
Proof-of-Authentication for Private Distributed
Ledger

Zhiyi Zhang
UCLA

zhiyi@cs.ucla.edu

Vishrant Vasavada
UCLA

v.vasavada@hotmail.com

Randy King
Operant Networks

randy.king@operantnetworks.com

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—Over the last few years, blockchain-based tech-
nologies have flourished in many application areas. One of
them is the creation of distributed ledgers where records of
immutable objects are widely replicated for both transparency
and availability. However, the Proof-of-Work (PoW) approach, a
popular gating control that determines who can add new records
into a ledger, is deemed infeasible for IoT devices with resource
constraints.

In this paper, we present the design of DLedger, a private
distributed ledger system designed for an experimental solar
network developed by Operant Networks. DLedger records both
individual customers’ solar energy production/consumption as
well as all other noteworthy system events, such as certificate
issuance and revocations. Compared to today’s centralized record
keeping solutions, DLedger brings the benefits of information
transparency and availability to both customers and the system
vendor. Operant’s solar network uses the Named Data Network-
ing (NDN) protocol, based on which DLedger controls the addi-
tion of new records using a lightweight Proof-of-Authentication
(PoA). PoA leverages the properties of NDN where (i) every entity
in the system possesses a name and a digital certificate, and
(ii) they share the same trust anchor and thus can authenticate
each other. DLedger further leverages NDN’s data-centric design
to keep the ledger synchronized in a truly distributed and efficient
manner.

I. INTRODUCTION

This work is inspired by, and designed for, an experimental
solar network developed by Operant Networks Incorporated
(hereafter called Operant). In Operant’s solar network, cus-
tomer’s appliances are equipped with the solar gateway device,
which communicates through LoRa wireless channels and
uses Named Data Network (NDN) [9] as its network layer
protocol. Solar gateway devices generate the records of energy
production and consumption of individual customers, and
customers desire to see their data not only be reliably and
securely recorded, but also be available for their own viewing.

Cryptocurrencies like BitCoin have shown that financial
transactions can be stored in a trusted and consented way
through a decentralized network of peers using a public dis-
tributed ledger. However, the Proof-of-Work (PoW) approach,
a popular gating control that determines who can add new

records into a ledger, is considered infeasible for Internet of
Things (IoT) such as the Operant’s solar gateway devices. Fur-
thermore, synchronization of a truly distributed ledger requires
the devices exchange secured application records among each
other directly, yet the existing TCP/IP protocol stack lacks ade-
quate support for group communications; consequently overlay
protocols like Internet Relay Chat (IRC) [6] are used for group
communication, introducing extra overhead and configuration
complexity.

In this paper, we present a preliminary design of DLedger, a
private distributed ledger system designed for Operant’s NDN-
based solar network. Compared with the blockchain-based
distributed ledger used in BitCoin:

• DLedger utilizes the Tangle data structure inspired by
IOTA [7] instead of the blockchain.

• DLedger takes Proof-of-Authentication (PoA) as the gating
function for records in DLedger and PoA is readily realized
over the built-in security support by NDN [10].

• DLedger leverages NDN’s data-centric solutions to keep the
ledger synchronized in a truly distributed manner.

In the rest of this paper, we introduce the background
in Section II, present the design of DLedger in Section III,
describe the proof-of-concept implementation for Operant Net-
work in Section IV, discuss the DLedger’s design in Section V,
list the unsolved issues and future work in Section VI, and
conclude our work in Section VII.

II. BACKGROUND

A. IOTA

IOTA [4] is a cryptocurrency formed over a distributed
ledger technology called Tangle, which is different from con-
ventional cryptocurrency systems like Bitcoin where underly-
ing data structure is based on blockchain. Tangle is funda-
mentally a Directed Acyclic Graph (DAG) used for storing
transactions. IOTA claims to be able to work with Internet
of Things (IoT) because of their feeless transactions and low
resource requirement. Rather than following a current practice
that miners incorporate transactions into blocks and attach
them to the ledger, users in IOTA behave both as creators
and miners of blocks. Whenever a user wants to add a new
block to the ledger, they must verify two previous blocks in
the system as well as perform a small Proof-Of-Work (PoW)
computation.

