoing work by various security experts
and communities worldwide, who were creating open-source
protocols for digital exposure notification.

We evaluated three protocols in depth, namely the Tem-
porary Contact Number (or TCN) protocol [13], Decentralized
Privacy-Preserving Proximity Tracing (or DP-3T) [28] and the
Google/Apple Exposure Notification (or GAEN) protocol [1],
[2], each of which were summarized briefly below.

TCN protocol generates a Temporary Contact Number (or
TCN), a psuedo-random identifier derived from a seed, every
15 minutes. Unique TCNs are exchanged via Bluetooth Low
Energy (or BLE) and stored when two devices come in close
proximity. When a user tests positive, a report is sent to a
centralized server with the list of TCNs exposed. User devices
pull this report and determine matching TCN to see if the user
has been exposed.

DP-3T protocol differs from the TCN protocol on how
anonymous IDs are generated (random seed with deterministic
hash + truncation vs asymmetric key-pair with deterministic
hash ratchet in TCN), what information is reported (EphID
and seed of all relevant epochs vs public key with start and
end time and tck for regenerating TCN for timeblock) and
what information is stored (hash(EphIDs) and epoch i,
proximity, duration and coarse time indication vs TCN value).

1Please refer [12] for official University policy.
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GAEN protocol shares concepts from the DP-3T and TCN
protocols, including the use of BLE for proximity detection,
with key differences in anonymous ID generation (Rolling
Proximity Identifiers (RPIs) generated through Temporary
Exposure Keys (TEKs) every 10 minutes) and reporting of
positive test cases (TEKs and a timestamp represented as an
epoch interval number). Unlike DP-3T and TCN, the GAEN
protocol is publicly described, but is still partially closed-
source. Access to the implementations are only granted to
public health authorities operating at the state or country-level;
at the time of this writing, they were not available to our team.

We evaluated these protocols in April and May 2020,
a time when these concepts were still undergoing intense
development and existing codebases were not yet mature. The
open-source code had known shortcomings, such as failing in
BLE background mode for iOS devices. We decided to adopt
the GAEN approach and build our own implementation, while
planning to switch to the Google/Apple implementation in case
we received API entitlements from Google and Apple due to
our affiliation with a large University2.

In the overall user workflow of the app, an individual
can get tested on campus using one of several testing sites.
As a sidenote, we employ a breakthrough saliva-based test
developed at University of Illinois at Urbana-Champaign that
enables high-throughput testing of up to 10,000 tests per day at
low cost [24]. The user presents their University ID when a test
is administered, thereby linking their results to a University ID
number. Since the user must authenticate within the app using
their University credentials, their test results can be linked to
the user via the app. The user is notified by the app once the
test results are available, typically within an day. Test results
can be encrypted using the user’s public key and pushed onto
the user’s device with the user’s consent.

If the diagnosis is positive, the user can choose to upload
a history of their TEKs to a diagnosis upload server. Apps
with exposure notification enabled will periodically download
published TEKs from the diagnosis upload server, decode the
TEKs into rolling proximity identifiers, and check for matches
with RPIs stored in the local device database. As a further
security measure, the upload server will use one-time codes
that are electronically shared with the testing sites. A single
code is provided alongside each test result to the user device,
which is then used to establish a chain-of-authenticity from
the testing site to the upload server, via the user device.

If a matching RPI is found, an exposure score is calculated
using parameters such as duration of exposure, reception and
transmission strength of the Bluetooth signal, an estimated
onset date of infection, and models of testing efficacy. How
such parameters can be used to estimate the risk of infection
is an ongoing area of work both within University of Illinois
at Urbana-Champaign and elsewhere [25]. RokWire contains
an admin control panel that provides public health authorities
with limited ability to adjust the parameter weighting system
used to score an exposure. If the score is above the threshold,
indicating exposure risk, then the user’s most recent test result
is invalidated, prompting the user to be retested and setting
their mobile status card to reflect high risk.

