
ADROIT: Detecting Spatio-Temporal
Correlated Attack-Stages in IoT Networks

NUS-Singtel Cyber Security R&D Corp. Lab

Dinil Mon Divakaran, Rhishi Pratap Singh, Kalupahana Liyanage Kushan
Sudheera, Mohan Gurusamy, Vinay Sachidananda

Context

2

➢ IoT increasing in numbers, types, applications and deployments

➢ Mostly unattended by humans

➢ Vulnerable and easily exploited

➢ Question: at a network level (e.g., ISPs), how can we detect and prevent attacks on
and due to the things?

▪ Can we detect stages of a
coordinated large-scale cyber attack?

▪ For example

o Scan

oBrute-force login attempts

oMalware downloads

oC&C communications

o Launch of specific and targeted
attack (DDoS, RDDoS)

Problem

3

Challenges - I

4

Spatial dispersion

• Analyzing just one network might not show
any significant activity

• E.g., a low-rate DDoS or brute-force login
attempts at different n/ws might be related

I. Activities might be spread
across different network
premises

Challenges - II

5

Temporal dispersion

• Bot may be infected for a long time, during
which it may engage in malicious activities

• C&C communication establishment often
involves multiple connection attempts

II. One or multiple stages of an
attack might happen at different
times

ADROIT: network architecture

6

• Each premise (smart home/building) has a gateway, connected to devices in it’s network

• All gateways connected to a manager in the Cloud or ISP datacenter

ADROIT
Properties

7

✓ Traffic processed locally, at the gateways

✓ Only alerts anomalies sent to Manager

o Privacy of normal application not compromised

o Minimal leak of info → even for anomalous traffic, only meta info shared with Manager

o Bandwidth consumed is reduced by orders of magnitude

✓ Unsupervised approach in detecting attack-patterns

o No reliance on labeled data for training models

o Potentially detect new attacks

Overview of ADROIT

8

1. [Device profiling] Done for the connected

devices at the gateway in an offline manner

2. [Anomaly detection] At deployment, the

anomalies are detected when the packet

features are extracted & compared with IoT

profiles

3. [Pattern mining] These alerts are sent to the

manager for detecting attack-stages

Device profiling

9

Example profile: D-Link socket

❖ IoT devices connect to limited number of destinations

o Exceptions include hubs and changes in servers or

server to IP address mapping

❖ A baseline profile (hash table) can be built from packets and

connections

❖ Each gateway can profile their devices independently, and

in an offline manner

o Some compute and storage resources required

❖ Once profile table built→ (local) anomaly detection

requires only lookups based on the keys

Cuckoo hash table
Device profiling

10

❖ Hash table operations of interest: insert(), update(), lookup()

❖ Insert() and update() required only during profile creation

❖ Real-time detection requires only lookup()

❖ Traditional hash table can incur linear lookup times in worst cases

❖ Alternative → Cuckoo hash table

✓ lookup() has constant worst-case time; to be precise, just two, for two hash functions

✓ Trade-off → insert()

✓ But insert() is performed offline, where lookup() is required to performed online

Anomaly detection at a gateway

11

❖ Real-time operation: extract key from

incoming packet

Two anomalies of interest:

❖ Connection anomaly: If key not found in

profile table

❖ Behavior anomaly: If is found in profile

table, but if stats do not match

❖ In both cases, alert generated and sent

to Manager

❖ Observe: only alerts, i.e., meta-

information and of anomalies sent to

Manager

▪ Key = (Internal IP, External IP, Port, Protocol, Direction)

▪ Meta data = (Packet & Payload Length, Number of sessions)

Alert analysis at the manager

12
12

▪ Manager analyzes the alerts

o Attack-stages such as Scan, Login, C&C, RDDoS, DDoS

could form dominant patterns

o All alerts are not related to attack-stages

o Noises are random and spurious. Even if the noises

form patterns, would they be dominant in volume?

▪ How to capture patterns?

Scenario 2Scenario 1

Pattern detection
At manager

13

▪ Frequent Itemset Mining (FIM)

o Data mining approach to extract recurring patterns

o Each field of an alert corresponds to an item, in FIM

o A k-itemset is a set of k items

o Given n alerts, an itemset/pattern is called frequent, if it appears

in at least θ x n alerts, where θ is called minimum support

o Goal: mine frequent itemsets in alert database

o Parameters: itemset length (k), minimum support θ

Example

14

❖ Upper table: consider alerts arriving

at Manager

❖ Some related to attacks, and,

❖ Some false positives

o Can arise due to random scans,

firmware updates, etc.

❖ Lower table: patterns extracted,

using a small set of features

FIM
Algorithms

15

▪ Algorithms like Apriori: mine frequent itemsets of all lengths

▪ Extracting all patterns exhaustively is neither useful nor efficient

o Many patterns are closely related

o Lower length itemsets are subsets of higher length itemsets

o E.g., <<*,*,TCP,*,23,In,*>> and <<*,10.6.1.12,TCP,*,23,In,Small>>

▪ Alternative 1: Closed Frequent Itemset (CFI) mining

o Itemsets do not have any superset with the same support

▪ Alternative 2: Maximal Frequent Itemset (CFI) mining

o Itemsets do not have any superset which is frequent

▪ We use MFI

o More information, and generally of higher length,

o Number of patterns and complexity are lowest

Atttack-pattern mining algorithm with look-back
At Manager

16

▪ Correlation within one single window and across

multiple windows

▪ Basically, to dynamically change minimum support

▪ Minimum support plays a critical role in extracting out

attack patterns and leaving out false patterns

▪ Once a pattern is found, only mine on the alerts

related to that pattern

▪ Not only in the current window, but also in a set of

previous windows (looking back)

Performance evaluation

17

(preliminary)

Experiment setup

• OpenStack environment to emulate
Mirai-like botnet
→ scans, brute force login attempts,
m/w download, C&C comm., and
specific DDoS attacks

• New IoT devices get infected during
the experiment duration

• 7 gateways, 65 (emulated) IoT devices,
2 compromised devices, a victim, a
C&C server and a loader

• VMs for generating false alerts (noises
representing deviations from normal
but not attacks)

Metrics for evaluation

19

Experiment 1
Local v/s Global detection capabilities

20

No false alerts

Goal: evaluate impact of
spatial correlation at
Manager, at different levels
of false alerts

Experiment 1 (cont’d)
Local v/s Global detection capabilities

21

False alert level 1

Experiment 1 (cont’d)
Local v/s Global detection capabilities

22

False alert level 2

Takeaway from Experiment 1

23

▪ FIM helps in mining attack patterns

o Both at gateways and at Manager

▪ Generally, Manager has higher detection capability with low false positives

▪ But depends on minimum support

o Static minimum support is not a good idea

Experiment 2
Effectiveness of algorithm when attacks are temporally dispersed

24

▪ Different variants of mining algorithm at Manager

o Constant minimum support

o Search without lookback (vary support)

o Search with lookback of one time-slot

o Search with lookback of three time-slots

Experiment 2
Effectiveness of algorithm when attacks are temporally dispersed

25

Conclusions and plans

26

▪ ADROIT

o A system for detecting anomalies and mining patterns related to attack-stages

o Exploited the fact that, in comparison to end-hosts, IoT devices can be better

profiled

o The distributed architecture allows collapsing spatial dispersion, whereas proposed

look-back algorithm helps to mine temporally dispersed alerts

▪ Next steps

o Test of large-scale attack traffic, considering multiple botnets

o Identify attack-stages automatically

o Can we map to behaviors of specific botnets?

Thank You!

27

