
Hashomer – Privacy-Preserving Bluetooth Based
Contact Tracing Scheme for Hamagen

Benny Pinkas
Bar-Ilan University, Israel

benny@pinkas.net

Eyal Ronen
Tel Aviv University, Israel

eyal.ronen@cs.tau.ac.il

Ministry of Health (MoH), and deployed in July 2020 un-
der the name Hamagen 2. A reference python implementa-
tion of our design can be found at https://github.com/eyalr0/
HashomerCryptoRef.

The design is based on two main principles:

• Empowering end-users: The system is decentralized,
in the sense that all information is stored locally and
is controlled by the users. Only users, and not the
government, are informed about exposures to COVID-
19 positive persons. The decision on how to behave
given this warning is made by the user.
In order to improve “explainability”, namely to con-
vince users to have confidence in the warnings given
by the system, it provides users with accurate and fine-
grained information about exposures. In addition, to
obtain users’ trust, the system respects their privacy
and enables them to control the information that is
revealed if they become COVID-19 positive.

• Preventing attacks: Any attack against the system, or
even a publication of the feasibility of such an attack,
might reduce public trust and prevent users from using
the system or adhering to its exposure notifications.
The resulting effect on the public acceptance of the
system might be more severe than the immediate re-
sults of the attack. We therefore took additional efforts
to prevent sophisticated attacks on the trustworthiness
of the system. This was done while keeping within
the requirements of smooth operation on commodity
phones.

The design follows the same structure as other designs for
decentralized contact tracing, such as DP-3T [12], Google and
Apple [1], and PACT [5]. Namely, each phone sends short
BLE messages with random ephemeral ids, and stores similar
messages that it receives. When a user is identified as COVID-
19 positive, the user can provide the MoH with information
that can be broadcasted to all users, allowing them to learn
whether they received BLE messages from this user.

A. Privacy, Security and Operational Requirements

We would first like to emphasize several very basic privacy
features that this design supports:

1) To guarantee privacy, all information is stored locally.
No messages are ever sent from the application
to any server, except for voluntary messages by
COVID-19 positive persons, or by users who were

Abstract—In recent months multiple proposals for contact
tracing schemes for combating the spread of COVID-19 have
been published. Many of those proposals try to implement this
functionality in a decentralized and privacy-preserving manner
using Bluetooth Low Energy (BLE).

In this paper, we present “Hashomer”, our proposal for a
contact tracing scheme tailored for the Israeli Ministry of Health’s
(MoH) “Hamagen” application. The design is fully decentralized,
and has the following properties:

- Message Unlinkability — Different BLE messages sent by
the same user cannot be linked to each other (except for messages
sent by COVID-19 positive users who give consent to tracing their
contacts, and only for messages sent within a short time period).

- Explainability — To convince users that they were exposed
to a COVID-19 positive person, we let them learn the approximate
time of contact. This also implies that users can potentially learn,
using the phone’s GPS information, the location of the exposure.

- Partial Disclosure and Coercion Prevention — Users and
the MoH are able to redact tracing information and exposure
notifications for specific time intervals.

- Prevention of Relay Attacks – The design prevents attacks
where a malicious receiver relays BLE transmissions from one
location to other locations.

- Proof of exposure to a COVID-19 positive person — To
prevent false reports about exposure, we allow users who are
notified by the application about an exposure to a COVID-19
positive person, to prove this fact to the server.

- Identity Commitment — To prevent malicious changing or
replacing keys, we bind the BLE messages to a unique ID in a
privacy-preserving way.

- Performance — BLE payload size is limited to 16 bytes.
The application uses only symmetric key cryptography (AES and
HMAC). To reduce bandwidth, contact updates from the MoH are
of limited size. Moreover, the local search for exposure is linear
in the number of messages and number of COVID-19 positive
persons.

I. INTRODUCTION

We describe a design for a BLE-based contact tracing
application which was consequently developed by the Israeli

Workshop on Secure IT Technologies against COVID-19 (CoronaDef) 2021
21 February 2021, Virtual
ISBN 1-891562-72-X
https://dx.doi.org/10.14722/coronadef.2021.23011
www.ndss-symposium.org

https://github.com/eyalr0/HashomerCryptoRef
https://github.com/eyalr0/HashomerCryptoRef

notified (by the application) about an exposure
to another COVID-19 positive user and wishes to
report this.