2We have not yet received such entitlements

Complementing this workflow is the exposure notification
functionality, running continuously on each device. Safer Illi-
nois directly follows the specification defined by the GAEN
protocol in generating and exchanging exposure keys. Every
day, each user generates a unique Temporary Exposure Key
which constructs a user’s Rolling Proximity Identifier Key
and subsequent RPIs to be exchanged with other users. In
addition, the TEK generates an Associated Encrypted Metadata
(AEM) Key which, along with an RPI, can be used to encrypt
a few bytes worth of optional metadata.

Each user broadcasts their RPI and corresponding AEM
with a rolling period of approximately 10 minutes. Whenever
a contact is registered within the range of the device’s effective
Bluetooth range, the device saves the detected RPI, contact
duration and Bluetooth received signal strength - known as
RSSI - to local storage. The device also securely saves the
user’s daily TEK and a timestamp to be uploaded to a server
in case the user tests positive for COVID-19.

A. Security

The security and privacy implications of exposure noti-
fication protocols have been heavily examined by experts,
including the DP3T and TCN communities [13], [28]. We
briefly summarize the salient threat models that represent
potential vectors for attackers to learn the identity of other
users involved in a contact exchange or positive test result. We
separate these threats into two categories: 1) inherent attacks
faced by all Bluetooth proximity tracing systems, and 2)
protocol-dependent attacks which depend on how the protocol
generates and exchanges its anonymous identifiers.

Inherent security considerations: When a user is notified of
an exposure event, they may be able to identify the infected
individual by correlating their interactions with the reported
time of exposure. Even if the application obfuscates the timing
with noise, an attacker can create multiple accounts or use
multiple phones at different times to cancel or reduce the noise
introduced by the system. This threat compounds further if
attackers log additional interaction data from infected persons
or triangulate data from third-party sources, such as building
access logs. Moreover, apps that solely rely on Bluetooth
to exchange keys can be susceptible to certain broadcasting
threats. If an attacker were to set up powerful transmitters to
enhance their effective Bluetooth range, false contacts could
be logged. Alternatively, an attacker may set up a Bluetooth
jammer that could disrupt communication between devices.

Protocol-dependent security considerations: To begin with,
anonymous identifiers must not be linkable to one another
nor to the transmitting device. The former is achieved in all
protocols discussed through cryptographic pseudorandomness
while the latter requires the synchronization of rotations of
Bluetooth MAC address and anonymous identifier. Addition-
ally, there remains a threat of replay attacks, where adversaries
record anonymous identifiers in one area and replay them in
another location causing public disruption or targeting specific
individual or area. A solution to this problem is to allow
the attacker to duplicate and transmit identifiers, but inhibit
notification to users who receive these fraudulent signals [21].
All three protocols mitigate this issue to some extent by
incorporating timestamps while checking for exposed matches.

3



B. Implementation Challenges

We designed our approach to exposure notification with
an emphasis on wide-scale deployment. Ideally, the protocol
could be adopted with minimal impact to users by providing
ease of use, minimal energy consumption and privacy and
security guarantees. We picked the Google/Apple API for a
variety of reasons. The API was more stable at the time we
were examining the various alternatives, and early experience
with the protocol would pave the path if we were later granted
entitlements to use the API within our application. When we
embarked on the project, we did not have entitlements to the
GAEN API, so we set out to develop our own implementation
of the protocol while addressing the known issues suffered by
DP3-T and others. Below, we describe some of the challenges
encountered in implementing a scalable, production-ready sys-
tem at the application level.

iOS Background Advertising: Moving an iOS applica-
tion to background mode restricts its Bluetooth advertisement
packets. Namely, instead of advertising a standard service
UUID, transmissions are moved to an “overflow area” where
they are only observable by a device explicitly scanning for
it. Since all iOS background apps on the same device share
the same overflow area, there is no guarantee that the app is
advertising a preset bitmask. Moreover, there is a possibility of
collision if two Bluetooth services from different apps set the
same bitmask, thus an app may detect a different service than
intended. Currently, we do not have a solution to this problem;
however, the likelihood of such conflict is very low, as few
other apps (if any) advertise Bluetooth in the background.

iOS-iOS Background Communication: In Android, a
callback can be set up to detect the overflow bitmask of an iOS
background device. On iOS devices, however, this callback
would only be triggered if the screen is turned on and beacon
ranging is enabled. We found this can be circumvented by
sending a local notification, which will illuminate the screen
for 10 seconds at the expense of battery life.

