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Advantages of Federated Learning

ÅAllows all participants to profit from all data

ÅPrivacy Preserving

Á9ΦƎΦΥ 5ƻƴΩǘ ǊŜǾŜŀƭ ƴŜǘǿƻǊƪ ǘǊŀŦŦƛŎ

ÅDistributing computation load to clients
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Examples of Backdoor Attacks: Adversary Chosen 
Label

IoT malware detection

Inject malicious traffic, 
e.g.,use compromised 
IoT devices

Word prediction

Select end words, e.g.,
έōǳȅ ǇƘƻƴŜ ŦǊƻƳ DƻƻƎƭŜέ

Image classification

Change labels, e.g.,  
ÅSpeed limit signs from 

30kph to 80kph

Our new Attack
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Attack Strategies:

1. Manipulate training data
2. Manipulate local models

Backdoor Attacks on FL



Our Threat Model
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Attack Goal:
Å Inject Backdoor

!ǘǘŀŎƪŜǊΩǎ /ŀǇŀōƛƭƛǘƛŜǎ:
Å Full knowledge about the targeted system
Å Fully control some IoT devices

Attacker cannot:
Å Control Security Gateways
Å Control devices in < 50% of all networks



Our Approach ςHigh Level Idea

Å Challenge: Prevent detection of data poisoning

Å Only few attack data

ĄGateway will not detect it

Ą Still include malware traffic in training data

ĄNeural Network learns to predict malware behavior

Å Use compromised IoT devices
11 
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Experimental Setup

Å 3 Real ςWorld Datasets [1, 2]

Å Consisting of traffic from 46 IoT devices

Å Different stages of Mirai: infection, scanning, different DDoS attacks

Å Distributed data to 100 clients

Á Approx. 2h of traffic
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[1] Nguyen et.al., ICDCS 2019
[2] Sivanathanet.al., IEEE Transactions on Mobile Computing 2018



Attack Parameters

ÅPoisoned Model Rate (PMR)

ÁIndicates percentage of poisoned local models

o E.g., ratio of networks, containing compromised IoT devices

ÅPoisoned Data Rate (PDR)

ÁIndicates ratio between poisoned and benign data

o E.g., ratio between malware and benign network traffic
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Evaluation Metrics

ÅBackdoor Accuracy (BA) 

ÁE.g., alerts, raised on malware traffic

Á100 % BA ĄNo Alert for malware traffic

ÅMain task Accuracy (MA) 

ÁE.g., accuracy on benign network traffic

Á100 % MA ĄNo alert for benign traffic
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Experimental Results
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ÅMalware traffic not detected for PDR of 
36.7% ( ± 6.5%)

PDR:  Poisoned Data Rate
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ÅMalware traffic not detected for PDR of 
36.7% ( ± 6.5%)

ÅAttack successful for low number of 
compromised networks

ÁBA 100% for PMR 25% and         PDR 

20%

ÁHigher PMRs are successful for lower 

PDRS

ÁLower PMRs require higher PDRs

ÁPMR 5% is too low

PDR:  Poisoned Data Rate
PMR: Poisoned Model Rate



Illustration for PDR = 30%

Experimental Results ςClustering Defense
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Å Calculates pairwise Euclidean Distances

Å Apply Clustering on them

Mechanism: Experimental Results

Å BA 100%
Å!ǘǘŀŎƪ ŜŦŦŜŎǘƛǾŜ ŦƻǊ t5w Җ нл҈