2) The ephemeral IDs sent in short-range BLE messages
are computed from keys which are generated in the
device, and look pseudo-random to any other entity.

3) The decision whether to reveal contact tracing in-
formation is made by the user, and is completely
voluntary. Similarly, a notification about exposure to
a COVID-19 positive person is shown locally in the
application, and is kept hidden from the MoH unless
the user wishes to report it.

4) The application does not reveal to the MoH any
location information, not even of COVID-19 positive
persons.

5) The design allows the user to “snooze” sending
BLE messages in privacy critical situations (e.g., a
journalist meeting with a confidential source). It also
allows users to retroactively delete keys associated
with specific time intervals.

6) The design allows users to delete their history of
exposure alerts. This feature is needed to prevent
other parties, such as employers, from coercing users
to prove that they have not received any exposure
alerts.

The system must address the following security issues:

1) Prevention of relay attacks, in which an attacker
receives messages sent by users of the application
in one location, for example, an emergency room in
a hospital, and transmits them in different locations
(say, busy train stations). Such an attack might cause
unnecessary warnings showed to users.

2) Identity commitment — A malicious attacker might
try to replace or change keys. For example, a dis-
gruntled employee might want to cause all of his co-
workers to self-isolate. To accomplish that, he will
bribe a COVID-19 positive person to upload the keys
from his phone.

3) Prevention of “fake” exposures – The design prevents
users from claiming that they were in contact with an
infected person. Some users might opt to do so, for in-
stance, if they want to get a sick leave for the required
quarantine period. Note that a user who had a real
contact with an infected person can always transfer
this information to other users, and then these users
will be able to fake a contact. However, the server can
become suspicious and do more checks if too many
people use the same verification information.

4) Cloning and copying attacks – A sophisticated at-
tacker might clone multiple phones to use the same
master key, or copy keys from a phone of an infected
person. We do not protect against these attacks.

B. Related Work

A lot of effort has been invested in designing and im-
plementing contact tracing applications. Decentralized contact
tracing applications do not keep a central database which
records users’ contacts, but rather keep this information on
users’ devices and inform only the users, and no central

authority, of contacts with COVID-19 positive persons. Cur-
rently the major application that is rolled out across Europe is
DP-3T [12]. Another decentralized design, called PACT, was
designed by researchers from MIT and other institutes [3].
Centralized contact tracing applications give the government
information about exposures. An example of such an appli-
cation is the TraceTogether application of Singapore [8]. See,
for example, [6], [11], for more thorough surveys of contact
tracing applications.

Mobile operating system make it hard for applications
which run in the background to send and receive BLE com-
munication, and to do this with minimal battery consumption.
Apple and Google developed a special API, called GAEN,
which supports BLE communication for contact tracing ap-
plications. The usage of this API is limited for government
applications which agree with usage terms defined by Apple
and Google [1].

Security issues with the current designs were identified,
e.g. in [13], [4], and demonstrated in [2]. A design which
addresses some of these issues was presented in [9] (but not
accompanied by an implementation).

There are also contact tracing designs which are based
on more advanced cryptographic primitives, such as zero-
knowledge proofs of or group signatures, e.g. [7], [14], but
these desgins are less efficient, and are not accompanied by
any proof-of-concept implementations.

II. TECHNICAL OVERVIEW

The basic strawman design for a contact tracing scheme has
each instance of the application send short random messages
(ephemeral IDs) over BLE. The application also records all
BLE messages that it receives. During normal operation, the
application never sends anything over any other communica-
tion channel. The only exception is when the user is identified
as COVID-19 positive (and has a code received from the MoH
that verifies this fact). Then the user can explicitly request to
provide the ministry of Health with all the ephemeral IDs that
were sent by his copy of the application in the last 14 days.1
The MoH periodically distributes these values, received from
all new COVID-19 positive persons, to all users, where for
each time period the MoH sends all corresponding ephemeral
IDs in random order. Then any copy of the application can
locally check if it previously received any of these ephemeral
IDs over BLE, and use a local algorithm to alert the user to the
risk of contact with the corona virus (for example, alert the user
if ephemeral IDs were consecutively received in any period of
15 minutes.) The user is then able to inform the MoH that he
or she were in contact with a COVID-19 positive person.

