
Google/Apple Exposure Notification Due Diligence
Douglas J. Leith, Stephen Farrell
Trinity College Dublin, Ireland

is silently installed without user opt-in on handsets running
Google Play Services, although so far its functionality appears
to be disabled until a Google approved app is installed that
offers the user the choice to opt-in. It then subsequently also
silently updates itself. There is almost no public information
on the nature of updates (such as a changelog) nor notice of
their release, and users running Google Play Services have no
opt out from them.

This state of affairs would be undesirable for any software, but
is especially so for software that is likely to be widely used
in apps backed by national governments and health authorities
and which may impact public health. Here we take a first step
towards public “due diligence” of the GAEN API.

Using experimental measurements we assess the relationship
between Bluetooth LE received signal strength (RSSI) and the
attenuation duration values reported by the GAEN API. We
find that the GAEN API uses a filtered RSSI value that can be
potentially misleading with regard to the proximity between
two handsets (it may suggest handsets are further apart than
they really are)2.

The GAEN API reports exposure duration (durationMinutes)
and attenuation duration. The “exposure duration” terminol-
ogy suggests that this value is an estimate of the aggregate
time that two handsets are in close proximity, but in fact we
find that this value is an estimate of the time during which a
handset can see beacons from another handset, regardless of
the distance between the two handsets.

Since the GAEN API only scans for Bluetooth LE beacons
about every 4 mins, the reported exposure duration information
is necessarily coarse-grained. Our measurements show that
the reported duration values increase by a sequence of sharp
jumps as time progresses and that the reported duration values
may run ahead of clock time, e.g. a duration of 20 mins may
be reported when the actual time that two handsets are in
proximity is 15 mins.

When two handsets are only intermittently in proximity, e.g.
when two handsets spend several 5 min intervals in close
proximity but in between spend time apart, we find that
periods apart of less than 10 mins apart may be missed by
the API and treated as a single continuous exposure, thus

2Following discussions with Google on foot of the work reported here
the GAEN documentation has now been updated to note that GAEN takes
measurements only on channel 37 and also to include additional details on
the calculation of attenuation level and duration consistent with the analysis
reported here.

Abstract—We report on an independent assessment of the An-
droid implementation of the Google/Apple Exposure Notification 
(GAEN) system. While many health authorities have committed 
to making the code for their contact tracing apps open source, 
these apps depend upon the GAEN API for their operation and 
this is not open source. Public documentation of the GAEN 
API is also limited. We find that the GAEN API uses a filtered 
Bluetooth LE signal strength measurement that can be potentially 
misleading with regard to the proximity between two handsets. 
We also find that the exposure duration values reported by the 
API are coarse grained and can somewhat overestimate the time 
that two handsets are in proximity. Updates to the GAEN API 
that can affect contact tracing performance, and so public health, 
are silently installed on user handsets. While facilitating rapid 
rollout of changes, the lack of transparency around this raises 
obvious concerns.

I. INTRODUCTION

In early April 2020, Apple and Google formed a partnership
to develop Covid-19 contact event detection based on Blue-
tooth LE [1]. Following public launch of the Google/Apple
Exposure Notification (GAEN) API on 20 May [2], GAEN
implementations are now installed on many people’s phones
and this API is starting to be used by national health authority
contact tracing apps.

Even though many health authorities have committed to mak-
ing the code for their contact tracing apps open source, these
apps depend upon the GAEN API for their operation. The
GAEN API is not open source and the public documenta-
tion [3] is limited. On Android the GAEN API is implemented
within Google Play Services1. The GAEN implementation

The authors would like to extend their thanks to the Irish HSE for arranging 
with Google for us to have whitelisted access to the GAEN API. We emphasise 
that any views expressed in this report are the authors own, and may not be 
shared by the HSE. Trinity College Dublin, (the authors’ employer) funded 
the “Testing Apps for Contact Tracing” (TACT) project that has allowed us 
the time and handsets required for this work.

