Poisoning Attacks on Federated Learning-based Intrusion Detection System

Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, Ahmad-Reza Sadeghi

TECHNISCHE UNIVERSITÄT DARMSTADT

Typical IoT Devices

(

ноте

The S stands for Security

Mirai: Largest Disruptive Cyberattack in History

Source: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

Mirai: Largest Disruptive Cyberattack in History

Source: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

Federated Learning

Federated Learning

Advantages of Federated Learning

• Allows all participants to profit from all data

- Privacy Preserving
 - E.g.: Don't reveal network traffic

• Distributing computation load to clients

Examples of Backdoor Attacks: Adversary Chosen Label

Image classification

Change labels, e.g.,

 Speed limit signs from 30kph to 80kph

Word prediction

Select end words, e.g., "buy phone from Google"

IoT malware detection

Inject malicious traffic, e.g., use compromised IoT devices

Our new Attack

Backdoor Attacks on FL

Backdoor Attacks on FL

Our Threat Model

Attack Goal:

Inject Backdoor

Attacker's Capabilities:

- Full knowledge about the targeted system
- Fully control some IoT devices

Attacker cannot:

- Control Security Gateways
- Control devices in < 50% of all networks

Our Approach – High Level Idea

- Challenge: Prevent detection of data poisoning
- Only few attack data
 - \rightarrow Gateway will not detect it
 - \rightarrow Still include malware traffic in training data
 - \rightarrow Neural Network learns to predict malware behavior

• Use compromised IoT devices

Experimental Setup

- 3 Real World Datasets [1, 2]
- Consisting of traffic from 46 IoT devices
- Different stages of Mirai: infection, scanning, different DDoS attacks
- Distributed data to 100 clients
 - Approx. 2h of traffic

Attack Parameters

- Poisoned Model Rate (PMR)
 - Indicates percentage of poisoned local models
 - E.g., ratio of networks, containing compromised IoT devices

- Poisoned Data Rate (PDR)
 - Indicates ratio between poisoned and benign data
 o E.g., ratio between malware and benign network traffic

Evaluation Metrics

- Backdoor Accuracy (BA)
 - E.g., alerts, raised on malware traffic
 - 100 % BA \rightarrow No Alert for malware traffic

- Main task Accuracy (MA)
 - E.g., accuracy on benign network traffic
 - 100 % MA \rightarrow No alert for benign traffic

Experimental Results

 Malware traffic not detected for PDR of 36.7% (± 6.5%)

PDR: Poisoned Data Rate

Experimental Results

- Malware traffic not detected for PDR of 36.7% (± 6.5%)
- Attack successful for low number of compromised networks
 - BA 100% for PMR 25% and PDR 20%
 - Higher PMRs are successful for lower PDRS
 - Lower PMRs require higher PDRs
 - PMR 5% is too low

PDR: Poisoned Data Rate PMR: Poisoned Model Rate

Experimental Results – Clustering Defense

Mechanism:

- Calculates pairwise Euclidean Distances
- Apply Clustering on them

Illustration for PDR = 30%

Experimental Results

- BA 100%
- Attack effective for PDR $\leq 20\%$

Experimental Results – Clustering Defense

Mechanism:

- Calculates pairwise Euclidean Distances
- Apply Clustering on them

Illustration for PDR = 20%

Experimental Results

- BA 100%
- Attack effective for PDR $\leq 20\%$

Experimental Results – Differential Privacy Defense

Mechanism:

- Restricts Euclidean distance of local models
- Adds gaussian noise

Experimental Results

- Not effective for PDR >= 15%
- BA 100%
- MA reduced significantly

Conclusion

Introduced novel backdoor attack vector

Requires only control of few IoT devices

> Inject Malware Traffic Stealthily

Evaluated on 3 real – world datasets

Bypasses current defenses

Future Research Direction

• Improve IDS

• Filter poisoned data on clients

• Defense against these poisoning attacks