OAuth 2.0 authorization
using blockchain-based
tokens

Nikos Fotiou, lakovos Pittaras, Vasilios A. Siris, Spyros
Voulgaris, George C. Polyzos

Resource sharing

D Authorization D
>

Client Resource owner
A

93e.40]S 924n0S3Y

(B

Resource server

OAuth 2.0-based authorization

[[

Client L.
Authorization request Resource owner
>

Authorization grant

<

OAuth 2.0-based authorization

[

[

"TF"" —m—
Client Authorization request Resource owner
>
Authorization grant
<
XN
X
Authorization grant Authorization server
>

Access token

OAuth 2.0-based authorization

[

]

_—I'
Client Authorization request Resource owner
>
Authorization grant
<
Authorization grant Authorization server
>
Access token
<

Resource request, token Resource server
>

Resource

Our work

[

-]
Client
(oo]
“
Authorization server
Access token
<

Resource request, token Resource server
>

Resource

The Ethereum blockchain

e Data “recorded” in the ledger are immutable

* Decentrilized “smart contract” can be executed by
untrusted nodes in a deterministic way

ERC-721

/ERC-721 tokens

 Token Id
e Owner Id

* Metadata
_

ERC-721

(e)

ERC-721 tokens GRC-721 token management\
* Token Id contract
e Owner Id * ownerOf()

\' Metadata e transferFrom()

e tokenURI()
e approve()

* getApproved() /

JWT

= -

“iss”: Authorization Server
“aud”: Resource URI
“sub”: Client Key

“exp”: Expiration Time
“iti” : Token identifier [eee |

} A

Authorization server

Access token

JWT + ERC-721

[

Client

q

~

“iss”: Authorization Server
“aud”: Resource URI
“sub”: Client Key

“exp”: Expiration Time
“iti” : Token identifier

/=

Access token

X
o

Authorization server

ERC-721 token

Token Id : jti

Owner Id : Client key

Metadata: JWT
\

Accessing legacy resource servers

[

————
Client Resource server

Resource request, token

>

« Verify Client key ownership
>

Resource

* |t facilitates logging and auditing services

* Clients can at any time retrieve their access token
from the blockchain

Accessing resource servers with
BC read access

[

s

.
Client Resource server
Resource request, token
>
ownerOf(), tokenURI()
< >
Verify Client key ownership
< >
Resource
<

Revocation

[

Client Resource server

Resource request, token

>

ownerOf(), tokenURI()

o =

Authorization server

transferFrom()

x<

e Revocation is asynchronous

e Authorization server does not have to be online

Delegation

[

CIienIt A

Approve(Client B)

s

[

Client B

Resource server

Resource request, token

Verify Client key ownership

>

<

<

Resource

>

getApproved(), tokenURI()
<

* Delegation is not transitive

e Revocation is not affected

>

Fair exchange

[] o

XN ‘(
Client — —

Authorization server

Access token ERC-721 token

Token identifier
Owner : Authorization server

Metadata: JWT
\ J

Payment

>

transferFrom() \

Discussion

* Existing OAuth 2.0 code-base can be re-used

* In some cases our approach is transparent to OAuth
endpoints

* In no payments are involved then private, or testing
chains can be used.

* If the client does not interact with the blockchain,
then ownerOf() may return any type of identifier.

* (Public) blockchains have privacy issues, introduce
delays (~13sec per transaction) and monetary costs
(~S0.10 to create a token, $0.02 to revoke or
delegate)

Thank you

fotiou@aueb.gr
https://mm.aueb.gr/blockchains

