Poisoning Attacks on Federated Learning-based Intrusion Detection System

Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, Ahmad-Reza Sadeghi
Typical IoT Devices
IoT

The S stands for Security
Mirai: Largest Disruptive Cyberattack in History

More than 145,000 infected devices

Peak bandwidth of 1156 Gbps

Source: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
Mirai: Largest Disruptive Cyberattack in History

- More than 145,000 infected devices
- Peak bandwidth of 1156 Gbps

Source: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
Federated Learning
Federated Learning
Federated Learning

Client

Federated Learning Aggregator

Client

Client

...
Federated Learning
Advantages of Federated Learning

• Allows all participants to profit from all data

• Privacy Preserving
 ▪ E.g.: Don’t reveal network traffic

• Distributing computation load to clients
IoT NIDS

SGW: Security Gateway (e.g., Local WiFi router)
IoT NIDS

SGW: Security Gateway (e.g., Local WiFi router)
IoT NIDS

SGW: Security Gateway (e.g., Local WiFi router)
IoT NIDS

Aggregator

SGW: Security Gateway (e.g., Local WiFi router)
Examples of Backdoor Attacks: Adversary Chosen Label

Image classification
Change labels, e.g.,
- Speed limit signs from 30kph to 80kph

Word prediction
Select end words, e.g.,
"buy phone from Google"

IoT malware detection
Inject malicious traffic, e.g., use compromised IoT devices

Our new Attack
Backdoor Attacks on FL

1. Manipulate training data
2. Manipulate local models

Nguyen et al., ICDCS 2019
Backdoor Attacks on FL

Attack Strategies:
1. Manipulate training data
2. Manipulate local models

Nguyen et. al., ICDCS 2019
Our Threat Model

Attack Goal:
- Inject Backdoor

Attacker’s Capabilities:
- Full knowledge about the targeted system
- Fully control some IoT devices

Attacker cannot:
- Control Security Gateways
- Control devices in < 50% of all networks
Our Approach – High Level Idea

• Challenge: Prevent detection of data poisoning

• Only few attack data

→ Gateway will not detect it

→ Still include malware traffic in training data

→ Neural Network learns to predict malware behavior

• Use compromised IoT devices
Our Approach

1. Compromise IoT Devices
2. Inject Malicious Data

SGW: Security Gateway (e.g., Local WiFi router)
Our Approach

1. Compromise IoT Devices
2. Inject Malicious Data

SGW: Security Gateway (e.g., Local WiFi router)
Our Approach

1. Compromise IoT Devices
2. Inject Malicious Data

SGW: Security Gateway (e.g., Local WiFi router)
Our Approach

1. Compromise IoT Devices
2. Inject Malicious Data

SGW: Security Gateway (e.g., Local WiFi router)
Experimental Setup

- 3 Real-World Datasets [1, 2]
- Consisting of traffic from 46 IoT devices
- Different stages of Mirai: infection, scanning, different DDoS attacks
- Distributed data to 100 clients
 - Approx. 2h of traffic

[1] Nguyen et.al., ICDCS 2019
Attack Parameters

• Poisoned Model Rate (PMR)
 ▪ Indicates percentage of poisoned local models
 o E.g., ratio of networks, containing compromised IoT devices

• Poisoned Data Rate (PDR)
 ▪ Indicates ratio between poisoned and benign data
 o E.g., ratio between malware and benign network traffic
Evaluation Metrics

• Backdoor Accuracy (BA)
 ▪ E.g., alerts, raised on malware traffic
 ▪ 100 % BA → No Alert for malware traffic

• Main task Accuracy (MA)
 ▪ E.g., accuracy on benign network traffic
 ▪ 100 % MA → No alert for benign traffic
Experimental Results

- Malware traffic not detected for PDR of 36.7% (± 6.5%)
Experimental Results

- Malware traffic not detected for PDR of 36.7% (± 6.5%)

- Attack successful for low number of compromised networks
 - BA 100% for PMR 25% and PDR 20%
 - Higher PMRs are successful for lower PDRs
 - Lower PMRs require higher PDRs
 - PMR 5% is too low
Experimental Results – Clustering Defense

Mechanism:
• Calculates pairwise Euclidean Distances
• Apply Clustering on them

Illustration for PDR = 30%

Experimental Results

• BA 100%
• Attack effective for PDR ≤ 20%
Experimental Results – Clustering Defense

Mechanism:
• Calculates pairwise Euclidean Distances
• Apply Clustering on them

Illustration for PDR = 20%

Experimental Results

• BA 100%
• Attack effective for PDR ≤ 20%
Experimental Results – Differential Privacy Defense

Mechanism:

• Restricts Euclidean distance of local models
• Adds gaussian noise

- Not effective for PDR >= 15%
- BA 100%
- MA reduced significantly
Conclusion

- Introduced novel backdoor attack vector
 - Requires only control of few IoT devices
 - Inject Malware Traffic Stealthily

- Evaluated on 3 real-world datasets

- Bypasses current defenses
Future Research Direction

• Improve IDS

• Filter poisoned data on clients

• Defense against these poisoning attacks