Proof of Authentication for Private Distributed Ledger

Zhiyi Zhang*, Vishrant Vasavada, Randy King, Lixia Zhang

*presenter

UCLA OPERANT NETWORKS
Use Case: Home Solar Networking -- IoT

Rooftop devices record customer energy consumption/production.

These records are transferred to the cloud server for storage.

Records will be used to bill customers.
Issues with centralized solutions

Asymmetric information: Power grid provider controls all the records
- Lack of transparency / surveillance

IoT-friendly?
- No guarantee that IoT devices can successfully upload the records to the server, e.g., partition, intermittent connectivity, etc.

Blockchain-based Distributed Ledger System?
- Blockchain based
- Consensus algorithms
Issues with existing distributed ledger systems

Most distributed ledgers today are not IoT friendly

● Most consensus mechanisms are “muscle show”
 ○ E.g. Proof-of-Work, Proof-of-Space, Proof-of-Stake, etc.
 ○ IoT device has no muscle to show and thus cannot participate the system

● Blockchain - a widely used data structure - is not network partition friendly
DLedger: Goals and Assumption

Goals
- Data authenticity, integrity, and availability
- Be IoT-friendly
 - Efficient for IoT device (IoT device friendly)
 - Heterogeneous Network (IoT network friendly)

Assumptions
- Trust Relationships in private system
 - Shared trust anchor
 - Issues identity certificate for each node in the system
High-Level Perspective

Three Simple Approaches

● Uses lightweight Proof-Of-Authentication (PoA)
 ○ An ECDSA signature
 ○ IoT device friendly

● Uses Directed Acyclic Graph (DAG) as data structure
 ○ IoT network friendly
 ○ Efficiency

● Built over Named Data Networking (NDN)
 ○ More efficient data dissemination in P2P network in IoT
 ○ Deployable in private network system
Background 1: IOTA[1]

- A cryptocurrency
- Use lightweight PoW to be IoT friendly
- Based on the Tangle (a graph) instead of a single blockchain

However

- Even modern computer takes **time in minutes** to calculate PoW. IoT devices still cannot directly contribute to the ledger.
- Outsource calculation to a server --- Who provide the server? single-point-of-failure? heterogenous network condition?

Background 1: IOTA’s Tangle

- Each block approves two existing blocks
- IOTA uses weighted random walk (Monte Carlo Markov Chain, MCMC) from ancient block to tailing blocks to select blocks to approve
- Each block carries a weight
 - (PoW + approvers’ PoW)

When a block is approved (directly and indirectly) by all the tips, it is said to be fully confirmed and the system reaches consensus on this block.
Background 2: Named Data Networking (NDN)[1]

- Use data names to fetch the data from the network using request/response pattern:
 - Request = Interest packet
 - Response = Data packet
- Data is secured at the time of creation: producer signs the Data.

Neither Interest and Data packet carries addresses:
- Interest aggregation
- In-network Cache

Background 2: NDN’s Stateful Forwarding

- Forward Interest packet by **Name**.
- Keep each Interest’s **state** in the Pending Interest Table (PIT)
 - Interest Name
 - Incoming interface, outgoing interface
- Forward the Data packet following the **Interest’s path reversely** back to the requester
DLedger’s P2P network

- A peer-to-peer network of
 - Customer nodes
 - Business Provider’s Servers
- Each peer maintains a local ledger – a DAG
- Use DLedger’s protocols to advertise new blocks and sync up the local ledgers.
 - Notification Protocol
 - Synchronization Protocol
DAG-based Ledger and Proof-of-Authentication

- Store all the energy usage, certificate issuance, certificate revocation into the records (blocks) in the DAG.
- Each record also carries a Name and PoA
 - Unique Record (block) Name: /dledger/<creator prefix>/<record hash digest>
 - E.g., /dledger/solar-gtw-001/23c7a46e2d2abb2333bc491957c8be0320d5c876
- When a record gains enough number of approvals, it is confirmed. If not, record and following records will be abandoned (incentives).

Each block is an NDN Data Packet
- Block Name becomes NDN packet name
- Approvals and content (energy usage, cert management) is the Data content
- Proof-of-Authentication is simply NDN Data packet signature
D Ledger: New Record Notification

- Each node has registered two NDN prefixes to receive D Ledger Interests
 - /dledger: receive multicast Interest
 - /dledger/<creator prefix>: receive unicast Interest

- Peer multicasts new record Notification Interest (Notif) to the whole system
 - /dledger/NOTIF/<creator prefix>/<record-digest>
 - Notif bears hints to construct the new record’s name -- being able to fetch it from NDN by dropping the <NOTIF> component
DLedger: Synchronization

- Peers synchronize their ledgers by exchanging a list of tailing records through \textit{Sync Interest}
 - `/dledger/SYNC/<creator prefix>/<tailing-record-list-digest>`
- Peers compare the received tailing record list with the local list.
 - Starting from missing tailing record, e.g., D, recursively fetch all the missing records
 - Notify the sender if a received tailing record is not longer a tail in local ledger, e.g., A, B
NDN-based Protocols v.s. Gossip Protocol

Efficient Data Dissemination by NDN:
● Packet Suppression:
 ○ B, C don’t need to broadcast if C has already done it
● Interest Aggregation:
 ○ Interest sent from F and G merge
● Record Cache:
 ○ E fetches record from C
 ○ Efficient retransmission

Gossip Protocol
● Runs at application layer
● Don’t have such benefits
Conclusion and Future Work

● A distributed ledger for private IoT business model
 ○ Ledger design: DAG tolerates the network partition; PoA enables IoT devices to function in the system.
 ○ Network design: NDN-based protocols for efficient data dissemination.
 ○ The power of openness: Any malicious attempts will leave the footprint because of the PoA

● Future work
 ○ Size of Tangle
 ■ DAG keep growing in its size.
 ■ Future solution: decentralized backup and snapshot mechanism
 ○ Tip Selection Algorithm Efficiency
 ■ MCMC is costly: app needs to parse entire DAG into memory
 ■ Our temporarily solution: Make DAG bidirectional, which requires frequent database update
 ■ Future solution: get rids of MCMC; select random tips for approval from tip list without any walk
 ○ Potential Attack Scenarios and Abuse
 ■ Attacks such as spam record flooding, collusion of peers, and self-approvals expanding graph depth indefinitely
 ■ Possible future solution: Introduce security policies to deny such attacks from happening rationally
Thank You

zhiyi@cs.ucla.edu