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Abstract—We designed DNSCheck, an active network exper-
iment to detect the blocking of DoT/DoH services. We imple-
mented DNSCheck into OONI Probe, the network-interference
measurement tool we develop since 2012. We compiled a list of
popular DoT/DoH services and ran DNSCheck measurements
with help from volunteer OONI Probe users. We present pre-
liminary results from measurements in Kazakhstan (AS48716),
Iran (AS197207), and China (AS45090). We tested 123 DoT/DoH
services, corresponding to 461 TCP/QUIC endpoints. We found
endpoints to fail or succeed consistently. In AS197207 (Iran),
50% of the DoT endpoints seem blocked. Otherwise, we found
that more than 80% of the tested endpoints were always reach-
able. The most frequently blocked services are Cloudflare’s and
Google’s. In most cases, attempting to reach blocked endpoints
failed with a timeout. We observed timeouts connecting, during,
and after the TLS handshake. TLS blocking depends on either
the SNI or the destination endpoint.

I. INTRODUCTION

Since the Snowden revelations in 2013, the IETF commu-
nity has started working towards a more encrypted and private
internet. This spirit is well captured by, for example, RFC
7258 [20] and RFC 7624 [10]. The former states that pervasive
monitoring is an attack to be mitigated, where possible, by
IETF protocols. The latter provides a threat model for a
scenario of widespread, pervasive internet surveillance.

As far as DNS is concerned, RFC 7624 notes that it travels
the network in cleartext without confidentiality or integrity
guarantees. A global (or country-wide) passive adversary could
surveil all the DNS queries sent by users [7]. Alternatively,
the adversary could censor the messages by discarding them
or intercepting them and forging replies [29].

Two IETF standards address this flaw: DNS over TLS [26]
(DoT) and DNS over HTTPS [23] (DoH). In both cases, public
DoT/DoH servers typically rely on the existing Public Key
Infrastructure (PKI) for authentication.

Providers, operating systems, and applications increasingly
implement DoT and DoH. A 2019 study by Lu et al. [30]
found that DoT traffic was growing but was “still 2-3 orders
of magnitude less” than cleartext DNS (Do53). Cloudflare’s
DoT, e.g., received 7,318 monthly flows in December 2018
(56% up from July 2018). As regards DoH, they estimate that
Google’s endpoint received more than 107 monthly queries in
March 2019 (a 100x increase since March 2018).

The ongoing deployment of these new technologies has
interesting policy implications. Tunneling domain name reso-
lutions over HTTPS, in particular, is a significant architectural
change, not least because many DoH providers are also content

delivery networks (CDN). This fact raises concerns regarding
performance [25], competition, and privacy [14].

(While DoH’s centralization and the resulting privacy con-
cerns are not the focus of this paper, we note that work is
underway to mitigate them [38] [24].)

Simultaneously, the rollout of DoT and DoH does not
fully solve the surveillance and censorship issues posed by
a cleartext internet. There are at least two remaining fields
that could reveal the precise target of otherwise encrypted
communications. They are the Server Name Indication [19]
(SNI) extension inside the TLS ClientHello and the destination
IP address. However, in a landscape increasingly dominated by
CDNs [16], the same IP address may host several domains.

Hence, the next milestone to further encrypt communi-
cations is the TLS Encrypted ClientHello [37] [17] (ECH–
formerly ESNI), which encrypts the ClientHello.

Crucially, ECH encrypts the ClientHello with encryption
keys fetched from DNS servers. Fetching such keys over
DoT/DoH helps to reduce the scope of local surveillance and
censorship efforts. However, with several nation-states busy
asserting their cyber-sovereignty [33] [9] [48], the question
arises of whether they censor DoT/DoH and ECH.

In this vein, in the summer of 2020, Bock et al. investigated
ECH/ESNI blocking in China [13]. They documented that the
Great Firewall (GFW) could block ESNI traffic and presented
six automatically discovered evasion strategies.

In this paper, instead, we focus on the complementary
research question: measuring DoT/DoH services blocking.

Main contributions and findings

We model the blocking of DoT/DoH services (Section III)
and design DNSCheck, a measurement methodology to mea-
sure such blocking (Section IV). DNSCheck consists of two
steps. The first step checks whether the system resolver
(and other Do53 resolvers) allow one to resolve a DoT/-
DoH service’s domain name. The second step checks which
TCP/QUIC endpoints associated with the service allow domain
resolutions using the proper protocol (DoT or DoH).