1The choice to implement the Android GAEN API within Google Play 
Services mandates the installation and use of Google Play Services in order 
to use contact tracing apps based on the API. Google Play Services is closed-
source proprietary software that is used by many Google products. Coupling 
national contact tracing apps with Google Play Services therefore means 
that national governments are potentially being co-opted for the commercial 
benefit of Google. This warrants further analysis. Note also that due to this 
packaging choice and current US export controls, some handset manufacturers 
and countries may be prevented from using the GAEN API.

Workshop on Secure IT Technologies against COVID-19 (CoronaDef) 2021 
21 February 2021, Virtual
ISBN 1-891562-72-X
https://dx.doi.org/10.14722/coronadef.2021.23005
www.ndss-symposium.org



overestimating the exposure time, e.g. two periods of 5 min
exposure separated by 5 mins apart is reported as 20 mins
exposure. We note that intermittent scanning generally means
that changes in proximity that happen between scans cannot
be detected.

It is not the inaccuracy or otherwise per se of these duration
values that is the primary concern here. Rather it is the
lack of information about the design decisions that have
been made within the GAEN API, and the lack of open
discussion/evaluation of the potential impact of these design
decisions on contact tracing efficacy. Note that the GAEN
design decisions that happen to have been made are not the
only ones possible, other design choices are available. For
example the GAEN API might scan more frequently when it
detects other handsets nearby so as to obtain more fine-grained
information on exposure time. Whether this is a good idea or
not is of course unclear, the point is that open discussion and
evaluation of the impact that choices such as these have on
contact tracing and infection control is needed.

Similarly, while silent updating of the GAEN implementation
by Google allows rapid rollout of any “fix”, should a “fix”
be needed, such updates can affect the performance of contact
tracing apps based on the GAEN API, and so in turn affect
public health. The lack of transparency around this raises
obvious concerns.

II. GOOGLE/APPLE EXPOSURE NOTIFICATION API

A. Hardware & Software Used

We used Google Pixel 2s running GAEN API version
202490002.We used a version of the Google exemplar Ex-
posure Notification app modified to allow us to query the
GAEN API over USB using a python script (the source code
for the modified app is available on github [4]). In addition
we also wrote our own GAENAdvertiser app that implements
the transmitter side of the GAEN API.

B. Measuring Bluetooth RSSI

Bluetooth advertises beacons on three radio channels so as to
improve tolerance of interference. Beacons are broadcast on
each channel in turn. Each channel may have different radio
propagation characteristics, and be subject to different levels
of interference from other transmitters, and so beacons sent
from different channels may be received with different signal
strengths. This behaviour can be seen, for example, in Figure
1(a) which plots the RSSI values reported by the standard
Android BluetoothLeScanner API3 when two handsets are
placed 1m apart in an indoor location. It can be seen that the
reported RSSI values roughly hop between -82dB, -84dB and
-87dB in a regular, repeating pattern. Figure 1(b) plots counts
of the number of times that each RSSI value is reported over

3See https://developer.android.com/reference/android/bluetooth/
le/BluetoothLeScanner. The scanner was configured to use
SCAN MODE LOW LATENCY so that it tries to report the RSSI of
every beacon observed.

690 700 710 720 730

time (s)

-90

-88

-86

-84

-82

-80

R
S

S
I 
(d

B
)

(a)

-90 -85 -80 -75 -70

RSSI (dB)

0

100

200

300

400

500

600

C
o

u
n

t

(b)

Fig. 1. Measured RSSI for two handsets placed 1m apart. (a) Snapshot of
the corresponding RSSI time history, (b) histogram showing number of times
each RSSI value is observed.

