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Mirai: Largest Disruptive Cyberattack in History
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Mirai: Largest Disruptive Cyberattack in History
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Advantages of Federated Learning

* Allows all participants to profit from all data

* Privacy Preserving

= E.g.: Don’t reveal network traffic

* Distributing computation load to clients
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Examples of Backdoor Attacks: Adversary Chosen

Image classification

Change labels, e.g.,
* Speed limit signs from
30kph to 80kph

Label

Word prediction

Select end words, e.g.,
"buy phone from Google”
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loT malware detection

Inject malicious traffic,
e.g., use compromised
loT devices
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Backdoor Attacks on FL
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Backdoor Attacks on FL

Attack Strategies:

1. Manipulate training data
2. Manipulate local models
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Our Threat Model
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Our Approach — High Level Idea

Challenge: Prevent detection of data poisoning
Only few attack data

- Gateway will not detect it

- Still include malware traffic in training data

- Neural Network learns to predict malware behavior

Use compromised loT devices



Our Approach

1. Compromise IoT Devices
2. Inject Malicious Data
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Experimental Setup

3 Real — World Datasets [1, 2]

Consisting of traffic from 46 loT devices

Different stages of Mirai: infection, scanning, different DDoS attacks

Distributed data to 100 clients

= Approx. 2h of traffic

[1] Nguyen et.al., ICDCS 2019
[2] Sivanathan et.al., IEEE Transactions on Mobile Computing 2018

13



14

Attack Parameters

e Poisoned Model Rate (PMR)

" |Indicates percentage of poisoned local models
o E.g., ratio of networks, containing compromised loT devices

* Poisoned Data Rate (PDR)

" |Indicates ratio between poisoned and benign data
o E.g., ratio between malware and benign network traffic
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Evaluation Metrics

e Backdoor Accuracy (BA)
= E.g., alerts, raised on malware traffic
= 100 % BA = No Alert for malware traffic

* Main task Accuracy (MA)

= E.g., accuracy on benign network traffic
= 100 % MA - No alert for benign traffic



Experimental Results

 Malware traffic not detected for PDR of
36.7% ( + 6.5%)
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Experimental Results

* Malware traffic not detected for PDR of
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= Lower PMRs require higher PDRs
PMR: Poisoned Model Rate

= PMR 5% is too low
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Experimental Results — Clustering Defense

Mechanism:
* Calculates pairwise Euclidean Distances

* Apply Clustering on them
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Experimental Results — Differential Privacy Defense

Mechanism:
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Experimental Results
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Conclusion

> Introduced novel backdoor attack vector

» Requires only control of few loT devices

» Inject Malware Traffic Stealthily

> Evaluated on 3 real — world datasets

» Bypasses current defenses
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Future Research Direction

* Improve IDS

* Filter poisoned data on clients

* Defense against these poisoning attacks