This initial design provides privacy for all receiving users
since no information is sent from their phones, except for short
random BLE messages. The BLE messages can be generated in
each personal copy of the application based on a secret random
seed, and look pseudo-random to all other users. The privacy
of COVID-19 positive persons is preserved in the sense that
it is impossible to link different BLE messages of the same
person.

1We assume in this paper that epidemiological contact tracing needs to
identify all people who were in contact with the COVID-19 positive person
in the last 14 days.

2

This basic scheme has a scalabily issue: Suppose that users
change their ephemeral IDs every 5 minutes. Then every user
sends more than 4000 ephemeral IDs in the 14 day period.
In this case an update message for about 1000 or 10000 new
COVID-19 positive persons will be too large. (This is true
irrespectively of the compression method that is used, such as
a Bloom filter or a Cuckoo filter, as long as we want to keep
the false positive probability low.)

Daily seeds: An appealing option is for the client to use a
separate seed per day, and use it to derive all ephemeral IDs of
that day. In this case the MoH needs to send only 14 seeds per
COVID-19 positive person. This approach is currently used by
GAEN. However, this approach suffers from some drawbacks:
The privacy of the COVID-19 positive persons is affected since
it is now possible to link different ephemeral IDs sent by the
same person in the same day. The client application needs to
generate all ephemeral IDs from the seeds, and this task might
be computationally heavy. In addition, it is impossible to redact
less than an entire day of the BLE message history of COVID-
19 positive persons, namely have the MoH send an update
broadcast which does not include some of the ephemeral IDs
sent by a COVID-19 positive person. (The redaction feature is
important for privacy, efficiency, and accuracy.)

A. The “Hashomer” Design

While the basic idea and design are similar to that of other
designs, and in particular DP-3T [12], our design has some
privacy and security features which are not present in most
other contact tracing designs. We list here the main differences
with respect to the DP-3T design.

1) A hybrid design: An initial master key is generated
when the application is installed, and a chain of daily master
keys is generated from that key. The application keeps the
master day key of 14 days ago, and erase all prior keys.
Each day is divided to epochs (e.g., hours), and each epoch
is divided to time units (e.g., 5 minutes). Every epoch has
a different epoch key which is generated from the daily key.
The ephemeral ID is changed each time unit, and is derived
from the current epoch key. When it is needed to report the
ephemeral IDs sent by a COVID-19 positive person, only
relevant epoch keys that were used by the person are broadcast
to all users.

2) Message Unlinkability: Different BLE messages sent by
the same user are pseudo-random and cannot be linked to each
other. The goal is to prevent tracking of specific users. The only
exception it users who were found to be COVID-19 positive. If
such a user agrees to notify their contact, the keys required to
identify their messages are uploaded to the MoH servers, and
are broadcast to all users. Other applications broadcast keys
which enable to link messages sent by the user over relatively
long periods of time (a day). Our design has the message-
linkability period (epoch) as a parameter, which is currently
set to be equal to one hour.

3) Tradeoff Between Privacy and Explainability: The DP-
3T design prioritizes the privacy of the positive person and
therefore provides to exposed users only a coarse time win-
dow of the exposure (e.g., Tuesday morning). We believe
that explainability is important in order to convince users

to quarantine themselves.2 Therefore, the application provide
users with a more fine-grained time frame about the exposure.
Using the device’s locally stored GPS history, the application
can also provide the user with an approximated location of the
exposure.

4) Partial Disclosure: Our design lets the user or MoH
redact all tracing information for specific periods of time. This
is useful for privacy (for example, letting users redact private
meetings which they want to hide), and for efficiency (e.g.,
redacting times when it is known that the user was alone), and
for accuracy (e.g., redacting times where user was stuck in a
traffic jam) . To facilitate this, we use a tree structure for key
derivation, allowing the MoH to broadcast only a subset of the
keys. Although the DP-3T white-paper suggests two variants
that support partial disclosures, they require more bandwidth
and, as far as we know, are not used in practice.

5) Prevention of Relay Attacks: A potential attack scenario
is where an attacker relays messages from one location where
COVID-19 positive persons are likely to appear (e.g., an
emergency room) to many other busy locations, thus causing
many false reports of exposure to positive persons.

To overcome this attack we incorporate the coarse-grain
location data of the place of contact into the protocol. The
BLE message therefore includes an encryption of coarse geo-
location information (e.g., accuracy of ±500 meters), and
a MAC to verify its authenticity. The receiver stores the
location in which it received this message. The encryption and
authentication keys are only revealed voluntarily by confirmed
infected persons. The BLE message is never sent to the server,
but can be used by the receiver to verify that it was in close
physical proximity to the infected sender.