0 500 1000 1500 2000

time (s)

-90

-88

-86

-84

-82

-80

R
S

S
I 
(d

B
)

(a)

-90 -85 -80 -75 -70

RSSI (dB)

0

10

20

30

40

50

60

C
o
u
n
t

(b)

Fig. 2. RSSI values logged by GAEN API for two handsets placed 1m apart.
Comparing (a) with Figure 1(a) it can be seen that the GAEN API focusses
on the RSSI values around -82dB. This is also evident when comparing the
histogram data in (b) with that in Figure 1(b) from which it can be seen the
the GAEN API RSSI values correspond to the first peak at -82dB, with the
other peaks having been filtered out.

a 20 minute period. Note the three peaks at -82dB, -84dB and
-87dB, consistent with Figure 1(a).

Although we cannot see inside the GAEN API, on Android
it does report RSSI values in the handset log. Figure 2 plots
these values for the same setup at in Figure 1 (so these two
figures can be directly compared). It can seen that the GAEN
API RSSI values seem to correspond to beacons from only
one channel, namely the channel corresponding to the -82dB
peak in Figure 1(b). Similar behaviour is observed across a
range of handset configurations and indicates that the GAEN
API is carrying out filtering of the RSSI values (we will
return to this later). One immediate implication of this is
that some caution is needed if using RSSI values reported by
the BluetoothLeScanner to estimate/predict performance of the
GAEN API.

Also evident from Figure 2 is that the GAEN API only scans
for beacons roughly every 250s (about 4 mins).

C. GAEN Attenuation Thresholds & Durations

The GAEN API does not report RSSI values but rather at-
tenuation durations above/within/below attenuation thresholds
that are specified when querying the API. We note that while
the GAEN documentation was previously silent on how the
attenuation thresholds relate to RSSI, following discussions
with Google it has now been updated consistent with the
analysis reported here.

2



1) Attenuation: When we query the API we supply two
attenuation thresholds A and B. The API then responds with
three values:(i) the duration the attenuation was below A, (ii)
the duration the attenuation was between A and B and (iii)
the duration the attenuation was above B. For example we
might choose A=48dB, B=63dB and obtain values 0, 10, 30
indicating no attenuation values below 48dB were observed,
attenuation values between 48dB and 63dB were observed for
a duration of 10 mins and attenuation values above 63dB were
observed for 30 mins.

We can make repeated queries with different values of A and
B. In particular, by holding A constant at a low value, e.g.
48dB, and then increasing B from 48dB to a high value, e.g.
100dB, in steps of 1 dB then we can extract fine-grained
information on the durations at each attenuation value in the
range 48dB to 100dB.

Figure 3(a) plots the attenuation value durations obtained using
this repeated query approach for two handsets placed 1m
apart. That is, corresponding to Figures 1 and 2. It can be
seen that the attenuation values are tightly concentrated on
70dB whereas in Figure 2 the RSSI values are concentrated
around -82dB. The “attenuation” terminology suggests that
the attenuation value is given by the transmit power minus
the RSSI, perhaps with some additional calibration for device
specific characteristics. Supposing the transmit power to be
-16dB (we will return to this shortly) then that suggests an
attenuation value of 66dB. The handset log entries generated
by the GAEN API suggest an offset of -4dB is added4 to the
RSSI to obtain a “calibrated RSSI”. Adding this offset then
suggests an attenuation value of 70dB, matching what we see
in Figure 3(a).

The transmit power used in this attenuation calculation appears
to be derived from the metadata included in GAEN beacons.
We wrote an app that generates beacons according to the
GAEN format and which allows us to specify the metadata
sent in the beacons. Figure 3(b) plots the attenuation durations
as the transmit power level value in the beacon metadata is
varied from 0dB to 15dB for two handsets placed 1m apart.
Note that in this plot we present the data using a coloured
heatmap. We split the range of attenuation values shown on
the y-axis into 2dB bins i.e. 70-72dB, 72-74dB and so on.
Within each bin the colour indicates the percentage of the
total reported duration that was spent in that bin, e.g bright
green indicates that more than 90% of the time was spent in
that bin. The mapping from colours to percentages is shown
on the righthand side of the plot. Bins with no entries (i.e.
with duration zero) are left blank. The solid line indicates
the average attenuation level at each transmit power level (the
average is calculated by weighting each attenuation level by
the duration at that level and then summing over all attenuation
levels).

