ADROIT: Detecting Spatio-Temporal Correlated Attack-Stages in IoT Networks

NUS-Singtel Cyber Security R&D Corp. Lab

Dinil Mon Divakaran, Rhishi Pratap Singh, Kalupahana Liyanage Kushan Sudheera, Mohan Gurusamy, Vinay Sachidananda

- > IoT increasing in numbers, types, applications and deployments
- Mostly unattended by humans
- Vulnerable and easily exploited
- Question: at a network level (e.g., ISPs), how can we detect and prevent attacks on and due to the *things*?

Problem

- Can we detect stages of a coordinated large-scale cyber attack?
- For example
 - $\circ\,\text{Scan}$
 - \odot Brute-force login attempts
 - \circ Malware downloads
 - \circ C&C communications
 - Launch of specific and targeted attack (DDoS, RDDoS)

I. Activities might be spread across different network premises

- Analyzing just one network might not show any significant activity
- E.g., a low-rate DDoS or brute-force login attempts at different n/ws might be related

Challenges - I

Challenges - II

II. One or multiple stages of an attack might happen at different times

- Bot may be infected for a long time, during which it may engage in malicious activities
- C&C communication establishment often involves multiple connection attempts

Temporal dispersion

ADROIT: network architecture

- Each premise (smart home/building) has a gateway, connected to devices in it's network
- All gateways connected to a manager in the Cloud or ISP datacenter

ADROIT

Properties

- ✓ Traffic processed locally, at the gateways
- ✓ Only alerts anomalies sent to Manager
 - Privacy of normal application not compromised
 - Minimal leak of info \rightarrow even for anomalous traffic, only meta info shared with Manager
 - Bandwidth consumed is reduced by orders of magnitude
- ✓ Unsupervised approach in detecting attack-patterns
 - No reliance on labeled data for training models
 - Potentially detect new attacks

8

Overview of ADROIT

- 1. [Device profiling] Done for the connected devices at the gateway in an offline manner
- [Anomaly detection] At deployment, the anomalies are detected when the packet features are extracted & compared with IoT profiles
- 3. [Pattern mining] These alerts are sent to the manager for detecting attack-stages

9

Device profiling

- IoT devices connect to limited number of destinations
 - Exceptions include hubs and changes in servers or server to IP address mapping
- A baseline profile (hash table) can be built from packets and connections
- Each gateway can profile their devices independently, and in an offline manner
 - Some compute and storage resources required
- ♦ Once profile table built → (local) anomaly detection requires only lookups based on the keys

External IP

IoT Services

Example profile: D-Link socket

Cuckoo hash table

Device profiling

- Hash table operations of interest: insert(), update(), lookup()
- Insert() and update() required only during profile creation
- Real-time detection requires only lookup()
- Traditional hash table can incur linear lookup times in worst cases
- ♦ Alternative → Cuckoo hash table
 - ✓ lookup() has constant worst-case time; to be precise, just two, for two hash functions
 - ✓ Trade-off \rightarrow insert()
 - ✓ But insert() is performed offline, where lookup() is required to performed online

Anomaly detection at a gateway

- Real-time operation: extract key from incoming packet
- Two anomalies of interest:
- Connection anomaly: If key <u>not</u> found in profile table
- Behavior anomaly: If is found in profile table, but if <u>stats do not match</u>
- In both cases, alert generated and sent to Manager
- Observe: only alerts, i.e., metainformation and of anomalies sent to Manager

- Key = (Internal IP, External IP, Port, Protocol, Direction)
- Meta data = (Packet & Payload Length, Number of sessions)

Alert analysis at the manager

- Manager analyzes the alerts
 - Attack-stages such as Scan, Login, C&C, RDDoS, DDoS could form dominant patterns
 - All alerts are not related to attack-stages
 - Noises are random and spurious. Even if the noises form patterns, would they be dominant in volume?
- How to capture patterns?

Pattern detection

At manager

Frequent Itemset Mining (FIM)

- Data mining approach to extract recurring patterns
- Each field of an alert corresponds to an item, in FIM
- A k-itemset is a set of k items
- Given n alerts, an itemset/pattern is called frequent, if it appears in at least $\theta \times n$ alerts, where θ is called minimum support
- o Goal: mine frequent itemsets in alert database
- \circ Parameters: itemset length (k), minimum support θ

Example

- Upper table: consider alerts arriving ••• at Manager
- Some related to attacks, and, **
- Some false positives **
 - Can arise due to random scans, Ο firmware updates, etc.
- Lower table: patterns extracted, ** using a small set of features

			•					
#	srcIP	dstIP	Protoco	I srcPort	dstPort	Dir	sizeBin	
1	scanner1.com	10.6.1.12	TCP	45678	23	In	Small	ר
2	scanner2.com	10.6.1.12	TCP	56897	23	In	Small	
3	scanner3.com	10.6.2.2	TCP	55001	23	In	Medium	
4	scanner3.com	10.6.5.173	TCP	45877	23	In	Medium	
5	10.6.2.2	cnc.com	TCP	23669	48000	Out	Medium	
6	10.6.5.173	cnc.com	TCP	56814	48000	Out	Medium	
:	:	:	:	:	:	:	:	
31	10.6.2.2	victim1.com	TCP	23456	80	Out	Medium	
32	10.6.5.173	victim1.com	TCP	35689	80	Out	Medium	
33	victim2.com	dns.server	UDP	13074	53	Out	Small	
34	victim2.com	dns.server	UDP	18869	53	Out	Small	J
	:	;	:	:	:	:	:	-
101	10.6.2.13	firmware1.com	ו TCP	49225	80	Out	Large	
102	10.6.13.144	random1.com	TCP	48369	443	Out	Medium	
103	firmware2.com	10.6.19.66	UDP	23698	69	In	Large	
:	:	:	:	:	:	:	:	
		F	=IM					-
Extracted Itemsets								
#	srcIP	dstIP	Protocol 🕴	srcPort	dstPort	Dir	sizeBin	

