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Abstract—Recent developments in blockchains and edge com-
puting allow deployment of decentralized shared economy plat-
forms with utility token support, where tokens (in the form of
altcoins) secure and reward useful work. However, the majority of
the systems being developed, does not provide mechanisms to pair
those who offer services (workers) and those who request them
(clients), or rely on manual and insecure resolution. AStERISK
bridges this gap allowing to perform sealed-bid auctions on
blockchains, automatically determine the most optimal price
for services, and assign clients to the most suitable workers.
AStERISK allows workers to specify a minimal price for their
work, and hide submitted bids as well the identity of the bidders
without relying on any centralized party at any point. We provide
a smart contract implementation of AStERISK and show how to
deploy it within the Filecoin network, and perform an initial
benchmark on Chainspace, an efficient, new smart contract
platform.

I. INTRODUCTION

The cloud computing model developed during the last two
decades was built on the premise of compute centralization.
That is, computing power is geographically and administra-
tively concentrated in compute infrastructures of industrial
scale, generally called datacenters. As a result, the majority of
users currently rely on clouds for applications such as hosting
services, offloading computation, and data storage. However,
centralization introduces several drawbacks; cloud computing
services act as large central points of failure [1], and make
possible for authorities to enforce censorship [2] or violate user
privacy [3]. Furthermore, large cloud operators often abuse
their market position to effectively force users to trust their
service and adapt to operators’ rules and prices.

Recent research efforts focus on shared-economy infras-
tructures, where services are performed by users sharing their
resources with each other at the edge of the network [4].
Such infrastructures can provide better quality of service,
and reduce the exposure to central points of failures and
abuse of power; but require security solutions and reliable
incentive mechanisms to compensate the lack of trust between
distributed users. Following the recent success of Bitcoin [S]
a large amount of cryptocurrency projects implement such a
shared economy model and use blockchains to secure their
platforms and simplify payments [6], [[7], [8], [O], [LO], [L1].
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The vision is to create a decentralized system, where users are
incentivized to perform useful work and automatically receive
rewards upon completing the assigned tasks.

While multiple projects focus on the crucial task of proving
to the network that a service has been successfully completed
[L2], [13], [14], [15]], an equally important task of determining
an optimal price for those services has been largely ignored by
the community. Furthermore, industrial projects either do not
cover this problem or rely on manual user interaction causing
multiple scalability and security issues [6], [7], [8]], [9]]. In this
work, we answer to the question of how blockchains and smart
contracts can be leveraged for deriving the price of a service in
distributed computing infrastructures and automatically assign
service requesters to corresponding workers.

The providers of the distributed infrastructure are asking
for compensation, since admitting user requests imposes oper-
ational expenses, while occupying their personal computing as
well as storage resources. Therefore, the sufficient participation
of infrastructure providers is associated with an incentivisa-
tion mechanism that allows them to profit by offering their
resources at a price that equals or exceeds, their expenses. That
is, the objectives of users and providers are conflicting with
each other since the former try to access a service at the lowest
possible price while the latter tries to maximise their revenue.
Therefore, there is a need for a market mechanism to associate
user requests to providers’ resources. In AStERISK we intro-
duce the concept of running auctions on the blockchain: in
this way, users do not have to trust each other nor any trusted
374 party, while both parties are achieving their objectives of
price minimisation (for clients) and revenue maximisation (for
workers). Instead, they inherit security guarantees from the
underlying distributed ledger and can be sure that the auction
is performed correctly using Smart Contracts. However, data
submitted to blockchain automatically becomes public and in
sealed-bid auctions it is critical to hide all the bids during the
auction, as we discuss extensively later. For example, revealing
bidders’ identity imposes another security threat: revealing that
a bidder bought storage space at some specific and publicly
known servers makes the servers an easy target for malicious
users that want the bidder to lose their data.