4This value is dependent on the handset model, e.g. we observe that it is
-4dB for Google Pixel 2s and -3dB for Samsung Galaxy A10s.

60 65 70 75 80

Attentuation (dB)

0

10

20

30

40

50

D
u

ra
ti
o

n
 (

m
in

)

(a)

0 5 10 15 20

Metadata Transmit Power Level (dB)

50

60

70

80

90

A
tt

e
n
u

a
ti
o

n
 (

d
B

)

>0

20

40

60

80

100

D
u
ra

ti
o
n
 (

%
)

(b)

Fig. 3. Measured attenuation durations reported by the GAEN API vs time
for two handsets placed 1m apart. (a) shows data corresponding to that in
Figure 2, (b) shows the reported durations as the transmit power level value
in the GAEN beacon metadata is varied from 0 to -15dB.

It can be seen from Figure 3(b) that the GAEN API reports
that the attenuation durations are consistently concentrated in
a single bin, as expected from Figure 3(a) (which is for the
same physical setup). It can be seen that the attenuation value
where the API reports most of the time being spent decreases
linearly as the transmit power level sent in the beacon metadata
is increased, as expected if the metadata transmit power value
is being used in the attenuation calculation.

In these tests we used Google Pixel 2 handsets. The Android
Bluetooth LE Advertiser API reports that the transmit power
associated with advertising beacons at the TX POWER LOW
setting is -16dB. When we use this metadata value in our
app the attenuation durations reported by the GAEN API are
essentially identical to those shown in Figure 3(a)5.

In summary, by making repeated queries to the GAEN API
we can obtain the reported duration value at each attenuation
level. The attenuation value itself seems to be calculated as
the PTX − PRX where PTX is the transmit power level sent
in the beacon metadata and PRX is given by the filtered RSSI
plus a calibration value which is -4dB for the Google Pixel 2
handsets used in these tests.
2) Attenuation Duration: Figure 4(a) plots the total6 reported
attenuation duration vs time for two handsets placed 1m apart,
i.e. the same setup as considered above. We queried the GAEN
API regularly every minute and the solid line in Figure 4(a)
shows the evolution of reported attenuation delay value over
time. It can be seen that the attenuation duration increases in
discrete jumps, rather than continuously, presumably reflecting
the intermittent nature of the beacon scanning process noted
previously. Also, that it can get ahead of clock time (this
occurs when it lies above the dashed line marked in Figure
4(a)). For example, early in this test (well before 5mins clock
time has elapsed) the attenuation is reported as being 5mins.

5Note that Google has since changed the transmit power level value sent in
the beacon metadata in an attempt to compensate for differences in Bluetooth
LE transmission characteristics between different models of handset. For
example, in the most recent version of GAEN on Pixel 2s the transmit
power level sent in the beacon metadata is now -31dB rather than -16dB. We
highlight this as an example of a silently pushed update that has a substantial
impact on the behaviour of contact tracing apps based one the GAEN API.

6The sum of the three attenuation duration values reported by the API.

3



0 10 20 30 40 50

time (min)

0

10

20

30

40

50
A

tt
e
n
u
a
ti
o
n
 D

u
ra

ti
o
n
 (

m
in

)

(a) Attenuation duration

0 10 20 30 40 50

time (mins)

0

10

20

30

40

50

E
x
p
o
s
u
re

 d
u
ra

ti
o
n
 (

m
in

s
)

(b) Exposure duration

Fig. 4. Attenuation and exposure durations reported by the GAEN API vs
time for two handsets placed 1m apart. The 45◦ line is indicated by dashes.