Bluetooth Mac Address Changes: It is essential to align
Bluetooth MAC rotations with each RPI change. Otherwise,
an attacker can correlate RPIs coming from a single user.
Unfortunately, as of Android 6.0 and iOS 8, an application
cannot control the timing of its Bluetooth MAC address
changes or even identify when this change occurs. However,
we found that the Bluetooth MAC address changes every time
the advertising service restarts on Android. We took advantage
of this finding in our Android implementation by restarting the
advertising service to obtain a new MAC address every time
a new RPI is generated. Unfortunately, we did not observe a
similar phenomena for iOS, and it remains an unsolved issue.

iOS Background Execution: With iOS devices, we found
it difficult to keep an app from being suspended by the OS
when in background mode. Suspended apps will not be able
to record or transmit RPIs.

Battery Efficiency: Constant Bluetooth scanning and ad-
vertising takes a substantial toll on battery life. While the
GAEN protocol sets scanning intervals at 5 minutes apart,
Android and iOS SDKs provide little control over these
intervals. Android provides 3 scan settings, but the actual
times may differ by manufacturer, while no such options are

TABLE I. AVERAGE BATTERY DRAIN PER HOUR OF SAFER ILLINOIS

Device Safer Illinois On Safer Illinois Off
Google Pixel 3 1.12% 0.47%

iPhone X 4.8% 0.59%

documented for iOS. Even in the most conservative power-
saving state, scanning occurs every couple seconds. Table I
shows the average battery drain in % per hour across iOS
and Android. We set Safer Illinois to be the only application
running with it constantly scanning another device. However,
these numbers may vary by other factors including device
usage, other devices scanned, OS level, and device model.
From Table I, the Safer Illinois app consumes reasonable
amount of energy over time depending on the OS and device.

III. ROKWALL: CENTRALIZED ENCLAVE COMPUTATION

The Safer Illinois application demonstrates privacy-
preserving computation on sensitive user data within a de-
centralized framework. However, desirable services such as
exposure mapping, secure data transfer, and safety status
verification require centralized analysis. In comparison with
decentralized implementations, a centralized infrastructure re-
quires users to place greater trust in service providers’ benev-
olence and honesty. While reasonable for a highly transparent
university organization, users may justifiably remain skeptical
of private businesses or other third parties accessing their
data within the RokWire system. Thus, we required a secure,
privacy-preserving computing infrastructure inside RokWire
for centralized analytics.

To satisfy this need, RokWall is guided by the following
fundamental principles: (a) Privacy: Sensitive user data is only
used by services authorized by the user. Users have assurance
that a third-party service provider cannot exploit beyond the
declared capabilities. (b) Security: No party, including service
providers and manufacturers, can access data beyond the
computation’s output, and (c) Accountability: Users or public
auditors can review the code bases, verify program binaries
and ensure it meets all security and privacy guidelines.

Exposure Mapping Application: We present a COVID-19
exposure mapping application in Figure 1 as an example of
privacy-preserving computation on sensitive data. Exposure
mapping aggregates user location data to calculate a heat map,
visualizing the risk of infection exposure. This application
helps health authorities assess the likelihood of superspreader
events and warn the general public of high risk areas. GPS
location data is highly sensitive, so the service provider should
follow previously discussed fundamental principles: (a) Per-
form only a minimal set of queries on the user’s location data
to preserve privacy, (b) Ensure the data is secure and used only
for exposure mapping application purposes, and (c) Enable
auditors to verify these guidelines with public information such
as output report to hold the service provider accountable.

To this end, we present RokWall, a secure architecture (see
§ III-A) for sensitive data computation. We apply RokWall
to COVID-19 exposure mapping while preserving the desired
security and privacy guarantees for user location information.
We analyze various threat models (see § III-B) considered for
the exposure mapping application and RokWall’s protection
against various attack vectors. Finally, we present various
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Fig. 1. Exposure mapping application on sensitive location data. User uploads
sensitive location logs to the service provider. The service provider generates
an exposure map along with an output report for public auditors to audit.