In IOTA’s Tangle, each vertex represents a block in the
ledger system, while an edge represents the approval relation

Workshop on Decentralized IoT Systems and Security (DISS) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-56-8
https://dx.doi.org/10.14722/diss.2019.23003
www.ndss-symposium.org



between blocks. For instance, block A in Figure-1 approves
blocks B and C directly, and approves D, Eand F indirectly.
Block F is the root of the DAG, and is called a genesis block.
A and other tailing blocks are called tips: they have not been
approved by any block (i.e., there is no incoming edge to these
blocks). A block is confirmed when it has been referenced by a
special block called milestone. Milestone blocks are generated
by a centralized entity called coordinator, which is run by the
IOTA foundation1.

F C

B
A

E

Fully Confirmed

Unconfirmed

Tips

D

Fig. 1: IOTA Tangle

In addition to containing two pointers to previous blocks
and its own payload (actual block content), a block also
carries a weight. A block’s weight is the total number of both
direct and indirect approvals it has. Block weight is used in
IOTA’s Tip Selection Algorithm which decides which two tips
to approve. To be specific, IOTA takes a weighted random
walk algorithm called Markov Chain Monte Carlo (MCMC):
the walk starts from some ancient blocks (e.g., genesis blocks)
and ends at a tip block, where in each step, a linked following
block with higher weight gets a bigger chance to be the next
hop.

B. Named Data Networking

Named Data Networking (NDN) makes the named data
a first class entity in the network architecture. To be more
specific, applications name their data at the application layer
and NDN uses application data names directly for network
layer delivery. In an NDN network, routing and forwarding
are based on data name prefixes.

Instead of pushing packets to destination addresses as in an
IP network, NDN supports data pull model where consumers
fetch data from the network via request/response exchange -
a request, called an Interest packet, carries the name of a data
piece consumers would like to fetch; the response, called a
Data packet, carries the actual response data (Figure 2).

NDN utilizes a stateful forwarding plane: when forwarding
an Interest packet, the network will record the path of the
Interest; the fetched Data packet will reversely follow the
Interest patch back to the consumer. Since NDN packets
identify data instead of locations, (i) multiple Interest packets
targeting the same piece of data can be aggregated in the
network, and (ii) the fetched data can be cached along the path
to satisfy future Interest packets asking for the same data.

To ensure the integrity and authenticity of retrieved data
regardless from where the data is returned (e.g., from the

1IOTA foundation claims that they will remove the coordinator in the future.
Without milestone blocks, a transaction will be confirmed when it is referenced
by all tips.

Content Name

Interest Packet

Nonce and other 
parameters

Content Name

Data Packet

Content

Signature

Fig. 2: Interest and Data packets, neither carries source or
destination address.

original producer or from in-network cache), NDN builds
security in network architecture by requiring data producers
to cryptographically sign all data packets at the time of pro-
duction. Data carrying sensitive content can also be encrypted
as needed.

III. DLEDGER

DLedger is designed to work over an NDN network,
where we assume that individual entities in the system have
already performed security initialization [10], that is, they have
established their trust on a shared anchor node and each of
them has obtained an NDN certificate issued by the trust
anchor. In the Operant’s solar network, a system operator sets
up a trust anchor, and each solar device trusts system operator’s
digital certificate, and obtains an NDN certificate issued by the
anchor. Therefore all the solar devices can authenticate each
other, while any outsider without a valid private key cannot
pass the verification.

DLedger aims to provide a secure and highly available
ledger to keep permanent, immutable and complete records
of the solar network’s operations. Any and all operations that
are related to the updates of the ledger will be recorded in the
system.

NDN Network

customer

customer

customer

customer

Network Operator
 Server

Network Operator
 Server

Fig. 3: An Overview of DLedger

As shown in Figure 3, in DLedger, there are two main
types of entities.

• Customer nodes: all customer nodes form a peer-to-peer
network. Every node can append new record data into the
ledger system and at the same time, verify other peers’
record.