We note that the explainability property requires the re-
ceiver to save rather fine-grained timing information, which
the receiver can combine with its personal location data. This
implicitly enables the receiver to identify locations of contact
with COVID-19 positive persons, and therefore the fact that
we incorporate encrypted location data in the protocol does
not give any new capabilities to the receiver.

The relay prevention feature is optional. If either party
(sender or receiver) does not have location information, relay
prevention will be disabled for the specific interaction (the
relevant party will send or store a NULL symbol as location).
As the location information is MACed, malicious relays cannot
“remove” location information. As long as a large majority of
the users have location information, this mitigation will still
be effective.

6) Proof of exposure to a COVID-19 positive person: In
some cases, users might falsely report that they were exposed
to a COVID-19 positive person, to gain benefits such as priority
in COVID-19 testing or a paid sick leave. We, therefore, add
an option for users to prove this exposure. This is done by
defining part of the ephemeral ID as a function of a verification
key. When a user is identified as COVID-19 positive, he or
she sends the verification keys to the MoH, but they are not
broadcast to all users.

2This requirement might depend on the culture and values of different coun-
tries. We believe that in many countries, and at least when the system begins
rolling out, users will require an explanation for an exposure notification.

3

Even without these keys, users are still able to identify
ephemeral IDs sent by COVID-19 positive persons. They can
prove the exposure by providing the part of the ephemeral
ID, which depends on the verification key. (The challenge is
supporting this feature while keeping the size of the ephemeral
IDs to be only 16 bytes)

We note that sending this proof discloses to the MoH’s
server the specific positive person to whom a user was exposed,
so this ability remains optional.

7) Identity Commitment: We want to prevent adversaries
from having multiple devices send the same ephemeral IDs.
When installing the application, the users commit to a unique
ID, that can be an official government-issued ID (e.g., driver
license number, social security number, etc.) or a randomly
generated number. A computational binding commitment to
this ID is used in the BLE messaged generation algorithm. If
the user is tested positive for COVID-19, the commitment can
be used to prevent a malicious change or replacement of the
keys after the commitment.

8) Performance: Our design is limited by multiple real-
world operational Constraints:

1) Short messages: BLE communication enables each
phone to send only relatively short messages. For
efficiency and robustness, we require our messages
to fit inside the payload of one BLE message, i.e., 16
bytes of data.3

2) Efficiency: To reduce the performance and battery
requirements of our solution, the application must use
limited CPU resources. We therefore limit it to using
only efficient symmetric key cryptography (AES and
HMAC). Moreover, real time calculations, such as
computing the ephemeral ID, use only AES rather
than HMAC.

3) Limited download channel: A server run by the
MoH will publish the information that is required
to check for exposure to new COVID-19 infected
people. Each copy of the application must download
this data, but we can only expect users to download
a few megabytes of data per day. We limit the size
of the data to approximately 5 MBytes for 1000
new COVID-19 positive persons per day. Our design
supports dynamic trade-off between the length of the
linkabilty period and size of the contact updates.
Increasing this period from one hour to one day
allows us to support 24000 new COVID-19 positive
persons per day with the same 5 MBytes size.

4) Run time of exposure detection algorithm:The
complexity of the algorithm that checks for exposure
is linear in the number of BLE messages received
and number of COVID-19 positive persons.

III. CRYPTOGRAPHIC DESIGN

In this section we will describe some central technical
points in our cryptogarphic design. The full version with
the detailed cryptographic design can be found in the full
specification of the system [10].

3Some of the other projects use the same message length, for example the
Privacy-Preserving Contact Tracing project of Apple and Google.

A. Key Derivation

We divide the time to days, and each day to epochs of
TE minutes. We suggest setting TE = 60 and therefore a
day has 24 epochs. We further divide the time to units of TU

minutes, and suggest using TU = 5. Each device will change
the ephemeral ID that it sends every TU minutes. (The reason
for changing the ephemeral ID more frequently than changing
the epoch is to prevent linkage between different ephemeral
IDs that a user sends in the same epoch, unless the user is
later diagnosed as COVID-19 positive.)