Fig. 2. Overall strawman architecture of RokWall is shown.

technological challenges (see § III-C) faced during deployment
and provide potential solutions.

A. RokWall Architecture

Guided by the preceding principles of security, privacy, and
accountability, we primarily considered two established solu-
tions for secure computation: multi-party computation (MPC)
and enclave based trusted execution environments (hard-
ware [9]/software [5] enclaves) While both options could po-
tentially satisfy our required standards, we noted that enclave
tool chains were considerably more mature and production-
ready [19], [29]. Due to the time sensitive nature of our mission
and performance requirement, we decided to proceed with an
enclave-based architecture. In the future, we may reevaluate the
merits of MPC and consider supporting it as an alternative.

Figure 2 provides a high level illustration of the RokWall
architecture using secure enclaves. The RokWall architecture
supports sensitive data computation by leveraging secure en-
claves. We considered two trusted execution environments
(TEEs) - Intel’s SGX, a hardware enclave, and the more
recent AWS Nitro software enclave [5]. In theory, the choice
of platform may be application specific, as each platform
imposes different security/performance tradeoffs. RokWall will
eventually support both of these platforms, enabling use case
specific choice. However, we will limit the threat model
discussion to the Intel-SGX platform as it is currently more
established and thoroughly vetted.

All data analysis, such as exposure mapping or COVID-
19 risk calculation, occurs entirely within the confines of the
secure enclaves. Each individual data analytics function is
referred to as a “building block function” and are statically
linked with enclaves. Each building block function publicly
declares a hash of its program binary and each secure enclave
generates an output public key. Source code of all the building
block functions and APIs are planned to be open sourced and
thoroughly audited.

RokWall allows third-party services to upload information,
such as a health authority’s API updating test results of a
specific user using a secure channel. Users upload sensitive

data to the RokWall server using a secure encrypted channel
such as Transport Layer Security (TLS) along with the enclave
public key and hash of program binary for the user authorized
application. Inside RokWall, user data is stored in an encrypted
database. During the query execution, only the building block
function or third-party services whose hash of the program
binary matches with the user-approved application can tem-
porarily decrypt and access data within the secure enclave.
Critically, this guarantees that unencrypted data never leaves an
enclave. An unauthorized building block execution will result
in the generation of a useless result.

Remote attestation in RokWall: Remote Attestation allows
cryptographic verification of the code allegedly executed inside
an TEE. RokWall uses a 3-party EPID based remote attestation
mechanism for Intel-SGX hardware [9] and the AWS KMS
service for Nitro enclaves [5]. We reduce verification effort
needed for end-user devices by publicly providing verified
attestation report generated by the RokWall enclave. This
report would contain information about the enclave code (given
by MRENCLAVE in case of SGX) as well as the public-private
key pair generated during enclave initialization. Auditors (or
even users) can verify that the MRENCLAVE information
in the report matches the publicly available MRENCLAVE
generated by building/compiling the enclave code, vetted by
interested parties. The procedure is similar when RokWall uses
Nitro enclaves instead of SGX.

Exposure Mapping Function in RokWall: RokWall uses the
Intel SGX platform to provide a trusted execution environment
for the exposure mapping application. Users upload sensitive
location logs using TLS to the RokWall encrypted database
along with a hash of the exposure mapping binary and the
enclave’s public key. On a regular interval (in this example,
once per day), the exposure mapping enclave generates and
publishes a heat map as output on a public server along with
a signature and report for remote attestation. The user app
can pull this output from the public server, then verify the
signature.

B. End-to-end Chain Of Trust In RokWall

Security and privacy guarantees are primary principles of
the RokWall design. We consider a three-tiered threat model:
(1) network attackers, (2) client attackers and (3) service
provider attackers. To safeguard against network attackers,
clients communicate with the RokWall server via TLS channel.

Unfortunately, we cannot currently prevent client attackers
from running malicious code or flooding the system with
spoofed data. This is a known problem on systems that do not
require user verification. One possible solution, employed by
electronic voting systems [22], allows an authority to register
public keys of users. University officials could distribute public
keys to community members interested in using the service.