• Network Operator: A network operator serves as the trust
anchor of the system. Certificates issued by the operator
to each customer will also be inserted into the ledger as

2



a block. The system operator will bootstrap the distributed
ledger by creating genesis blocks into the Tangle. Moreover,
the system operator can also deploy servers into the peer-to-
peer network to improve the data redundancy of the system
by keeping the latest copies of the ledger.

Note that after the bootstrapping, network operator’s servers
do not intervene the operations of DLedger – they act as pure
“listeners”.

DLedger’s design leverages IOTA’s idea of storing each
and all data records in the Tangle. Each peer in the P2P
network maintains a copy of the tangle. However, different
from IOTA’s tangle where each block is an application-layer
data block which is then encapsulated in an IP packet when
transmitting at the network layer, in DLedger, each block is
an NDN Data packet, which is created by the application
and then passed to the NDN network layer for delivery as is,
with no further encapsulation. As shown in Figure 4, DLedger
uniquely identifies each block by the block name, which also
names the NDN Data packet; a block name follows the naming
convention as described in Section III-C. The references that
contain the names of two tip blocks being approved and the
payload of this new block being created make the content of
this Data packet. As an NDN Data packet, one can fetch any
block by sending an Interest packet carrying the block’s name.

Block Name

Reference 1
Reference 2

Block Payload

Proof-of-Authentication

NDN Data Name

Content

NDN Data Signature

Fig. 4: Block and NDN Data packet

The following steps show how a new block is appended
into the distributed ledger system. (i) When a peer generates
a new block Bnew, it first runs the MCMC tip selection algo-
rithm to select two existing tip blocks and verifies their validity.
(ii) It then packs its data record into an NDN Data packet,
together with the two reference pointers, and adds a PoA.
(iii) The peer then utilizes DLedger’s notification protocol to
notify other peers in the system about this new block Bnew.
Other nodes in the system will fetch and check Bnew and
accept it into their own copy of the Tangle. (iv) When a
sufficient number of blocks have successfully verified Bnew,
Bnew is considered to be accepted by the whole system.

A. Proof-of-Authentication

In DLedger, instead of using PoW or other hashcash-based
mechanisms, we use the PoA for peers to decide whether a
block is valid or not. Each block’s PoA is a digital signature.
The PoA works as follows:

1) When a peer generates a new block Bnew as described
above, it appends a PoA by signing Bnew using its private
key.

2) After other peers fetch Bnew, they will verify the PoA by
validating the digital signature and consider Bnew to be
valid only if (i) it can be verified using an anchor-certified

public key and (ii) the certificate of the public key is
recorded in the distributed ledger.

As we described in Section II, NDN requires that every data
producer cryptographically sign each Data packet it generates
at the time of the production. As shown in Figure 4, since a
block is essentially an NDN Data packet, its signature sufficed
as a PoA. Therefore, the PoA is in fact already provided by
the basic NDN data packet design.

B. Distributed Synchronization over NDN

Another design feature that set DLedger apart from other
existing distributed ledger systems is its data-centric synchro-
nization protocols.

When a node generates a new block, it needs to notify other
nodes so that they can get this new block and update their local
ledgers. In DLedger, we leverage NDN’s inherit multicast data
delivery feature to facilitate the above process:

1) The Bnew generator multicasts an Interest packet Inotif
called a Notification to notify all the peers who have
registered the same multicast prefix (i.e. expressed interest
in receiving Notification of new block generations). As
shown in the next subsection, this Notification Interest
name bears a hint for other nodes to compose the name
of the newly generated block.

2) The receivers of Inotif will send out an unicast Interest
packet to fetch the new record block back. After fetching
the Bnew, the node will verify its PoA and decide whether
to put it into the local ledger.

Now and then there can be transient network failures, nodes
falling into sleep to save power, or other events that may
eventually cause the local state of peer nodes out of sync.
Therefore they need to synchronize their local state with the
latest version of the Tangle structure. DLedger utilizes a data-
centric synchronization protocol over NDN to facilitate this
process.