We use a tree-like key derivation scheme. The goal is to
allow the server to broadcast separate keys for each epoch.
This makes it much harder to link messages of the same
infected person across different epochs. However, the scheme
also allows the server to broadcast daily keys for reducing the
total bandwidth.

We chose to derive all keys in two steps, first deriving daily
keys from the master key, and from these daily keys deriving
epoch keys. This allows the server to store the daily or epoch
keys in a lexicographic order, without information that allows
to link contacts across different days or epochs. Note that from
a privacy perspective it is always preferable to only store epoch
keys. However, we support the option of storing and sending
daily keys in case that the of number of infected persons is
large and it is required to optimizing the bandwidth.

The key derivation tree is depicted in Figure 1. Due to the
page limit we do not provide here the full description of the
key derivation process, and refer the user to the full version
of this paper or to our cryptographic specification in [10].

Design Intuition: The key PreKi,j
epoch is derived from the

day key. The key Ki,j
epoch is derived from PreKi,j

epoch using
the key Ki

com which binds the keys to a unique ID value.
On the other hand, we do not want to require the server to
broadcast Ki

com to users since this value will enable them to
connect values sent by an infected person in different epochs.
Therefore we derive Ki,j

epoch from PreKi,j
epoch, and have the

server only broadcast Ki,j
epoch to users. The keys Ki,j

epochENC

and Ki,j
epochMAC are derived from Ki,j

epoch. These keys will be
used by users to verify that the BLE message they received
corresponds to a infected person. The key Ki,j

epochVER will be
used to ensure that only users which receive the ephemeral
ID can reconstruct a “proof” which depends on this key. This
value verifies to the server that the user indeed received this
BLE message from a COVID-19 positive person.

B. Ephemeral IDs

We first list the rational for the design that we suggest:

1) The ephemeral ID should include an authenticated
encryption of the location of the transmitting device.
This is required in order to prevent relay attacks
that broadcast the ephemeral ID to users in other
locations. The design must also prevent attacks where
the relay changes the original ephemeral ID, for
example by xoring values to the ciphertext in order
to change the original encrypted location to another
location.

4

Fig. 1: The key derivation mechanism.

Fig. 2: The derivation of the Ephemeral ID.

2) There is a constraint of sending only 16 bytes in the
ephemeral ID.

3) Another constraint is that the computation must be
quick, since it must be run in real time (unlike the
key derivations). Therefore we prefer using AES to
using HMAC.

4) Checking at the client side for physical contacts,
should be run in time which is linear in the number of
infected persons and the number of recorded beacons.

The derivation of the Ephemeral ID described in Figure 2.
The ephemeral ID for time unit s in epoch j of day i is
a 16 byte value that is generated in the following method.
The application sets a random 4 byte value, UserRand, as a
truncation of the epoch verification key Ki,j

epochVER. It also
computes a 5 byte GeoHash of its current location. It then
runs the following computation.

Maski,j,s = AES(Ki,j
epochENC, s)

UserRand = Truncate(Ki,j
epochVER, 4)

Plaini,j,s = 0 (3B) || GeoHash (5B) || UserRand (4B) || 0 (4B)

Ci,j,s = Plaini,j,s ⊕Maski,j,s
EphIDi,j,s = Truncate(Ci,j,s, 12) ||

Truncate(AES(Ki,j
epochMAC,Ci,j,s), 4)

A note on UserRand: The UserRand field is used to enable the
receiver of the ephemeral ID to prove that it received this mes-
sage. Ideally, this message would be unique per ephemeral ID,
for example computed as Truncate(AES(Ki,j

epochVER, s), 4).
However, since the ephemeral ID is generated in real time,
we prefer to improve the latency of this operation and use
the same UserRand value for all ephemeral IDs sent in an
epoch. This will enable the receiver to prove that it received
an ephemeral ID in this epoch, but not the exact time and
number of ephemeral IDs received.

MAC size: Due to communication constraints, our MAC

5

is only 32-bits long. However, we assume that for deciding
on exposure, the application will require at least two valid
ephemeral IDs in a short time interval. And that means that
in most cases, a relay attacker needs to forge two or more
messages, and that will happen with a negligible probability
of approximately 2−64.

A note on GPS information accuracy and availability:
We propose sending only coarse geo-location information (e.g.,
accuracy of ±500 meters). We believe this is sufficient to
prevent most cases of relay attacks, without compromising the
users’ privacy (Bluetooth range is much less than 500 meters).
As location information might not be available (e.g., a long
tunnel, location is disabled by the user, etc.), the information
encoding should allow notifying that no location information
is available (e.g., all zero bytes).