In Figure 4(a) the two handsets are in continuous proximity.
We also collected measurements when are in proximity for 5
mins, separated for a variable period and then brought in prox-
imity again for 5 mins (we simulated separating the handsets
by disabling beacon transmission for a specified period). When
the handsets are separated for 5 mins the API responds to a
query with a single exposure information records that reports
the attenuation duration 19 mins, suggesting that the GAEN
API ignores the period when the handsets are separated. When
the handsets are separated for 10 mins the API responds
to a query with two exposure information records, the first
reporting an attenuation duration on 5 mins and the second
an attenuation duration of 10 mins. So although the aggregate
attenuation duration of 15 mins is an overestimate (the actual
time the handsets are together in only 10 mins) by responding
with two exposure information records the API does seem to
recognise that the handsets have been separated. When the
handsets are separated for 15 mins the API response with
two exposure information records each reporting an exposure
duration of 5 mins, i.e. 10 mins in total.

In summary, the attenuation duration value seems to roughly
track clock time, in line with the GAEN API documenta-
tion [3]. Intermittent handset proximity can be roughly inferred
from the number of exposure information records with which
the API responds.

D. GAEN Exposure Duration

The GAEN API reports an exposure duration value, but the
documentation [3] says little about how this value is calculated
beyond the fact that its value is given in units of 5 mins,.

Figure 4(b) plots the exposure duration reported by the GAEN
API vs time when two handsets are placed 1m apart. We
queried the GAEN API regularly every minute and the solid
line in Figure 4(b) shows the evolution of reported exposure
duration value over time. It can be seen that the exposure
duration increases in 5 min jumps. Also, that it is frequently
ahead of clock time (this occurs when it lies above the dashed
line marked in Figure 4(b)) and is capped at 30 mins.

The terminology “exposure duration” may suggest that the
reported value only counts the time when two handsets are
in proximity e.g. when the attenuation is below one of the

2 3 4 5 6 7

Interval Between Scans (mins)

0

0.01

0.02

0.03

0.04

0.05

0.06

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

(a)

0 500 1000

time (mins)

0

1

2

3

4

5

6

S
c
a

n
 I

n
te

rv
a

l 
(m

in
s
)

(b)

Fig. 5. Measured intervals between GAEN API Bluetooth LE scans, based
on 24 hours of data. (a) Relative frequency of scan intervals, (b) time history.

thresholds specified when querying the API or when handsets
are less than 2m apart. However, we observed the reported
exposure duration value to be the same regardless of the
thresholds specified and that the exposure duration value
reports time spent when handsets are 4m apart. It therefore
seems more appropriate to interpret the reported exposure
duration value as the time during which two handsets are
in close enough proximity for one to observe the Bluetooth
beacons of the other, regardless of the received signal strength.
Note that Bluetooth LE beacons typically have a range of
5-10m (and potentially further for devices using the newer
Bluetooth LE v5.0).

Similarly to Section II-C2 we also observed the reported
exposure duration when two handsets are in proximity for
5 mins, separated for a variable period and then brought in
proximity again for 5 mins. When the handsets are separated
for 5 mins the API responds to our query with a single
exposure information record that reports an exposure duration
is 20 mins. When they are separated by 10 mins the API
responds to our query with two exposure information records,
one reporting an exposure duration of 5 mins and the second
reporting an exposure duration of 10 mins. So, once again,
although the aggregate exposure duration of 15 mins is an
overestimate, by responding with two exposure information
records the API seems to recognise that the handsets have
been separated. When the handsets are separated for 15 mins
the API response with two exposure information records each
reporting an attenuation duration of 5 mins, i.e. 10 mins in
total.

In summary, the exposure duration value reported by the
GAEN API seems to roughly track the aggregate time during
which a handset can see beacons from another handset, re-
gardless of the distance between the two handsets. Intermittent
handset proximity can be roughly inferred from the number of
exposure information records with which the API responds.