1) A node multicast a Sync Interest Isync to the network to
trigger a synchronization process. Isync carries a list of tip
block names in the node’s current local ledger view.

2) When another node receives Isync, it compares the tips
carried in Isync with the tips in its local ledger, identifies
what blocks it may be missing by recursively tracing the
references in each block. If it misses any tips or even
ancestor blocks of tips, it will retrieve the missing blocks by
sending Interest packets carrying the names of the missing
blocks.

3) When a block fetching Interest packet reaches a neighbor
node, if that neighbor has the desired block, it will send
a reply with the requested Data packet. Operant’s NDN
Geo-forwarding plane [2] has built-in Channel Activity
Detection and collision avoidance, so that not all the nodes
who have the missing block will reply at the same time,
and one reply can suppress others. When none of the
neighbors has the missing block, they will forward the
request Interest, and the eventually retrieved Data block
will also update their own local ledgers.

A peer sends an Sync Interest periodically, or when any of
the following events happen: (i) The node is recovered from

3



a network failure, a sleep, or any other conditions that may
cause the Tangle out of sync. (ii) The node receives another
Sync Interest carrying a outdated tip list.

Node One-hop 
Neighbors

Sync Interest
Compare Tip Lists

Interests for the Missing Blocks

Block Data Packets

Fig. 5: Synchronization

When a peer-to-peer network is small in size, the Sync In-
terest can be multicast to all the peers. In a large-scale network,
instead of multicasting Sync Interest globally, DLedger can set
a hop limit on multicast Sync Interest; if one set the limit to
one, then only direct neighbor nodes will hear the Interest
and will not re-multicast the packet. In this way, as shown
in Figure 5, the synchronization process only happens among
one-hop neighbors, and all the changes eventually propagate
to all the nodes in a staged manner of one-hop at a time.

C. Naming Conventions

DLedger utilize naming conventions to automate the sys-
tem processing. To be specific, following the pre-defined nam-
ing convention, a peer knows how to (i) construct a Notification
Interest, (ii) construct a Sync Interest, and (iii) assemble a
block name using the information extracted from the tip list.

Each block in DLedger has a name like:

“/<multicast prefix>/<creator prefix>/<hash>”

An example of a block name could be “/ndn-dledger
/solar-gtw-123/35a...5cc598”. The producer prefix (e.g.,
“/solar-gtw-123”) help peers to know the generator of the
new block. The hash (e.g., “/35a...5cc598”) is the di-
gest of the record, adding uniqueness to the block name.
In DLedger, each peer is supposed to register a prefix
“/<multicast prefix>” and a prefix “/<multicast prefix>

/<peer prefix>”. Therefore, when a peer requests a missing
block using the block name as the Interest packet, this Interest
can be accepted by all the peers. Moreover, the network can
use longest prefix and forward the Interest to block’s original
generator when the Interest cannot be satisfied by the neighbor
peers.

Notification Interest follows the naming convention:

“/<multicast prefix>/NOTIF/<creator prefix>/<hash>”

By extracting the producer prefix and the record hash, other
nodes can directly compose the name of the new block by
removing the “NOTIF” component. The name of the block
is sufficient for a peer to generate an Interest packet and
fetch the block back. As an simple example, a Notification
Interest whose name is “/ndn-dledger/NOTIF/solar-gtw-123

/35a...5cc598” indicates that the name of the new block
is “/ndn-dledger/solar-gtw-123/35a...5cc598”. A Notifica-
tion Interest packet is a mulitcast packet at the network layer:
all the nodes will eventually receive the packet and issue an
unicast Interest to fetch the new block.

A Sync Interest carries a list of tip names as the Interest
parameters [5]. The name of the Sync Interest packet is in the
format of:

“/<multicast prefix>/SYNC/<digest of tip name list>”

IV. IMPLEMENTATION

We used Node.js for the proof-of-concept implementation
of DLedger system. This DLedger system prototype was built
over NDN’s ndn-js library [8], which is also written in Node.js.
As next step in this project, we will perform simulations to
evaluate the data structure and algorithms used in DLedger. We
also plan to integrate the system into NDN IoT package [12]
and quantitatively evaluate our system performance with con-
strained IoT devices.