In this paper we propose AStERISK— an auction-based
shared economy resolution system running on top of dis-
tributed ledger. In AStERISK, workers submit their offers
to the blockchain together with a minimal price they are
willing to accept. Our system hides submitted bids and protects
bidders identity using anonymous credentials. In contrast to
related work, AStERISK does not rely on a single trusted
374 party to issue all the credentials, but rather on a set of



multiple, decentralised authorities. Each user can define their
own set of trusted parties and is protected from a subset of
authorities becoming malicious. Once an auction is finished,
AStERISK automatically creates a binding on the blockchain
allowing workers to claim money from requester deposits upon
submission of a valid proof of useful work. For simplicity,
we focus on the case of Filecoin [16], a decentralized storage
network, but AStERISK can be easily adapted to work with
additional systems implementing a shared economy model.

II. BACKGROUND

a) Blockchain: The blockchain technology [S]] imple-
ments a distributed, append-only ledger in the form of con-
nected blocks; once information is stored in the blockchain it
cannot be removed or altered. Network participants use a con-
sensus protocol to agree on the current state of the ledger, and
the system maintains its properties as long as a subset of the
participants is honest. Blockchains are used to record crypto-
currencies (e.g., Bitcoin [5], Ethereum [17]) transactions. A
common extension consisting of scripting languages enables to
include logic as part of the transaction and allows deployment
of smart contracts—code submitted to the blockchain and
executed by all network participants. AStERISK leverages the
high-integrity data structure provided by blockchains, and uses
it for accountancy, auditability, and time reference (e.g., time
may be defined as the block height of the main chain).

b) Filecoin: At the core of Filecoin lies a Decentralised
Storage Market that allows requesters to pay miners, to store
data. Specifically, a Storage Market acts as an exchange
point where clients and miners can advertise their requests
and offer resources. The Network guarantees that the min-
ers are rewarded by the clients when providing the service.
Filecoin uses Proof-of-Replication [15] a scheme that relies
on zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zk-SNARKSs) [18]], [19] allowing a Prover to
prove possession of data D. To prevent Sybil attacks and
allow proving possession of multiple copies of the same file,
Proofs-of-Replication are generated over a version of data
encrypted under a key ek specified by the requester such
that RL. = Encode(D, ek). Filecoin requires the Prover
to recursively and continuously generate those proofs with
randomness r obtained from the most recent block in the
blockchain and thus proving possession of the file over time.

c) Anonymous Credentials: Anonymous
credentials [20], [21] allow the issuance of credentials
to users, and the subsequent unlinkable revelation to a verifier.
Users can selectively disclose some of the attributes embedded
in the credential or specific functions of these attributes. Most
anonymous credentials schemes entrust a single authority
with a master credential signature key, allowing a malicious
authority to forge any credential. Other schemes do not
provide the necessary re-randomization or blind issuing
properties necessary to implement general purpose disclosure
credentials. To overcome these limitations, AStERISK relies
on Coconut [22]] which supports distributed threshold issuance
of credentials; therefore supporting private attributes, re-
randomization, and unlinkable multi-show selective disclosure
without relying on a central trusted 3"¢ party. Coconut is
designed for use in the context of blockchains to ensure
confidentiality, authenticity and availability even when a
subset of credential issuing authorities are malicious or

offline; it uses short and computationally efficient credentials
that can easily be verified by a smart contract. Colluding
authorities can forge Coconut credentials, but cannot break
unlinkability and de-anonymize users. Coconut authorities
issue credentials without communicating with each other,
following a standard key distribution phase; as a result, a
large number of authorities may be used to issue credentials
without significantly affecting efficiency.

III. DESIGN GOALS

AStERISK associates worker resources to users via the
execution of an auction mechanism. Specifically, we consider
a system with the following actors:

e Bidders - users willing to access a service (e.g., Filecoin
users wishing to store some data in the network).

e Workers - offer their services to the users (e.g., Filecoin
miners wishing to store users’ files for a specific price).

o Authorities - distributed system responsible to issue
credentials allowing users to participate in auctions.