Service provider attackers can be classified into three
sub-categories: (1) server-software, where a service provider
runs malicious user-level software, (2) server-kernel, where a
service provider runs malicious kernel-level software, and (3)
server-hardware, where a service provider has physical access
to the server hardware.

Server-software attacks: Server-software level attacks as-
sume that the service provider is limited to user-level privi-

5



leges. This includes writing and running malicious code, but
excludes kernel privileges or hardware attacks. Server-software
attacks can generally be prevented by using SGX enclaves.
Remote attestation enforces transparency and enables public
auditors to review code, while data sealing ensures that the
service provider cannot access raw, decrypted user data. One
remaining attack is an isolation attack, where a service provider
runs the query with only a single victim user’s location logs.
This query yields a heatmap exposing the victim’s location
history, even though the code would pass an audit.

RokWall addresses this with a two step solution: (1) employ
non-volatile counters such that a location log can only be used
for a heatmap one time, and (2) output a hash of location
logs included so a user can verify that their data was used
for generating a given heatmap. Then, if a service provider
commits an isolation attack, the victim’s data will necessarily
not be present in the official heatmap. If a user finds that their
data is not present in an officially published heatmap, they can
then report the service provider to RokWall administrators.

Server-kernel attacks: Server-kernel attacks expand upon
user-level code execution and permit the attacker to inspect
memory management within SGX. This level of attack can
theoretically allow privileged side channel attacks, exposing
memory access patterns even in sealed data [30]. We avoid
leaking information to these attackers by ensuring data obliv-
ious execution and guaranteeing a constant runtime regardless
of input size. In the case of exposure mapping, this entails
unsealing and resealing the entire heatmap every time data is
updated. RokWall currently does not defend against microar-
chitectural attacks (like cache-timing attacks) as they pose far
more sophisticated adversaries.

Server-hardware attacks: Server-hardware attacks involve
physically probing or tampering with the enclave’s system
hardware. We generally expect the cloud service provider
to ensure the physical security of their servers. We are still
investigating additional counter measures to address these
attacks and will address them in the future.

C. Technical challenges

Computation on sensitive data raises a number of practical
constraints that manifest when implementing a production-
ready system. We describe some of the challenges we encoun-
tered while developing RokWall system and propose solutions.

Monotonic counter on Intel Servers: Rollback attacks
present a general security problem for enclave solutions. An
adversary OS can restart the service with an outdated version
of sealed data and leverage it to leak user information. Intel
provides a native SGX monotonic counter service to tackle
this problem, while AWS Nitro enclaves do not support
non-volatile counters. However, SGX cloud services such as
IBM Cloud and Microsoft Azure are currently built on Intel
Xeon E3 server-grade processors, which do not support the
Intel Management Engine required for enabling SGX mono-
tonic counter service. Alternatives to SGX’s native monotonic
counter have been proposed, including distributed rollback pro-
tection systems such as ROTE [23]. Other solutions include the
migration of the counter service to a third-party trusted source
or a BFT distributed network such as CCF [27]. RokWall uses

the CCF network to provide non-volatile monotonic counter
support for its enclaves.

SGX Memory management: Intel SGX provides data
sealing for encrypting and saving confidential enclave infor-
mation to persistent storage. Sealing comes in two forms,
Enclave Identity based vs. Signing Identity based. Data sealed
with Enclave Identity (MRENCLAVE) will only allow other
instances of the same enclave to unseal, whereas Signing Iden-
tity allow other versions and builds of the enclave to unseal.
RokWall currently uses Enclave Identity for sealing to prevent
successive data encroachment; user authorization should apply
to an application as it is currently described. Signing Identity
would allow future versions of the enclave signed by the same
Signing Identity to access sealed data. However, Intel SGX
sealing is not intended for large data objects. In addition
to performance degradation, crossing EPC memory bounds
requires memory management from the enclave itself.

