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OAuth 2.0-based authorization
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Our work
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The Ethereum blockchain

e Data “recorded” in the ledger are immutable

* Decentrilized “smart contract” can be executed by
untrusted nodes in a deterministic way
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JWT
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JWT + ERC-721
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Accessing legacy resource servers
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* |t facilitates logging and auditing services

* Clients can at any time retrieve their access token
from the blockchain



Accessing resource servers with
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Revocation
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e Revocation is asynchronous

e Authorization server does not have to be online



Delegation
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* Delegation is not transitive

e Revocation is not affected
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Fair exchange
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Discussion

* Existing OAuth 2.0 code-base can be re-used

* In some cases our approach is transparent to OAuth
endpoints

* In no payments are involved then private, or testing
chains can be used.

* If the client does not interact with the blockchain,
then ownerOf() may return any type of identifier.

* (Public) blockchains have privacy issues, introduce
delays (~13sec per transaction) and monetary costs
(~S0.10 to create a token, $0.02 to revoke or
delegate)
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