AStERISK assumes that at least a threshold subset of
the authorities are honest; all cryptographic operations rely
on (or are implied by) the “external Diffie-Helman” (XDH)
assumption [23]; and relies on weak synchronyﬂ for liveness
(but not for safety). These assumptions are inherited from
Coconut, and the underlying smart contract platform. Given
this threat model, AStERISK achieves the following design
goals:

e Hidden Minimum Price: Workers can specify a mini-
mum price for which they are willing to perform given
actions, and are guaranteed that the winner of the auction
bids at least that price. This minimum price is kept private
from the bidders until the end of the auction.

e Bidders Privacy: Bidders are unlinkable to to their bids.
Only the identity of the winner is revealed to the worker
(at the end of the auction).

e Bids Privacy: Bids are kept private until the end of the
auction; bidders submit their bids without knowledge of
what other bidders do.

¢ Bids Binding: Bidders cannot change their bids once they
are committed.

e Public Auditability: Anyone can verify the correct exe-
cution of any auction.

e Fairness: Bidders are financially penalized if they deviate
from the protocol, but cannot be financially penalized
if they follow it correctly. Bidders cannot double-spend
coins [27], and no authority can steal bidder’s funds.

e Non-Interactivity: Bidders are not required to interact
with each other.

e Censorship Resistance: Anyone can act as bidder or
worker; the system is resilient to censorship.

e Distributed Authority: AStERISK never relies on a
single trusted 37 party.

e Auction’s economic properties: Involving i) Efficiency,
in terms of assigning resources to the bidders that value
them the most in a computationally feasible way, if)
Incentive Compatibility (Truthfulness), where bidders and
workers benefit by revealing their true valuations, iif)

I'Weak synchrony [24] is required by many smart contract platforms [23],
[26]), and by distributed key generation protocols required by Coconut [22].



Individual Rationality, where both bidders and workers
are willing to participate, and iv) Budget Balance, where
the payments submitted cover workers’ compensations.

IV. ASTERISK DESIGN
A. AStERISK Smart Contract

We design AStERISK as a smart contract that extends
the tumbler application of Coconut [22] to allow credentials
to be used as anonymous bids in auctionf’} The AStERISK
smart contract defines six functions (Setup, Create, Deposit,
Commit, Reveal, Withdraw):

< Setup: A set of authorities jointly create an instance of
the AStERISK contract by providing their public keys as
well as any other scheme parameters as the number of
authorities and the threshold parameter related to Coconut.
This function can be run multiple times, and by different sets
of authorities; the workers then select the set of authorities
they trust upon executing Create.

% Create: Any 37 party worker creates an auction by
specifying the set of authorities trusted to issue credentials,
as well as any application specific parameter or policy. They
also specify, a commitment to the minimum price for which
they are willing to operate; and two time—tampﬂ teommit
and trepear (Where teommit < Trevear) Used during the
auction phase (see Section [[V-B).

< Deposit: Bidders deposit v coins into a buffer account
specified by the smart contract to request a credential on
the public attribute v, and on a private randomly generated
sequence number s. To prevent tracing traffic analysis,
v should be limited to a specific set of possible values,
similar to cash denominations. Each authority monitors the
AStERISK smart contract, and issues a partial credential
to the user—either on chain or off-chain—upon detecting
a credential request (credential requests are processed only
if bidders paid a deposit of v coins to the smart contract).
Bidders locally aggregate all partial credentials into a con-
solidated credential.

< Commit: Bidders submit a bid by showing a valid cre-
dential to the smart contract; they also provide a proof of
knowledge of the sequence number s along with a group
element ¢ uniquely built from s. If the proof and the
credential check is passed, the smart contract records (.
The group element ¢ embeds the sequence number s and
is therefore bound to the credential and the number of coins
v it embeds—showing ( effectively commits to v. The smart
contract accepts the bidders input only before t.ommit-

< Reveal: Bidders reveal v, (, and the credentials, as well
as a proof that v is correctly embedded in the credentials
and asserting correctness of (. The smart contract accepts
the bidders input only after ¢.oms+ and before t,cyeq, and
if the smart contract previously recorded ( (i.e., if the bidder
committed to its bid). Workers open the commitment to the
minimum price they committed to during Create.