Challenges with Remote Attestation: A major challenge
in implementing remote attestation is ensuring reproducible
builds between auditors, clients and the RokWall server, as
inconsistent builds can raise false MRENCLAVE mismatches.
Furthermore, the auditors (or users) must use identical backend
libraries/packages as described in the attestation report in their
build process. In practice, this may pose a significantly incon-
venient task for auditors. Additionally, available tool chains
such as containers for remote attestation and reproducible
builds are far from production quality, especially for use with
the Intel SGX platform. To address this unmet need, we are
working closely with the Initiative for Cryptocurrencies and
Contracts (IC3) to enable reproducible enclave builds for the
purpose of TEEs [10].

Testing Dataset: When developing the exposure mapping
building block, we struggled to find an appropriate, publicly
available GPS dataset for simulating infection dynamics. We
ultimately decided to test RokWall’s location related queries
on the T-Drive GPS trajectories data [31]. T-Drive records
coordinates for 10,000 taxi cabs in Beijing over the course of
a week. Some comparative advantages of the T-Drive dataset
are its high number of entities, dense population concentration,
and high frequency of reporting.

While the T-Drive dataset is sufficient for initial testing, it
has several key limitations. Critically, the data isn’t perfectly
representative of our eventual use cases since the entities are
vehicles, rather than people. Taxis are confined to roads and
don’t enter buildings so we cannot run indoor, intra-building
analysis. Moreover, this data can’t facilitate algorithmic pa-
rameter tuning, such as heatmap granularity or super-spreader
event thresholds, because of differences in population density
and entity size. Thus, we will likely need to collect organic
human data for fine tuning.

D. Additional RokWall Services

In addition to enabling the exposure mapping use case, we
are particularly excited by the RokWall infrastructure’s poten-
tial for wider generalization. We are currently investigating two
additional timely use cases which will depend on RokWall for
secure, privacy-preserving computation.

Secure Data Transfer: During the Safer Illinois deploy-
ment process, we encountered a pressing need for a secure data
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transfer mechanism. We found that, in practice, users often
changed their mobile devices due to upgrades and repairs. In
these situations, a user would need to recover credentials and
transfer sensitive personal data, like stored contact tracing RPIs
and past test results, between devices. To facilitate this process,
we currently provide a mechanism to transfer data between two
devices using QR codes and Bluetooth. However, this design
has limitations as it requires both devices to be accessible and
functional, which may not necessarily be the case. To address
this problem, enclave data sealing and remote attestation can
enable certifiably secure data storage and retrieval. This use
case will require additional investigation, but we hope to enable
it in the near future.

Virtual Status Card: As previously described, the Safer
Illinois app is intended to complement frequent testing in
minimizing the spread of COVID-19. However, it is important
to acknowledge that a university community is exceptionally
conducive for these technologies due to high tech literacy and
device ownership of its inhabitants; unfortunately, expanding
operation to the outside world entails a very different set of
practical assumptions. Notably, consider scenarios in which
residents may not have access to a personal mobile device.
For example, young children or low income households may
not own a mobile phone. Subject to these limitations, we are
exploring methods to build a virtual status card application to
determine COVID safety status using untrusted client devices.

We believe that RokWall can enable this service in a secure
manner. As in the exposure mapping use case, data sealing
ensures that plaintext medical records can never be accessed
outside of the secure enclave, even by a compromised service
provider. Furthermore, remote attestation can facilitate credible
rate limits or user alert policies.

IV. DISCUSSION

A. Safer Illinois Usage Statistics

Following a four month development process, Safer Illinois
was deployed at the start of the Fall 2020 semester. Here, we
present real-world data collected from live community usage.

The University of Illinois at Urbana-Champaign has a
campus population of approximately 60,000 [14]. Though
Safer Illinois is an entirely optional service, we measure that
approximately 82.5% of the campus population have used the
app at least once during Fall’2020. Furthermore, we expect
that this number may still be an underestimate of relevant app
adoption. After all, university students currently living away
from campus, perhaps due to safety concerns and the current
prevalence of online coursework, should not be expected to
use the app but are counted in the total university population.

