

# Bridging the cyber and physical worlds using blockchains and smart contracts

Nikos Fotiou, Vasilios A. Siris, Spyros Voulgaris, **George C. Polyzos**  Dmitrij Lagutin





Aalto University School of Electrical Engineering

## Motivation

- IoT devices have limitations and cannot interact with blockchains/smart contracts
  - Limited computational power and storage
  - Limited network connectivity
  - Security and trust issues
- The output of an actuation operation cannot be easily verified using cyber means

## Contributions

- realistic approach for paid IoT interactions:
  - Imit loss in case of disruption of actuation
    - micro-payments for micro-transactions
    - make blochain related micro-transactions efficient/inexpensive
- blockchain-based micro-payments to constrained IoT devices
  - incapable of
    - performing public-key encryption
    - (directly) participating in the blockchain
    - storing blockchain-related secrets.
- enable "payment delegation"
  - allowing users without blockchain credentials to pay
    - up to a pre-configured amount
    - for a specific service
- support many-to-one payments
  - enabling multiple users that share the same blockchain credentials to pay for a service
- a presently feasible solution
  - that relies on existing, already deployed technologies

#### H2020 SOFIE: Secure Open Federation of Internet Everywhere

- Applying Distributed Ledger Technology to
   > securely and openly federate IoT platforms
- *interconnected* distributed ledgers
  - decentralized business platforms
  - interconnection of diverse IoT systems
  - accessible metadata
  - open business rules on how to connect to platforms
  - securely record audit trails to be used to resolve disputes



http://www.sofie-iot.eu/



## A solution

- We argue that the general cyber-real world interaction problem can not be easily solved
- Damage control/limit potential loss
  - In case something goes wrong, the loss is a small pre-configured amount of money
- We leverage two existing solutions
  - Payment channels
  - Hash-based one time password (HOTP RFC4226)



## **High-Level System Perspective**

- A client (or his owner) makes a "deposit" to a smart contract
- The client requests from an AS an "one-time password"
  - for invoking the actuation process for 1 time slot
- The password is exchanged for a "payment receipt"
- The receipt can be used by the AS to claim, from the smart contract, (part of) the deposit
- If a client needs more passwords, it produces more receipts...

## **High-Level System Properties**

- A deposit is claimed using only a single payment receipt
  - even in the case of many-to-one payments
  - minimizes the interactions with the smart contract and makes the smart contract implementation simpler
- Payment receipts are provided off-chain
  - generation & validation of receipts involves only digital signatures computation
  - generation & evaluation of an one-time password involves the computation of a keyed hash message authentication code (HMAC)
  - this process is fast -> small time slots can be used
    - minimizing the losses in case of service disruption
- A device and an AS have to be pre-configured with a shared secret key
  - no further interaction is required between these two entities
- The channel client-device does not have to be secure
  - as opposed to the channel between a client and an AS
- Except from the validation of an one-time password, a device does not have to perform any other operation

#### **BUILDING BLOCKS**

#### Payment channel: setup



## Payment channel: Micropayments



#### Payment channel: closing the channel



#### keyed Hash Message Authentication Code (HMAC) One-Time Password (HOTP)



## **TRIVIAL CONSTRUCTION**

#### **Device** access



## **Channel close**



## CLIENTS WITHOUT ACCESS TO THE BLOCKCHAIN



### Payment channel setup

Contract

Client owner

Deposit X amount for AS on behalf of PKclient

#### **Device** access



## ONE CLIENT OWNER MULTIPLE CLIENTS



## Challenges

- 1. Store all legitimate public keys
- 2. Close the channel with a single transaction

#### Store all client keys in a Merkle tree



### Payment channel setup



#### Prove membership



## Challenges

- 1<sup>st</sup> Store all legitimate public keys
- 2<sup>nd</sup> Close the channel with a single transaction













Sign(Client Z, amount+1)



## **Channel close**



## Implementation and Evaluation

- Implementation with Ethereum smart contracts
- Public-private key pairs with secp256k1
- HMAC with SHA256
- Merkle tree with keccak256

   Hash function recommended
   for Ethereum Smart Contracts
- Cost of Open and Close:
  - 3<sup>rd</sup> construction: 4 cars
- Opening deposit: 14.5 sec

| First construction  |                      |       |
|---------------------|----------------------|-------|
| Operation           | Cost measured in gas |       |
| open channel        | 43700                | €0,05 |
| close channel       | 36258                | €0,04 |
| Second construction |                      |       |
| Operation           | Cost measured in gas |       |
| open channel        | 50388                | €0,06 |
| close channel       | 36258                | €0,04 |
| Third construction  |                      |       |
| Operation           | Cost measured in gas |       |
| open channel        | 50388                | €0,06 |
| close channel       | 36330                | €0,04 |

## Conclusions

- realistic approach for paid IoT interactions:
- blockchain-based micro-payments to constrained IoT device owners
  - payment delegation
- efficiently support groups of clients (1 owner)
- a presently feasible solution

## Future Work

- Advanced Ledger and ILP
- Key revocation

## Thanks!



polyzos@aueb.gr

## Bridging the cyber and physical worlds using blockchains and smart contracts

Nikos Fotiou, Vasilios A. Siris, Spyros Voulgaris, **George C. Polyzos**  Dmitrij Lagutin





Aalto University School of Electrical Engineering