< Withdraw: To withdraw the coins, the bidder provides the
smart contract with a zk-proof of knowledge of their private

2The tumbler application is described at Section V.A of Coconut [22].
3Time may be defined as the number of blocks built on top of the main
chain of the blockchain.

key by binding the proof to the address addr where they
wish to redeem the coins; they also provide the consolidated
credential, ¢, and a zk-proof attesting its correctness. To
prevent double spending, the contract keeps a record of
all group elements (¢ that have already been shown. Upon
showing a ( embedding a fresh (unspent) sequence number
s, the contract verifies the credential and zero-knowledge
proofs, and that ¢ does not already appear in the spent list.
Then, it withdraws v coins from the buffer, sends them to the
specified address addr, and adds ( to the spent list. Bidders
can only withdraw coins after ¢,¢,eq;, and only credentials
that have been recorded by Commit and Reveal can be used
to withdraw coins (this effectively locks the funds of bidders
that deviate from the protocol). According to the policy set
upon executing Create, the winner of the auction may be
treated differently.

K2
*

*

SubmitWork: After ¢,.ycq;, the winner contacts the
worker through a private channel, and uploads cryptographic
material to the smart contract allowing the worker to retrieve
its payment. Winners can anonymously prove they actually
won the auction by proving possession of the consolidated
credential, ¢, and a zk-proof attesting its correctness. In the
case of Filecoin, for example, the winner proves they won
the auction to the smart contract, and uploads a hash of the
encrypted file to store along with a signature. The file hash
is then used to verify Proofs of Spacetime [15] submitted by
the worker and release payments from the bidder’s deposit
over time.

B. The AStERISK Protocol

Figure |1| shows the execution of an auction on AStERISK;
the auction is divided in three phases:

e Preparation phase (Figure[Ia): Bidders pay deposits and
retrieve a credential required to participate in auctions,
and storage nodes submit their offers.

¢ Auction phase (Figure [Ib): Bidders commit and later re-
veal their bids. The smart contract determines the winner
by applying a Vickrey auction mechanism [28].

e Execution phase (Figure [Ic): Auction winner contacts
its corresponding storage nodes, prove their identity and
submit files to store. Storage node receives rewards for
storing files over time.

a) Preparation phase: A set of authorities executes the
Setup function of the AStERISK smart contract described in
Section Any worker executes Create (Figure [[a}®) to
create an auction by specifying the auction parameters, and
which set of authorities they trust. They also specify the two
time-tamps, tcommit and treypeq; determining the auction’s time
line; workers advertise their product and provide a commitment
to a minimum price vo at which they are willing to operate.
Bidders execute Deposit by paying a deposit of v coins into
a buffer account specified by the AStERISK smart contract
(Figure [Ta}@), and retrieve a credential required to participate
in auctions (Figure [1a}®). The value v represents the number
of coins they wish to bid.

b) Auction phase: Bidders execute Commit (Figure [Ib}
0) to commit to a bid for a particular auction on the smart
contract. Bidders’ commitments are only considered valid if
submitted before the deadline t.,;mqt. Next, workers open
the commitment to their minimum price, and bidders call
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Fig. 1: Overview of auction executions on AStERISK

Reveal (Figure [1b}®) to open their commitment to the smart
contract; bidders openings are valid only if submitted before
the deadline ¢,cyeq. Finally (Figure [Ib}®), the winner of
the auction is deduced from the execution trace of the smart
contract. The group element ( associated with the highest v
(if v > wvg) indicates the winner of the auction—all bidders
that correctly followed the protocol (except the winner) may
withdraw their coins calling the Withdraw function of the
AStERISK contract. If there is no winner, the auction fails and
every bidder may withdraw their money. AStERISK applies a
Vickrey auction mechanism [28]; the winner of the auction is
the bidder with the highest bid v, and pays the price of the
second highest bid, v’. This, in turn, means that the winner is
free to call Withdraw to withdraw (v — v’) coins.