Over the time period of 11/30/2020 to 12/15/20, we
recorded that 53% of these Safer Illinois users had voluntarily
enabled exposure notification. Additionally, this figure is a
strict underestimate of the true value because usage data is
sampled only when a user undergoes their routine COVID-19
test. Since Safer Illinois consumes a substantial amount of bat-
tery, not all users enable exposure notification functionality all
the time. Therefore, users who temporarily disabled exposure
notification at time of test are falsely counted as permanently

disabling the service. Please note that the Safer Illinois app and
exposure notification enrollment are optional, opt-in services
and not required to access any university services. We are
particularly heartened to see such a large portion of the
population opt-in voluntarily, demonstrating significant trust
and appreciation for efforts responding to COVID-19.

During the same time period, we observed 19,439 average
unique users using the Safer Illinois app per 4-day interval,
either to check the test results or access building services using
their status card. Because the university requires each member
to test once every 4 days (4 days without a test automatically
results in status change [12]), we present our data as averaged
over 4-day intervals to approximate a cross section of the
population. Although the average unique users may initially
seem to be a small fraction of the campus population, note
that for this period, all classes were held entirely online and
many students had left campus.

In summary, this data demonstrates substantial public
interest and acceptance for the digital contact tracing and
building access status card services. However, we still have
to collect more data to determine the efficacy of digital contact
tracing and we hope to address this question in the near future.

B. Availability of secure enclaves in the cloud

Confidential computing infrastructure has been evolving for
more than two decades. For much of that time, though, its
general availability and support system with cloud vendors,
such as Amazon AWS, Microsoft Azure, Google Cloud and
IBM Cloud, was limited. However, perhaps instigated by the
pandemic, we have recently observed burgeoning deployment
of secure, privacy-preserving cloud computing services. Al-
though current tool chains and software are immature, this
trend demonstrates marked demand for such solutions.

At the time of writing, IBM Cloud and Microsoft Azure
support Intel-SGX [9] based hardware TEEs while Google uses
the AMD SEV [4] hardware TEE for confidential comput-
ing projects [6]–[8]. Meanwhile, AWS software-based Nitro
enclaves are both serverless and scalable [5]. Nitro enclaves
provide hardened and constrained virtual machines (VMs). The
restricted enclave VM solely interacts with its host instance via
a secure local channel. Like many hardware enclaves, Nitro
provides a cryptographic remote attestation service.

While the hardware TEEs, such as Intel SGX or AMD
SEV, charge an additional price ranging between $4-$30 per
instance per month, software enclaves typically come at no
cost to the developer. Additionally, in contrast with hardware
enclaves, Nitro offers flexible computing resource allocation,
including memory and CPU cores. The downside of software
enclaves, however, is that they assume a weaker threat model.
When using a software enclave, one needs to implicitly trust
the service provider for all of remote attestation, data sealing,
key management and software infrastructure.

C. Why design both decentralized and centralized systems?

Contact tracing can be implemented in a decentralized or
centralized fashion, which has traditionally forced developers
into making a trade-off between user privacy and analytic ca-
pability. While previous works frequently favor decentralized
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implementations due to privacy concerns, RokWall can enable
centralized data analysis while upholding user privacy.

In order to develop a functional and reliable contact tracing
system by start of the Fall 2020 semester, Safer Illinois
leveraged preexisting GAEN APIs in a decentralized system.
However, a decentralized architecture carries inherent limita-
tions that can be solved by centralized analysis on user data.
For digital contact tracing, centralized GPS data analysis can
help identify infection hotspots, remedy bluetooth connectivity
issues, and enable cross-time analysis. Moreover, centralized
systems can absolve reliance on user-owned client devices,
as described in Virtual Status Card. We envision eventually
migrating parts of Safer Illinois to RokWall, enabling richer
analysis and broader functionality.

V. CONCLUSION

In this work, we introduced Safer Illinois and the RokWall
architecture under development in the University of Illinois
at Urbana-Champaign’s RokWire platform. Safer Illinois en-
ables privacy-preserving digital contact tracing and COVID-
19 status cards with decentralized computation. Meanwhile,
RokWall presents a general framework upon enclave TEEs for
secure, privacy-preserving centralized analytics. We detailed
our design choices and threat models considered while imple-
menting a production-ready system. We also presented several
technological challenges and lessons learned from deploying
these systems in practice. We hope this work fosters discussion
in developing a privacy-preserving computing infrastructure.
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