A. System Bootstrapping

Before the system starts, a system operator creates a
number of genesis records into the ledger and all these genesis
records are signed directly by the network operator’s trust
anchor key. These genesis blocks can be saved in the first
several peers and in the servers. Whenever a new node joins
the system, the node first obtains a certificate issued by
the operator either manually or through automated certificate
issuance mechanisms such as NDNCERT [11]. After that, the
new node will copy the current Tangle to the local by sending
out a Sync Interest packet which carries an empty tip list. As
mentioned in the Section 3, nodes who have the latest copy
of the Tangle will send out a Sync Interest carrying the latest
tips.

B. Tangle Synchronization Process

We implemented DLedger’s synchronization algorithm in
our proof-of-concept implementation. When a node receives
list of tips from other node as a result of Sync Interest, it
compares with the tips in its local ledger as discussed in
Section III. LedgerSync function in Algorithm 1 describes the
procedure. For each tip that is in the list received but not the
local ledger, the receiver will compose a Interest using the
block name to fetch this missing block. If the tips received are
in the local ledger but are no longer tip blocks, which means
the sender of the tips has an obsolete Tangle, and the receiver
will send out a Sync Interest carrying the local tips.

The recursive fetching of missing blocks is explained by
onReceivingMissingBlock function in Algorithm 1. When a
node receives a missing block Bmiss that it requested for,
it checks whether two blocks Bmiss references are present
in ledger. If not, it sends out Interest to fetch these missing
referenced blocks. It adds the block it received to pendingAt-
taches stack. When it is done fetching all the missing blocks
recursively, it will pop each block from this stack, verify and
attach to the ledger.

4



Algorithm 1 Ledger Synchronization

function ONRECEIVINGSYNCREQ(receivedT ips)
for each tip in receivedTips do

if !(ledger.contains(tip)) then
fetchRecord(tip)

else if !(localTips.contains(tip)) then
isOutDatedSync = true

end if
end for
if isOutDatedSync then

sendSyncRequest(localTips);
end if

end function

function ONRECEIVINGMISSTINGBLOCK(block)
if !ledger.contains(block.reference1) then

fetchRecord(block.reference1)
end if
if !ledger.contains(block.reference2) then

fetchRecord(block.reference2)
end if
pendingAttaches.add(block)

end function

C. System Overhead

Overhead of Tip Selection. Note that the approvals in
Tangle go from newly generated blocks towards the existing
ones. However, in MCMC tip selection algorithm, we need to
walk from genesis towards tips where there are no pointers to
follow. Hence, it will be necessary to parse the entire chain
from tip to genesis first in memory so that it could be walked
backwards. Our proof-of-concept implementation mitigates
this overhead by maintaining list of approvers for each record
in the database. Hence, during tip selection algorithm, we
directly start walking from genesis block and for each block,
get this list of approvers and choose an approver with weighted
probability.

Overhead of PoA. In our implementation, a peer needs to
generate PoA whenever a new block is generated and verify
a PoA every time a new block is receiving. Since PoA is
essentially Data signature of the NDN Data packet, the PoA
of the DLedger does not add extra overhead in terms of
cryptographic operations.

Overhead of The Network Protocols. Since there are
small number of nodes in our proof-of-concept system, we
simply multicast all the Interest packets (i.e., Notification
Interest, Sync Interest, and block fetching Interest) to the whole
P2P network. Note that a block fetching Interest stops when
it hits a matching block (from cache of intermediate nodes or
from the block producer). As mentioned in Section III, during
the Tangle Synchronization process, Sync Interest and block
fetching Interests can be limited to one-hop scope in order to
reduce network overhead.