¢) Execution phase: The winning bidder executes Sub-
mitWork (Figure [Ic}@®) and submits hashes of the encrypted
files to store. They then contact the corresponding worker off-
chain, prove they are the rightful winner by showing their
credential, and directly transmit the file replica R, to the
worker. The worker can then start generating proofs of useful
work, submit them to the blockchain, and claim rewards from
the winner’s deposit. Verifying the proof of useful work and
releasing the payment is an integral part of the underlying
blockchain, and is out of the scope of this work.

C. Discussion on Auction Specifics

AStERISK involves worker specific contracts that offer
resources in the form of a single item. In practice more
sophisticated auctions are of interest where multiple workers
offer their resources in the form of multiple items while
bidders express their bids for a subset of them on the same
contract; such ambition comes with the challenges of (i)
auction execution, and (ii) bidding privacy and security.

With respect to the auction execution, it has been shown
that combinatorial auctions can be modelled similarly to the
set packing problem, meaning that they are NP-hard and
there is no polynomial-time algorithm for finding the optimal
allocation. A solution would be to consider a system where
bidders are associated with up to a single item. That would
lead to a computationally feasible and efficient assignment, i.e.,
multi-item unit demand auction [29] setting, on the expense
however of bidders’ flexibility in expressing their preferences.
On the other hand, the bidders are expected to submit a vector
of bids, i.e., one bid for each offered item. Although the
Deposit function can be easily scaled up, i.e., by putting as
a deposit the sum of bids or the maximum bid in a vector,
the analysis of such vectors of bids could reveal information

on the bidder and create a privacy challenge that has to be
addressed.

V. PROTOCOL ANALYSIS

In this section we provide details of how AStERISK
achieves the design goals described in Section [III}

a) Hidden Minimum Price: Upon the execution phase
of the auction, AStERISK guarantees that a worker will offer
their resources at a price higher than the minimum price or
not offer their resources at all.

b) Bidders privacy: AStERISK takes advantage of Co-
conut’s unlinkability property to break the link between the
deposit of coins, the commit of bids, and the withdraw of
the coins. As a result, bidders can submit bids on auctions
without revealing their identity, yet proving possession of a
valid credential.

¢) Bids privacy: Bids are kept private until £ 4mm¢; the
zero-knowledge property of Coconut credentials implies that
no information about v is revealed while committing to a bid
(Figure [1b} @).

d) Bids binding: Bidders are bound to their bids as they
are first required to commit to their bid (Figure [Ib}®), and
then to open the commitment (Figure 9). Bidders cannot
open the commitment to another value than the previously
committed as this implies forging the Coconut credentials.

e) Public auditability: AStERISK is implemented as a
smart contract; its correct execution can be verified by any
374 party by taking advantage of the public auditability of the
underlying smart contract platform.

f) Fairness: No single authority can create credentials
and steal all the coins in the buffer account of the smart
contract—the threshold property of Coconut implies that ad-
versaries need to corrupt an arbitrarily large set of authorities
for this attack to be possible. Bidders cannot participate to
the auction phase (Figure without paying a deposit to
receive a valid credential; setting t.ommit < treveal forces the
bidders to commit to their bid before revealing it, preventing
any 3% party from seeing other bidder’s bid before committing
to a value. Bidders dropping out after committing a bid (and
never revealing it) are financially penalized as they cannot
withdraw their coins. Coconut provides blind issuance which
allows bidders to obtain a credential on the sequence number
s without the authorities learning its value. Without blindness,
any authority seeing s could potentially race the bidders,
and withdraw the coins of the credential—blindness prevents
authorities from stealing the coins. Keeping a spent list of
all group elements ¢ prevents double-spending attacks [27]
without revealing the sequence number s; this prevents an



