
Bridging the cyber and physical worlds using
blockchains and smart contracts

Nikos Fotiou, Vasilios A. Siris,
Spyros Voulgaris, George C. Polyzos

Dmitrij Lagutin

Motivation

• IoT devices have limitations and cannot
interact with blockchains/smart contracts
– Limited computational power and storage
– Limited network connectivity
– Security and trust issues

• The output of an actuation operation cannot
be easily verified using cyber means

polyzos@aueb.gr 2

Contributions
• realistic approach for paid IoT interactions:

Ø limit loss in case of disruption of actuation
o micro-payments for micro-transactions
o make blochain related micro-transactions efficient/inexpensive

• blockchain-based micro-payments to constrained IoT devices
– incapable of

• performing public-key encryption
• (directly) participating in the blockchain
• storing blockchain-related secrets.

• enable “payment delegation”
– allowing users without blockchain credentials to pay

• up to a pre-configured amount
• for a specific service

• support many-to-one payments
– enabling multiple users that share the same blockchain credentials to pay for a service

• a presently feasible solution
– that relies on existing, already deployed technologies

polyzos@aueb.gr 3

H2020 SOFIE: Secure Open Federation of Internet Everywhere

• Applying Distributed Ledger
Technology to
Ø securely and openly
federate IoT platforms

• interconnected distributed
ledgers
– decentralized business platforms
– interconnection of diverse IoT

systems
– accessible metadata
– open business rules on how to

connect to platforms
– securely record audit trails to be

used to resolve disputes

polyzos@aueb.gr 4

http://www.sofie-iot.eu/

http://www.sofie-iot.eu/

A solution

• We argue that the general cyber-real world
interaction problem can not be easily solved
Damage control/limit potential loss
– In case something goes wrong, the loss is a small

pre-configured amount of money

• We leverage two existing solutions
– Payment channels
– Hash-based one time password (HOTP – RFC4226)

polyzos@aueb.gr 5

Setup

AS Client Device

polyzos@aueb.gr 6

Smart
contract

High-Level System Perspective

• A client (or his owner) makes a “deposit” to a smart contract

• The client requests from an AS an “one-time password”

– for invoking the actuation process for 1 time slot

• The password is exchanged for a “payment receipt”

• The receipt can be used by the AS to claim, from the smart

contract, (part of) the deposit

• If a client needs more passwords, it produces more receipts...

polyzos@aueb.gr 7

High-Level System Properties

• A deposit is claimed using only a single payment receipt
– even in the case of many-to-one payments
– minimizes the interactions with the smart contract and makes the smart contract

implementation simpler

• Payment receipts are provided off-chain
– generation & validation of receipts involves only digital signatures computation
– generation & evaluation of an one-time password involves the computation of a

keyed hash message authentication code (HMAC)
– this process is fast -> small time slots can be used

• minimizing the losses in case of service disruption

• A device and an AS have to be pre-configured with a shared secret key
– no further interaction is required between these two entities

• The channel client-device does not have to be secure
– as opposed to the channel between a client and an AS

• Except from the validation of an one-time password, a device does not
have to perform any other operation

polyzos@aueb.gr 8

BUILDING BLOCKS

polyzos@aueb.gr 9

Payment channel: setup

ClientContract

Deposit X tokens for AS

polyzos@aueb.gr 10

Payment channel: Micropayments

ClientAS

Sign(k tokens)

Sign(2*k tokens)
Sign(3*k tokens)

polyzos@aueb.gr 11

Payment channel: closing the channel

ClientContractAS

Sign(3*k tokens)
pay 3*k return X - 3*k

polyzos@aueb.gr 12

keyed Hash Message Authentication Code (HMAC)
One-Time Password (HOTP)

DeviceClientAS

HMAC(sk,counter) HMAC(sk,counter)

HMAC(sk,counter++)

HMAC(sk,counter++)

micropayment

micropayment

HMAC(sk,counter++)

HMAC(sk,counter++)

polyzos@aueb.gr 13

TRIVIAL CONSTRUCTION

polyzos@aueb.gr 14

Device access

DeviceClientAS

HMAC(sk,counter)
HMAC(sk,counter)