V. DISCUSSION

A. Proof-of-Authentication versus Proof-of-Work

PoW provides a way for nodes in an anonymous peer-
to-peer network to reach consensus on who can add new

blocks into the blockchain. The huge expenditures of PoW
also greatly lower the chance of denial of service (DoS)
attacks and increase the difficulty of cheating (e.g., double
spend). At the same time, PoW leads to huge consumption of
energy and limits the scalability of the system: the speed of
PoW calculation becomes the bottleneck when a large number
of pending blocks need to be added quickly. Although the
difficulty of PoW in IOTA has already been largely reduced,
it can still be infeasible for a constrained device to directly
finish a PoW task; a recommended practice of using IOTA in
IoT is to deploy a dedicated node that constrained devices can
delegate the PoW calculation to.

In Operant’s use case and other similar scenarios where
nodes must be identified (e.g. to enable power companies to
attribute energy credits to users), it is much cheaper to use
PoA as the gating function. DLedger allows any legitimate
node to append new blocks into the tangle and PoA utilizes
the public key cryptography to ensure the block is from a
legitimate member of the system. PoA makes DLedger feasible
to deploy in IoT systems because digital signatures can be
efficiently generated and verified even by constrained devices.

B. Distributed Ledger over NDN versus over TCP/IP

Building peer-to-peer network over TCP/IP is nontrivial
since TCP/IP network provides point-to-point communication
channels while the nature of peer-to-peer network benefits
from broadcast/multicast. To enable multicast, BitCoin and
other distributed ledger systems pay a high overhead; for
instance, BitCoin adopts a gossip mode for the purpose of
broadcast, where each peer needs to maintain i) a list of
IP addresses that currently connects to the network [1] and
ii) a number of TCP connections required by the gossip
protocol [3].

Since an NDN Interest packets do not carry destination
information, it can be easily forwarded to multiple next hops
as needed. Therefore, Interests can be broadcast or multicast
easily supported with forwarding strategies [9], without us-
ing overlay protocols (e.g., the gossip protocol). Instead of
pushing a new block to all the peers, DLedger’s notification
protocol works in a pulling way–all the peers who received the
notification issue an Interest to fetch the block, and retrieve
blocks are cached at intermediate nodes, and later Interest
packets directly fetch the blocks from the intermediate node.
Moreover, multiple Interest packets asking for the same data
will be aggregated as a single Interest, reducing the network
overhead.

C. Preventing Intervention of the Anchor Node

Network operators deploy trust anchor nodes of the system,
controls who can join the system by issuing them a certificate.
One potential attack scenario is that the anchor node can issue
certificates to many virtual nodes controlled by the anchor
node. These bots can then easily approve an invalid block and
let the block gain enough weight to be accepted.

DLedger can mitigate this attack with data publicity. As
described in Section III, all the certificate issuance events will
be recorded in the system. Certificates issued by the trust
anchor but not recorded in the ledger will not be accepted
during PoA verification. In this way, a network operator

5



cannot manipulate the distributed ledger by hiring bots without
recording them into the ledger. Any system intervention by the
anchor node will be recorded in the ledge and used for later
examination.

VI. REMAINING ISSUES AND FUTURE WORK

The DLedger design is still in a preliminary stage, a
number of issues that related to system security and robustness
are identified and yet to be resolved. In this section we listed
these issues and discuss potential solutions as our future work.

A. The Size of the Tangle

The size of the Tangle is linearly porportion to the number
of records stored in it. As the system runs over time, the
size of the Tangle will go larger, requiring more memory for
tip selection process (walking from genesis to tips) and more
storage to keep the entire Tangle. This can potentially lead to
high overhead for constrained devices with limited memory
and storage.

IOTA utilizes a centralized mechanism for snapshot: a
global trusted party called coordinator will lead the effort of
snapshot and create a new block containing the current status
of the whole system, after which all clients in the system need
to manually claim the coins from the coordinator. However,
this solution is insufficient for DLedger where IoT devices
like solar boards are equipped without direct user interfaces
and is inconvenient to operate.

In our future work, we will introduce snapshot into the
system to reduce the size of the Tangle but in a automatic
manner without relying on a centralized coordinator.