AStERISK Chainspace smart contract

Operation 1 [ms] o2 [ms] size [kB]
Create [g] 28.433 + 0214 ~ 1.8
Create [c] 0.0148 + 0.002 -
Commit [g] 194.243 + 0410 ~ 2.7
Commit [c] 355.852 + 15.880 -
Reveal [g] 205.656 + 5.659 ~ 2.7
Reveal [c] 351.192 + 8514 -
Withdraw [g] 188.925 + 2.084 ~ 2.6
Withdraw [c] 336.533 + 4.490 -
SubmitWork [g] 197.399 + 6.537 ~ 2.7
SubmitWork [c] 368.948 + 13.116 -

TABLE I: Timing and transaction size of the AStERISK Chainspace smart
contract (described in Section , measured over 10,000 runs. The trans-
actions are independent of the number of authorities. The notation [g] denotes
the execution of the procedure and [c] denotes the execution of the checker.
The Deposit function is not implemented as it is identical to the tumbler
application described in Coconut [22].

attacker from exploiting a race condition upon withdrawing
and which may lock bidders coins.

g) Non-interactivity: Bidders do not interact with each
other. During the preparation phase (Figure [Ta), Bidders only
interact with a subset of the the authorities to receive a
credential; during the auction phase (Figure [ID), they only
interact with the smart contract; during the execution phase
(Figure [Ic), bidders only interact with the workers or with the
smart contract to withdraw their coins.

h) Censorship resistance: The decentralized nature of
the underlying smart contract platform makes the AStERISK
smart contract resilient to censorship. Furthermore, a small
subset of authorities cannot block the issuance credentials—
the service is guaranteed to be available as long as at least a
threshold number of authorities are running.

i) Distributed authority: AStERISK introduces no sin-
gle trusted 3" party; the AStERISK contract is executed on
a decentralized smart contract platform, and Coconut allows
threshold issuance of credentials.

J) Auction’s economic properties: An auction satisfies
all those properties only under the condition of price-taker
participants [30], i.e., both bidders and workers have no impact
on the auction prices. In the single item auctions we consider
here, it has been proven that Vickrey auctions possesses all
these desired attributes based on the assumption of “sealed
bids”, where neither bidders nor workers have information
about the state of the auction [28]. AStERISK through its
privacy properties provides a technical implementation of the
“sealed bids” assumption which prevents price manipulations.

VI. IMPLEMENTATION & EVALUATION

We provide an open-source implementation’| of the
AStERISK smart contract presented in Section for
Chainspace [25]. Our implementation does not enforce con-
ditions on timers t.ommit and t,epeqr s Chainspace currently
does not provide functions to check block heights. We wrote
our prototype in about 450 lines of Python code using an
open source Python implementation of Coconuﬂ which relies
on petlilﬂ and pbli the bilinear pairing is defined over the

4https://github.com/asonnino/coconut-chainspace
Shttps://github.com/asonnino/coconut
Shttps://github.com/gdanezis/petlib
"https://github.com/gdanezis/bplib

Barreto-Naehrig curV using OpenSSL as arithmetic backend.
Table [I] provides the timing and transaction size for each
function of the smart contract; each experiment is the result of
100 runs measured on a commodity laptop (a MacBook Pro 13’
2.7 GHz Intel Core i7, running macOS Mojave). As expected,
both the procedure and the checker of Create are extremely
fast as they do not involve cryptographic operations. The
checker of Commit, Reveal, Withdraw, and SubmitWork
take on average the same (and the longest) time as their core
operation is to verify credential validity; verifying credentials
takes the longest time due to pairing operations [22]]. The
Deposit function is not implemented as it is identical to the
tumbler application described in Coconut [22].