Incoming Alerts

#	srcIP	dstIP	Protocol	srcPort	dstPort	Dir	sizeBin		
1	*	10.6.1.12	TCP	*	23	In	Small		
2	scanner3.com	*	TCP	*	23	In	Medium		
3	*	cnc.com	TCP	*	48000	Out	Medium		
4	*	victim1.com	TCP	*	80	Out	Medium		
5	victim2.com	dns.server	UDP	*	53	Out	Small		
:	:	:	:	:	:	:	:		

FIM Algorithms

- Algorithms like Apriori: mine frequent itemsets of all lengths
- Extracting all patterns exhaustively is neither useful nor efficient
 - o Many patterns are closely related
 - o Lower length itemsets are subsets of higher length itemsets
 - E.g., <<*,*,TCP,*,23,In,*>> and <<*,10.6.1.12,TCP,*,23,In,Small>>
- Alternative 1: Closed Frequent Itemset (CFI) mining
 - \circ Itemsets do not have any superset with the same support
- Alternative 2: Maximal Frequent Itemset (CFI) mining
 - o Itemsets do not have any superset which is frequent
- We use MFI
 - More information, and generally of higher length,
 - Number of patterns and complexity are lowest

Atttack-pattern mining algorithm with look-back At Manager

- Correlation within one single window and across multiple windows
- Basically, to dynamically change minimum support
- Minimum support plays a critical role in extracting out attack patterns and leaving out false patterns
- Once a pattern is found, only mine on the alerts related to that pattern
- Not only in the current window, but also in a set of previous windows (looking back)

Algorithm 1 Pattern mining at time-slot τ with look-back

- **Input:** \mathcal{F} : mined patterns (an array), \mathcal{A} : alerts, θ_l : lower bound of minimum support, Δ^-, Δ^+ : decrement and increment step sizes of minimum support, T_w : look-back time-slots
- 1: $\mathcal{F}[\tau] \leftarrow \text{MFI_Iter}(\text{any_pattern}, \mathcal{F}, \mathcal{A}[\tau], \theta, \theta_l) \triangleright$ mine for any maximal frequent itemset in alert database at time τ while reducing θ iteratively until θ_l
- 2: for each $t \in \{\tau, \ldots, \tau T_w\}$ do

3: for each
$$\mathbf{I} \in \mathcal{F}[\tau]$$
 do

4:
$$\theta' \leftarrow (\theta - \Delta^{-})$$

- 5: $\mathcal{A}' \leftarrow filterAlerts(\mathbf{I}, \mathcal{A}[t]); \triangleright$ filter the alert database by pattern \mathbf{I}
- 6: $\mathcal{F}' \leftarrow \text{MFI_Iter}(\text{new_pattern}, \mathcal{F}, \mathcal{A}', \theta', \theta_l)$ \triangleright mine for any new pattern in filtered alert database \mathcal{A}' while reducing θ' iteratively until θ_l
- 7: $\mathcal{F}[t] \leftarrow \mathcal{F}[t] \cup \mathcal{F}' \qquad \triangleright \text{ add new patterns}$ 8: end for
- 9: **end for**
- 10: $\theta \leftarrow (\theta + \Delta^+)$ \triangleright increase for next time-slot

Performance evaluation

(preliminary)

Experiment setup

- OpenStack environment to emulate Mirai-like botnet → scans, brute force login attempts, m/w download, C&C comm., and specific DDoS attacks
- New IoT devices get infected during the experiment duration
- 7 gateways, 65 (emulated) IoT devices, 2 compromised devices, a victim, a C&C server and a loader
- VMs for generating false alerts (noises representing deviations from normal but not attacks)

Metrics for evaluation

precision = $\frac{\#\text{True Positive}}{\#(\text{True Positive} + \text{False Positive})}$

recall = $\frac{\#\text{True Positive}}{\#(\text{True Positive} + \text{False Negative})}$

$$F_1$$
 score = $2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$

Local v/s Global detection capabilities

<u>Goal</u>: evaluate impact of spatial correlation at Manager, at different levels of false alerts

Experiment 1 (cont'd)

Local v/s Global detection capabilities

False alert level 1

 $\mathbf{>}$

Experiment 1 (cont'd)

Local v/s Global detection capabilities

Takeaway from Experiment 1

- FIM helps in mining attack patterns
 - Both at gateways and at Manager
- Generally, Manager has higher detection capability with low false positives
- But depends on minimum support
 - Static minimum support is not a good idea

Experiment 2

Effectiveness of algorithm when attacks are temporally dispersed

- Different variants of mining algorithm at Manager
 - Constant minimum support
 - Search without lookback (vary support)
 - Search with lookback of one time-slot
 - Search with lookback of three time-slots

Experiment 2

Conclusions and plans

ADROIT

- A system for detecting anomalies and mining patterns related to attack-stages
- Exploited the fact that, in comparison to end-hosts, IoT devices can be better profiled
- The distributed architecture allows collapsing spatial dispersion, whereas proposed *look-back* algorithm helps to mine temporally dispersed alerts
- Next steps
 - Test of large-scale attack traffic, considering multiple botnets
 - o Identify attack-stages automatically
 - Can we map to behaviors of specific botnets?

Thank You!