A note on the storing the GPS information: The Geo-
Hash, which encodes the location, need not be kept secret
from the receiver of the BLE message, since the receiver is
physically close to the sender. Moreover, we assume that the
phone may record its own GPS information. However, one
can be worried that external access to the data stored on the
device (for example by compromising the device, or using
a court order), will reveal the location data. It would have
therefore been preferable for the device to store a MAC of the
geo-location, keyed by a key which is sent in the ephemeral
ID and deleted afterwards. However, the current length of the
ephemeral ID does not support a solution of this type.

C. Communication with the Ministry of Health and Checking
for Exposure

For full details about the process of uploading keys to the
MoH by COVID-19 positive persons, key broadcast, and local
check for exposure see the full specification of the system [10].

IV. DEPLOYMENT

A BLE-based contact tracing application, Hamagen 2,
was deployed by the Israel Ministry of Health in late
July (see source code at https://github.com/MohGovIL/
rn-contact-tracing). This application was an update to a previ-
ous version of the application, Hamagen 1, which was based
on GPS location data. Hamagen 1 initially had a very large
number of downloads, but as time passed a large percentage
of its users stopped using it. Unfortunately, the deployment of
Hamagen 2 was a failure, and very few people chose to use it
on a regular basis. We can identify two major reasons for this
failure: technical issues, and trust issues.

a) Technical issues: The application suffered from var-
ious usability issues, especially in the first versions after the
initial release. The issues included high battery consumption
on some phones, and lack of support for older and some
new phones. Bluetooth connection with other devices was also
affected in some cases. These issues arose from two main
reasons:

1) The release date was determined by a government
resolution, without providing time for beta testing.
The application was only briefly tested by a small
group of developers on about 30 devices. The next

step was releasing the application to more than a
million users.

2) Apple and Google prevented the MoH from using the
GAEN API. The application developers had to bypass
the various limitation on BLE-based contact tracing
without the OS support. The Israeli MoH decided that
location data is needed in order to support location-
based tracing of contacts with people who do not
use smartphones. (In Israel, a large percentage of the
population does not use smartphones for religious
reasons, and the GAEN API does not provide a
solution for them.) Although this unique local issue
was explained to Apple and Google, they did not
agree to change their global restriction on using GPS
location together with the GAEN API.

b) Trust issues: Even taking into consideration the
technical difficulties, we argue that the main reason for the
failure of the deployment was the lack of trust among the
general public. The implementation followed our design and
was endorsed by prominent privacy advocates, but this fact was
not communicated to the public. Moreover, since the beginning
of the pandemic, Israel has been trying to trace contacts using
intrusive surveillance technology of the Israel Security Agency.
Without adequate publicity, which was lacking, the public was
unable to distinguish between that type of surveillance, and the
privacy-preserving design of Hamagen 2. In addition, people
also had a general distrust for the government’s response to
COVID-19. As a result, people were reluctant to install any
application that, in their view, might be spying on them.

While we lack professional expertise in this area, we
believe that if the public had trusted the effectiveness and
privacy of the contact tracing solution, many people would
have used it despite the technical difficulties. Therefore, trust
issues were the primary reason for the failure of the application
deployment.

ACKNOWLEDGMENT

We thank the many researchers with whom we discussed
the design, including Manuel Barbosa, Eli Biham, Dan Boneh,
Yehuda Lindell, Moni Naor, and Adi Shamir. We are very
grateful for Ron Asherov and other contributors for their hard
work on the Python reference implementation and helpful
comments.

This work was supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s
Office, by the Alter Family Foundation, and by Len Blavatnik
and the Blavatnik Family foundation. Eyal Ronen is a member
of CPIIS.

REFERENCES

[1] Apple and Google. Exposure notification cryptography specification,
April 2020. https://www.apple.com/covid19/contacttracing/.

[2] Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Alexander
Gruler, Jonas Höchst, Joshua Kühlberg, Mira Mezini, Markus Miettinen,
Anel Muhamedagic, Thien Duc Nguyen, Alvar Penning, Dermot Fred-
erik Pustelnik, Filipp Roos, Ahmad-Reza Sadeghi, Michael Schwarz,
and Christian Uhl. Mind the GAP: security & privacy risks of contact
tracing apps. CoRR, abs/2006.05914, 2020.