E. Scanning Frequency

The GAEN API scans intermittently for beacons. We left two
handsets beside one another for 24 hours and using the GAE
log reports recorded the intervals between scans for Bluetooth
LE beacons. Figure 5 shows the relative frequency of the
interval between scans. It can be seen from Figure 5(a) that

4



G
A

E
N

 1

G
A

 1

G
A

E
N

 2

G
A

 2

G
A

E
N

 3

G
A

 3

G
A

E
N

 4

G
A

 4

Transmitter & Handset Orientation

66

68

70

72

74

76

78

A
tt

e
n

u
a

ti
o

n
 (

d
B

)

>0

20

40

60

80

100

D
u
ra

ti
o
n
 (

%
)

(a) (b)

Fig. 6. Attenuation durations reported by GAEN API for two Google Pixel
2 handsets placed 0.5m apart. One handset runs both the GAEN API and
the GAENAdvertiser app and its orientation is changed as shown in (b). The
x-axis labels indicate the transmitter (GAEN and GA, respectively) and the
handset orientation for each GAEN report.

the scan intervals are roughly uniformly distributed between
3.5 mins and 5mins and from the time history in Figure 5(b)
that the distribution of scan intervals is roughly constant over
time (it does not, for example, increase overnight to reduce
battery drain).

F. Inter-operability of GAEN Beacons

The GAEN API documentation [3] specifies the format of the
Bluetooth LE beacons and the cryptographic protocol used to
generate the payload of each beacon. To verify compliance
of the Google Android GAEN API implementation with the
specification, and to confirm inter-operability, we wrote the
GAENAdvertiser app that generates beacons that follow the
Bluetooth LE beacon protocol specified in the documentation.

This highlighted two lacuna’s in the API documentation.
Firstly, AES-CTR encryption is specified for the beacon
metadata, but it is not stated when the counter used in this
encryption is initialised. Our tests indicate that it is initialised
when the first RPI is sent, and then incremented each time
the RPI changes. Secondly, it is not stated how the metadata
transmit power level value should be chosen. As discussed
above, our measurements indicate that in fact this value is
used by the GAEN API to calculate the attenuation level and
so plays a key role in its operation.

Figure 6 shows example measurements comparing the reports
generated by the GAEN API when it receives beacons gen-
erated by the GAEN API and beacons are generated by our
GAENAdvertiser app (both running on the same handset to
remove any other differences). This data is for two Pixel
2 handsets placed 0.5 apart. The relative orientation of the
handsets is changed as shown schematically in Figure 6(b) and
the GAEN API on one handset queried. Figure 6(a) shows the
attenuation durations reported by the GAEN API in response
to these queries for each orientation and for both the GAEN
API on the second handset and the GAENAdvertiser app
(labeled GAEN and GA respectively on the x-axis of Figure
6(a)). It can be seen that the reports are identical for the GAEN
API and GAENAdvertiser beacons, and we also see similar
behaviour in other measurements.

0 50 100 150

Time (s)

-85

-80

-75

-70

R
S

S
I 

(d
B

)

(a)

0 2 4 6 8 10

Time (s)

-85

-80

-75

-70

R
S

S
I 

(d
B

)

(b)

Fig. 7. RSSI measurements reported by the standard Android Bluetooth
scanner API when it is periodically (roughly every 30s) switched on, the first
36 RSSI values reported logged and then scanning halted. (b) is a zoomed-in
view of the first set of RSSI measurements in (a). This data is for two Google
Pixel 2’s positioned 0.5m apart.

GAENAdvertiser is open source and can be obtained by
contacting the authors. However, we have not made it publicly
available since it can be used to faciltate a known replay attack
against the GAEN API [5].

G. MAC Address Randomisation

The GAEN documentation specifies that Bluetooth LE beacon
MAC address randomisation should be used when available,
and that when the beacon content periodically changes the
MAC address should also change so as to prevent linking
of beacons from the same handset. In our measurements we
observed that the GAEN API respected this behaviour.

