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Typical IoT Devices
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Advantages of Federated Learning

A Allows all participants to profit from all data

A Privacy Preserving
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A Distributing computation load to clients
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Examples of Backdoor Attacks: Adversary Chosel

Image classification

Change labels, e.g.,
A Speed limit signs from
30kph to 80kph

Label

Word prediction

Select end words, e.g.,
£ 0dz2 LIKDYSG 3

Buy new phone from

Googled Google Android
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loT malware detection
Inject malicious traffic,
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Backdoor Attacks on FL
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Backdoor Attacks on FL

Attack Strategies:

1. Manipulate training data
2. Manipulate local models
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Our Threat Model

Attack Goal
A Inject Backdoor

L GO0FO1TSNXRa /LI oAftAOASE
A Full knowledge about the targeted system
A Fully control some loT devices

Attackercannot
A Control Security Gateways
A Control devices in < 50% of all networks



Our Approaclg High Level Idea
A Challenge: Prevent detection of data poisoning
A Only few attack data
A Gateway will not detect it
A Still include malware traffic in training data
A Neural Network learns to predict malware behavior

A Use compromised loT devices
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Our Approach

1. Compromise 0T Devices
2. Inject Malicious Data
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Our Approach A
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Our Approach A
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R 1. Compromise loT Devices
= 2. Inject Malicious Data

SGW: Security Gateway
(e.qg., LocaWiFirouter)
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Experimental Setup

3 Reak World Datasets [1, 2]
Consisting of traffic from 46 10T devices
Different stages oMirai: infection, scanning, different DDoS attacks

Distributed data to 100 clients

A Approx. 2h of traffic

[1] Nguyenet.al., ICDCS 2019
[2] Sivanatharet.al., IEEE Transactions on Mobile Computing 2018
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Attack Parameters

A Poisoned Model Rate (PMR)

A Indicates percentage of poisoned local models
o E.qg., ratio of networks, containing compromised I0oT devices

A Poisoned Data Rate (PDR)

A Indicates ratio between poisoned and benign data
o E.g., ratio between malware and benign network traffic
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Evaluation Metrics

A Backdoor Accuracy (BA)
AE.qg., alerts, raised on malware traffic
A 100 % BA, No Alert for malware traffic

A Main task Accuracy (MA)

A E.g., accuracy on benign network traffic
A 100 % MAA No alert for benign traffic
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36.7% ( 6.5%)

Experimental Results

A Malware traffic not detected for PDR of
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Experimental Results

A Malware traffic not detected for PDR of
36.7% & 6.5%)

A Attack successful for low number of
compromised networks

A BA 100% for PMR 25% and PDR

20%
A Higher PMRs are successful for lower

PDRS
A Lower PMRs require higher PDRs

A PMR 5% is too low
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Experimental ResultsClustering Defense

Mechanism: Experimental Results
A Calculates pairwise Euclidean Distances

A Apply Clustering on them

A BA 100%
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