HMAC(sk,counter++)

Sign(Client, amount)

Sign(Client, amount ++)

HMAC(sk,counter++)

polyzos@aueb.gr 15

Channel close

Client OwnerContractAS

pay return

Sign(Client, amount)

polyzos@aueb.gr 16

CLIENTS WITHOUT ACCESS TO THE
BLOCKCHAIN

polyzos@aueb.gr 17

Setup

AS Device

Client owner

polyzos@aueb.gr 18

Payment channel setup

Client ownerContract

Deposit X amount for AS on behalf of PKclient

polyzos@aueb.gr 19

Device access

DeviceClientAS

HMAC(sk,counter)
HMAC(sk,counter)

HMAC(sk,counter++)

Sign(Client, amount)

Sign(Client, amount++)

HMAC(sk,counter++)

polyzos@aueb.gr 20

ONE CLIENT OWNER
MULTIPLE CLIENTS

polyzos@aueb.gr 21

Setup

AS

Device

Client owner

Device

Device

Device

polyzos@aueb.gr 22

Challenges

• 1. Store all legitimate public keys
• 2. Close the channel with a single transaction

polyzos@aueb.gr 23

Store all client keys in a Merkle tree

Client1 Client2 Client3 Client4

H() H()

H()

polyzos@aueb.gr 24

Payment channel setup

Client ownerContract

Deposit X amount for AS on behalf of Root

polyzos@aueb.gr 25

Prove membership

Client1 Client2 Client3 Client4

H() H()

H()

polyzos@aueb.gr 26

Challenges

• 1st Store all legitimate public keys
• 2nd Close the channel with a single transaction

polyzos@aueb.gr 27

The straw man ledger
Client XAS

Sign(Client X, amount)
HMAC(sk,counter)

polyzos@aueb.gr 28

The straw man ledger
Client XAS

Sign(Client X, amount)

polyzos@aueb.gr 29

The straw man ledger
Client ZAS

Sign(Client X, amount)

Sign(Client X, amount)

Last Transaction

polyzos@aueb.gr 30

The straw man ledger
Client ZAS

Sign(Client X, amount)

Sign(Client X, amount)

Last Transaction

Sign(Client Z, amount+1)

polyzos@aueb.gr 31

The straw man ledger
Client ZAS

Sign(Client X, amount)

Sign(Client X, amount)

Last Transaction

Sign(Client Z, amount+1)

Sign(Client Z, amount+1)

HMAC(sk’,counter’)

polyzos@aueb.gr 32

The straw man ledger

Client LAS

Sign(Client X, amount)

Sign(Client Z, amount+1)

Last Transaction

Sign(Client L, amount+2)

Sign(Client Z, amount+1)

Sign(Client L, amount+2)

HMAC(sk’’,counter’’)

polyzos@aueb.gr 33

Channel close
Client OwnerContractAS

pay return

Check if Client L is authorized

Sign(Client L, amount+2)

polyzos@aueb.gr 34

Implementation and Evaluation

• Implementation with Ethereum smart contracts
• Public-private key pairs with secp256k1
• HMAC with SHA256
• Merkle tree with keccak256
– Hash function recommended

for Ethereum Smart Contracts

• Cost of Open and Close:
– 3rd construction: 4 cars

• Opening deposit: 14.5 sec

polyzos@aueb.gr 35

€0,05
€0,04

€0,06
€0,04

€0,06
€0,04

Conclusions
• realistic approach for paid IoT interactions:
• blockchain-based micro-payments to constrained

IoT device owners
– payment delegation

• efficiently support groups of clients (1 owner)
• a presently feasible solution

• Advanced Ledger and ILP
• Key revocation
polyzos@aueb.gr 36

Future Work

Bridging the cyber and physical worlds using
blockchains and smart contracts

Nikos Fotiou, Vasilios A. Siris,
Spyros Voulgaris, George C. Polyzos

Dmitrij Lagutin

Thanks!
polyzos@aueb.gr