III. GAEN RSSI FILTERING

In this section we take another look at the RSSI values
which the GAEN API reports in the handset log. Recall that
the attenuation durations reported by the API in response to
queries seem to effectively be derived from these RSSI values.

We start by looking at the standard Android BluetoothLE scan-
ner. The relevant code for this is also closed source, but we can
deduce some aspects of its operation from Figure 7. This figure
shows the RSSI values reported by the Android BluetoothLE
scanner API when it is periodically (roughly every 30s)
switched on, the first 36 RSSI values reported logged and then
scanning halted. The beacons in this example are generated by
a second handset running the GAEN API and located 0.5m
away, but the behaviour is not specific to this. The scanner is
configured to use SCAN MODE LOW LATENCY, and so it
tries to report on every beacon observed.

It can be seen from Figure 7(a) that the RSSI values reported
by the scanner follow a regular pattern. Figure 7(b) shows a
zoomed-in plot of the first set of samples, the vertical lines
marking every 12 readings. Recall that Bluetooth LE transmits
beacons on three separate radio channels, and so the scanner
needs to listen to each of these three channels. What appears
to be happening is that the scanner listens to one channel for
a period of time (around 3s, corresponding to 12 beacons sent
at 250ms intervals), then switches the next channel and listens
to that for a period time (again, around 3s), then switches to
the third channel. Since the channels are at different radio

5



frequencies they have different signal propagation between
the two handsets and so different RSSI values. Hence, as the
scanner hops between the three channels we see jumps in the
RSSI values roughly every 3s or 12 beacons. If we configure
the scanner to collect more than 36 beacons then this pattern
of RSSI jumps appears to repeat, with a switch back to values
around -82dB for the next 12 beacons after the 36th beacon.

This behaviour is not especially interesting in itself, but is
relevant to the GAEN API and Bluetooth LE contact detection
for at least two reasons.

A. GAEN Effectively Monitors Only One Channel

Firstly, it means that it is likely that the GAEN API only listens
to one out of the three channels that Bluetooth LE uses for
transmitting beacons.

As can be seen from Figure 7(a) when first switched on
the scanner always starts at the same channel (the one with
RSSI around -82dB in this example). The channel hopping
part of the scanner functionality is managed internally within
Android, likely within the Bluetooth hardware driver7. That
means it is also likely shared by the GAEN API. Based on the
entries that it writes to the handset log the GAEN API scans
for beacons periodically, around every 4 mins, and records
the RSSIs for around 12 beacons. With Figure 7 in mind this
suggests that the GAEN API collects RSSI values for only one
of the three channels that Bluetooth LE uses for transmitting
beacons. This is also consistent with the behaviour previously
noted in Figure 2, and the observation that the GAEN RSSI
values seem to correspond to only one of the three peaks in
Figure 1(a).

B. Which Channel to Choose?

Collecting RSSI values for only one channel is potentially ap-
pealing as it removes the “noise” caused by hopping between
channels, e.g the “smoother” nature of the values in Figure
2(a) compared to those in Figure 1(a) is immediately apparent.
However, it can have some unwanted side effects.

Comparing again Figure 2(a) with Figure 1(a), it can be seen
that the channel monitored by the GAEN API has the highest
RSSI of the three channels at -82dB. However, this need not
always be the case. For example in Figure 7 the channel that
the scanner listens to first has the lowest RSSI of the three
channels and so can potentially give a misleading view of
proximity to the second handset, namely suggesting that the
handset is further away than it really is.