VII. RELATED WORK

There are several frameworks that target hiding private
data submitted to a public ledger. Hawk [33] divides Smart
Contract into public and private parts and secure private
input using zero-knowledge proofs, but requires a central-
ized trusted manager to operate. Furthermore, ShadowEth
[31] allows processing confidential Smart Contract data using
Trusted Execution Environments (TEE). However, such a
scheme requires users to trust the hardware vendor and can
expose the system to TEE’s vulnerabilities [37], [38]]. On the
subject of sealed-bid auctions, Blass and Kerschbaum [34]]
proposed Strain, that preserve bids privacy against malicious
participants. Strain uses a two-party comparison protocol, but
has a flaw that reveals the order of bids. Furthermore, running
protocols involving MPC on blockchain is not efficient due to
extensive computations and the number of rounds involved.
Furthermore, Galal and Youssef [39] presented a protocol
that ensures public verifiability, privacy of bids, and fairness.
However, the solution scales badly with the number of bidders
and relies on a random number retrieved from blockchains
that are not proven to be secure. This scheme was improved
in [35] using zk-SNARKS, but still relies on a centralized
party for zero-knowledge proofs and does not protect bidders
identity. An alternative approach was proposed by Bogetoft
et al. [36]. The system uses a multiparty computation to
perform auctions on encrypted bids. However, such a scheme
reveals final assignment between bidders and objects and lacks
transparency. Currently, Filecoin [16] does not implement an
automated system assigning clients to storage nodes. Users
are required to chose storage nodes manually and offers are
publicly posted on the blockchain. Other industrial systems
such as Golem [6], iExec [8] or SONM [7] either do not
specify their requester-worker assignment technique or rely on
similar, insecure solutions. AStERISK can be a useful compo-
nent for all those platforms to increase their level of security
and automatically determine optimal price for services. We
summarize the previously discussed solutions and their security
features in Table

VIIL

AStERISK inherits several limitations of Coconut which
acts as the underlying credential scheme. These limitations are
beyond the scope of this work, and deferred to future work.
AStERISK is vulnerable if more than the threshold number
of authorities are malicious; colluding authorities could create
credentials to steal all the coins in the buffer of the smart

LIMITATIONS

8https://tools.ietf.org/id/draft-kasamatsu-bncurves-01.html
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System Bids Privacy  Bidders Privacy

Bidders Non-Interactivity

Distributed Authority  Trusted Hardware  Public Auditability

ShadowEth [31]
Hawk [33]

Strain [34]

Galal er al. [35]
Bogetoft et al. [36]
Filecoin [16]
AStERISK

ANE 2 Y N N N N
N X X X X% X X
N XxX N\ %X %X N\ N\

Intel SGX [32]
None
None
None
None
None

e0000CC0CO
AR NI N N NN

None

TABLE II: Comparison of security properties achieved by different systems discussed in this section. The decentralizatiooperty reads as follows; O : relies

on a trusted 37% party, @
37d party.

contract. Note that bidders * privacy is still guaranteed under
colluding authorities, or an eventual compromise of their keys.

The smart contract implementation of AStERISK described
in Section does not scale to a large number of users
as each commitment and bid is kept on-chain. A potential
solution is to defer the auction logic to a state channel [40],
and only seal the final result of the auction on the blockchain.
Moreover, AStERISK inherits from any scalability limitation
of the underlying smart contract platform.

The winner of the auction may invoke SubmitWork, but
refuse to transfer data to the worker. This prevents the worker
from claiming the reward and leave their resources unused
until the next auction. This issue is inherited from Filecoin
and can be mitigated with additional mechanisms assuring fair
exchange of digital goods [41]].

IX. CONCLUSION AND FUTURE WORK

We presented AStERISK— a system for determining op-
timal prices for services in a shared economy environment
and automatic assignments of requesters to the most optimal
workers. AStERISK allows to securely perform sealed-bid
auction on a blockchain using anonymous credentials and zero-
knowledge proofs of knowledge. Our system allows workers to
specify a minimal price for their services, protects users’ bids
as well as the identity of the bidders. Contrary to the previous
work, AStERISK does not rely on a trusted 3" party to issue
credentials, but rather on a set of entities that can be freely
chosen by users. The distributed authorities issue only partial
credentials that are merged locally by each user protecting
the system from a subset of malicious authorities. We showed
how AStERISK can be deployed in the Filecoin network
and adapted to other shared economy systems operating on
blockchain. As a part of future work, we plan to extend our
system to securely support requesters’ evaluation of multiple
items and protect against data analysis attacks. Furthermore,
we will investigate the scalability of our solution with large
networks and better integration with additional platforms.
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