B. Tip Selection Algorithm Efficiency

MCMC, the current tip selection algorithm used in
DLedger, is inefficient in terms of memory use and time
consumption. This is due to the fact that in Tangle, the directed
edge is pointed from new blocks to old blocks while the
MCMC algorithm walks from old blocks towards tips. There-
fore, to realize MCMC, the system either needs to maintain
the approvers of each block by updating the database whenever
there is a new arriving block or to parse the whole Tangle into
the memory before performing MCMC. We leave it as our
future work to develop a new tip selection algorithm which
can reduce this cost. A possible direction is to maintain the
tip list and perform random selection among tips instead of
walking from the genesis blocks to tips.

C. Denial of Service

Since signature signing is efficient even for constrained
devices (e.g., ECDSA hardware chip ATECC508A is less than
one dollar), it is possible that a malicious peer can append large
number of blocks into the ledger system. Such an attack may
lead to an invalid block gaining enough approvals and become
accepted by the whole system and ruin the data integrity of the
ledger. We leave it as our future work to mitigate such attack. A
possible solution is to add checking rules on newly generated
blocks after receiving a Notification Interest; for example, a
peer can refuse to fetch a new block if it found the new block
and its approved block are generated by the same node.

D. Collusion of Peers

The current design cannot prevent the collusion attack: two
or more peers can collude and help approve each other’s invalid
blocks to get those blocks accepted by the ledger system. The
system is supposed to accomplish a k/n (k < n) level of
security: if no more than k peers collude, the collusion will
not hurt the system security. In our future work, we plan to
apply security rules to the block confirmation process. Peers in
the system can also perform periodic tangle walk through and
check the block additions against the known system properties,
for example, the limitation on how much energy one can
produce in a given time period.

VII. CONCLUSION

This paper presents the design of DLedger, a private
distributed ledger systems for an experimental solar network
system. Different from the popular distributed ledger system
used for cryptocurrenies, DLedger adopts efficient PoA instead
of the PoW to confirms the validity of the blocks. Our
proposed ledger system adopts a data-centric design: (i) We
build the notification protocol and synchronization protocol
over NDN to utilize NDN’s inherent multicast support and data
distribution feature, reducing the content fetching latency and
improving the bandwidth utilization. (ii) NDN’s Data packet
format confirms DLedger’s block data structure and we directly
use NDN’s Data signature as the PoA’s implementation.

Our work is still in its early stage. However, our prototype
implementation already shows that PoA is sufficient for a
private ledger system and data-centric network infrastructure
provides better network support for the distributed ledger
system.

REFERENCES

[1] Bitcoin Wiki Authors. (2018) Bitcoin network protcols. [Online].
Available: https://en.bitcoin.it/wiki/Network

[2] G. Grassi, D. Pesavento et al., “Navigo: Interest forwarding by geoloca-
tions in vehicular named data networking,” in World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE. IEEE, 2015, pp.
1–10.

[3] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems
(TOCS), vol. 23, no. 3, pp. 219–252, 2005.

[4] Members from IOTA Foundation. (2018) Iota foundation. [Online].
Available: https://www.iota.org/

[5] NDN Developers. (2018) Ndn packet format specification 0.3. [Online].
Available: http://named-data.net/doc/NDN-packet-spec/current/

[6] J. Oikarinen and D. Reed, “Internet relay chat protocol,” In-
ternet Requests for Comments, RFC 1459, 1993, http://www.rfc-
editor.org/rfc/rfc1459.txt.

[7] S. Popov, “The tangle,” cit. on, p. 131, 2016.
[8] W. Shang, J. Thompson et al., “Ndn. js: A javascript client library

for named data networking,” in Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2013, pp. 399–404.

[9] L. Zhang, A. Afanasyev et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[10] Z. Zhang, Y. Yu et al., “An overview of security support in named
data networking,” IEEE Communications Magazine, vol. 56, no. 11,
pp. 62–68, November 2018.

[11] Z. Zhang, A. Afanasyev, and L. Zhang, “Ndncert: universal usable trust
management for ndn,” in Proceedings of the ACM ICN, 2017. ACM,
2017, pp. 178–179.

[12] Z. Zhang, E. Lu et al., “Ndnot: A framework for named data network
of things,” Proceedings of the ACM ICN, 2018, 2018.

6