This concern is not a hypothetical one. Figure 8 plots mea-
surements taken on two Google Pixel 2 handsets placed 0.5m
apart as their relative orientation is varied. The handsets are
placed vertically, as illustrated schematically in Figure 6(b).
The left-hand handset is rotated and flipped through each of
the orientations shown in Figure 6(b) in turn. In this schematic

7Note that this means that the behaviour may change with the wireless
chipset used in a phone. We used Google Pixel 2’s on our tests but also see
similar behaviour on a Samsung Galaxy A10 and a Huawei P10.

142 144 146 148 150 152 154

time (mins)

-95

-90

-85

-80

-75

-70

A
tt

e
n

u
a

ti
o

n
 (

d
B

)

(a)

160 165 170 175 180 185

time (mins)

-95

-90

-85

-80

-75

-70

A
tt

e
n

u
a

ti
o

n
 (

d
B

)

(b)

Fig. 8. Measurements taken on two Google Pixel 2 handsets placed 0.5m apart
as their relative orientation is varied as shown schematically in Figure 6(b).
In (a) the RSSI values are measured using the standard Android Bluetooth
LE scanner, while in (b) the values are those written to the handset log by
the GAEN API.

the top of the handsets is indicated, and the back of a handset
is indicated as shaded. For example, in orientation 1 both the
both handsets are top down with the screen facing to the right.
In orientation 4 the left-hand handset is bottom down with the
screen facing left, and so on.

In Figure 8(a) RSSI measurements from the standard Android
Bluetooth LE scanner API are plotted as the orientation of
the left-hand handset is changed. The vertical dashed lines
indicate the times when the orientation changes. It can be seen
that the changes in relative orientation change the RSSI, and in
particular the spread of RSSI values across the three channels.
For example, for the first orientation from time 142-144mins
the RSSIs are divided into two bands, one around -87dB and
another around -77dB, but for the second orientation from 144-
148mins the RSSI/attenuations are bunched around -84dB.

Figure 8(b) shows the RSSI values logged by the GAEN API
when the same experiment is repeated. It can be seen that for
the first orientation the GAEN API uses RSSI values from the
lower -85dB band rather than the higher -77dB band, whereas
for the third orientation the GAEN API uses RSSI values from
the higher 77dB band rather than the lower -84dB band that
can be seen in the third section of Figure 8(a). For the last
orientation the GAEN API uses RSSI values from the lower
-87dB band in Figure 8(a) rather than the higher -77dB band.

IV. SUMMARY AND CONCLUSIONS

We first note that from an architectural perspective Google
and Apple are today probably well placed to handle the kinds
of issue noted here and to provide a “fix” that gets widely
deployed, should a “fix” be needed. However, silently shipped
changes to closed-source proprietary GAEN implementations
can affect the performance of public health contact tracing
apps based on the GAEN API, e.g. affecting the rate of expo-
sure detection false positives and false negatives. The lack of
transparency around this raises obvious concerns and reduces
the value of health authorities and other app implementers
making their client code publicly available.

6



REFERENCES

[1] “Apple and Google partner on COVID-19 contact tracing technology,” 10
April, 2020. [Online]. Available: https://www.apple.com/newsroom/2020/
04/apple-and-google-partner-on-covid-19-contact-tracing-technology/

[2] Google Blog, “Exposure Notification API launches to support
public health agencies,” Accessed 13 June 2020. [Online].
Available: https://blog.google/inside-google/company-announcements/
apple-google-exposure-notification-api-launches/

[3] “Exposure Notifications: Android API Documentation,” accessed
6 June 2020. [Online]. Available: https://static.googleusercontent.
com/media/www.google.com/en//covid19/exposurenotifications/pdfs/
Android-Exposure-Notification-API-documentation-v1.3.2.pdf

[4] anon, “Modified Exposure Notification App,” 9 June 2020. [Online].
Available: https://github.com/anon/BLEapp

[5] S. Farrell and D. Leith, “A Coronavirus Contact Tracing App Replay
Attack with Estimated Amplification Factors,” 19 May 2020. [Online].
Available: https://down.dsg.cs.tcd.ie/tact/replay.pdf

7