6

https://github.com/MohGovIL/rn-contact-tracing
https://github.com/MohGovIL/rn-contact-tracing
https://www.apple.com/covid19/contacttracing/

[3] Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L. Rivest,
Adi Shamir, Emily Shen, Ari Trachtenberg, Mayank Varia, and Daniel J.
Weitzner. Privacy-preserving automated exposure notification. Cryptol-
ogy ePrint Archive, Report 2020/863, 2020. https://eprint.iacr.org/2020/
863.

[4] Paul-Olivier Dehaye and Joel Reardon. Swisscovid: a critical analysis
of risk assessment by swiss authorities, 2020.

[5] Gary F. Hatke, Monica Montanari, Swaroop Appadwedula, Michael
Wentz, John Meklenburg, Louise Ivers, Jennifer Watson, and Paul
Fiore. Using bluetooth low energy (BLE) signal strength estimation
to facilitate contact tracing for COVID-19, 2020.

[6] Archanaa S. Krishnan, Yaling Yang, and Patrick Schaumont. Risk and
architecture factors in digital exposure notification. Cryptology ePrint
Archive, Report 2020/582, 2020. https://eprint.iacr.org/2020/582.

[7] Joseph K. Liu, Man Ho Au, Tsz Hon Yuen, Cong Zuo, Jiawei Wang,
Amin Sakzad, Xiapu Luo, and Li Li. Privacy-preserving covid-19
contact tracing app: A zero-knowledge proof approach. Cryptology
ePrint Archive, Report 2020/528, 2020. https://eprint.iacr.org/2020/528.

[8] Singapore Ministry of Health and Government Technology Agency.
TraceTogether, 2020. https://www.tracetogether.gov.sg/.

[9] Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay
attacks in private contact tracing. IACR Cryptol. ePrint Arch., 2020:418,
2020.

[10] Benny Pinkas and Eyal Ronen. Hashomer – a proposal for a
privacy-preserving bluetooth based contact tracing scheme for Ham-
agen, 2020. https://github.com/eyalr0/HashomerCryptoRef/blob/master/
documents/hashomer.pdf.

[11] Leonie Reichert, Samuel Brack, and Björn Scheuermann. A survey
of automatic contact tracing approaches. Cryptology ePrint Archive,
Report 2020/672, 2020. https://eprint.iacr.org/2020/672.

[12] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé,
James R. Larus, Edouard Bugnion, Wouter Lueks, Theresa Stadler,
Apostolos Pyrgelis, Daniele Antonioli, Ludovic Barman, Sylvain Cha-
tel, Kenneth G. Paterson, Srdjan Capkun, David A. Basin, Jan Beutel,
Dennis Jackson, Marc Roeschlin, Patrick Leu, Bart Preneel, Nigel P.
Smart, Aysajan Abidin, Seda F. Gürses, Michael Veale, Cas Cremers,
Michael Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro Cattuto,
Alain Barrat, Dario Fiore, Manuel Barbosa, Rui Oliveira, and José
Pereira. Decentralized privacy-preserving proximity tracing. CoRR,
abs/2005.12273, 2020.

[13] Serge Vaudenay. Centralized or decentralized? the contact tracing
dilemma. Cryptology ePrint Archive, Report 2020/531, 2020. https:
//eprint.iacr.org/2020/531.

[14] Zhiguo Wan and Xiaotong Liu. Contactchaser: A simple yet effective
contact tracing scheme with strong privacy. Cryptology ePrint Archive,
Report 2020/630, 2020. https://eprint.iacr.org/2020/630.

7

https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/582
https://eprint.iacr.org/2020/528
https://www.tracetogether.gov.sg/
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://eprint.iacr.org/2020/672
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/630

	Introduction
	Privacy, Security and Operational Requirements
	Related Work

	Technical Overview
	The ``Hashomer'' Design
	A hybrid design
	Message Unlinkability
	Tradeoff Between Privacy and Explainability
	Partial Disclosure
	Prevention of Relay Attacks
	Proof of exposure to a COVID-19 positive person
	Identity Commitment
	Performance

	Cryptographic Design
	Key Derivation
	Ephemeral IDs
	Communication with the Ministry of Health and Checking for Exposure

	Deployment
	References