We discuss measurements collected from Kazakhstan (Sec-
tion V-C), Iran (Section V-D), and China (Section V-E),
covering 123 DoT/DoH services and 461 TCP/QUIC end-
points. Helped by volunteer OONI Probe users, we ran tests
between 15th December 2020 and 10th January 2021. We
only observed Do53 censorship in AS197207 (Iran). Most
DoT/DoH endpoints fail or succeed consistently. In AS197207,



around 50% of the DoT endpoints failed consistently. Apart
from this case, for all the other ASN/protocol combinations,
no more than 20% of the endpoints failed. The most frequently
blocked services are Cloudflare’s and Google’s.

Timeout is the most frequent cause of failure. We see time-
outs connecting, during, and right after the TLS handshake.
We investigate timeouts during and after the TLS handshake
(Section V-G). They seem to correspond to the discard of
either outgoing TCP segments or incoming ACKs.

TLS blocking depends on either the SNI value or the desti-
nation endpoint. In particular, in Section V-I we show that in
AS197207 (Iran), Google’s endpoints blocking is independent
of the SNI and only depends on the destination endpoint.

II. RELATED WORK

This Section discusses censorship measurement tools, mea-
suring TLS blocking, and DoT/DoH related research.

1) Censorship Measurement Tools: Niaki et al. [34] de-
scribe ICLab, a longitudinal censorship measurement platform
using VPNs as distributed vantage points. Since late 2016,
ICLab focuses on DNS manipulation, TCP packet injection,
and block page detection and discovery.

Sundara Raman et al. [44] describe Censored Planet, a
longitudinal internet-wide censorship observatory performing
remote detection of TCP/IP blocking, DNS manipulation, and
HTTP/HTTPS blocking. They rely on four different remote
measurement tools: Augur [35], Satellite/Iris [39], Quack [47],
and Hyperquack [45]. The latter detects SNI blocking by
initiating a TLS conversation with a remote server inside a
specific country. Because censorship is symmetrical in several
cases, they can measure SNI censorship remotely.

IODA is a longitudinal internet measurement platform that
detects country-wide internet blackouts, some of which have
historically been politically motivated [18]. To detect such
outages, IODA combines routing information, monitoring of
unsolicited network traffic, and active probing.

The RIPE Atlas [1] [42] is a globally distributed platform
consisting of hardware nodes hosted by volunteers. A credit
system allows researchers to run experiments on the platform
by scheduling tasks on the nodes. The Atlas has historically
been used to detect the blocking of infrastructure and services.
In 2014, for example, Anderson et al. used the Atlas to
investigate blocking events in Russia and Turkey [8].

OONI Probe [21], the tool we use in this paper, is also
a longitudinal censorship measurement tool. OONI Probe
performs measurements from within a country as ICLab and
RIPE Atlas do. Censored Planet, conversely, runs remote mea-
surements. In this work, we focus on TLS blocking (similarly
to Hyperquack) and on plaintext DNS (similar to ICLab and
Satellite). IODA focuses on large-scale disruptions that make
the internet unusable. In contrast, in this work, we focus on
the selective censorship of DoT/DoH services.

2) TLS blocking: Chai et al. [17] measure (E)SNI blocking
in China. Using both in-country and remote vantage points,
they show that ESNI helps to circumvent SNI blocking. They
use unrelated TLS servers as control servers, configure SNIs

of interest, and check whether there are anomalies. Besides,
they also check for DNS based blocking.

Singh et al. [41] measure SNI blocking while studying
internet censorship in India. Their methodology consists of
using TLSv1.3 and checking whether an offending SNI causes
anomalies with a TLS-enabled control server. Besides, they
also check for DNS based blocking.

The DNSCheck methodology we introduce here also has
a DNS blocking step and a TLS blocking step. However,
we use the possibly-censored target endpoints rather than
unrelated control servers. Moreover, we not only check for
TLS blocking, but we also check whether all the target
endpoints are usable as DoT/DoH endpoints.

3) DoT/DoH: Lu et al. [30] describe large-scale measure-
ments of DoT/DoH services. They document the growth of
DoT/DoH services in terms of volume between 2018 and
2019. They find Google’s DoH services blocked in China. Our
findings confirm Google’s DoH blocking in China.

Bushart et al. [15], Siby et al. [40], and Trevisan et al. [46]
study the possibility of detecting the content of DoT/DoH
queries notwithstanding the presence of encryption. Because
detection is possible, blocking could also be possible. Con-
versely, our model assumes that a DoT/DoH service works for
any query or is blocked. We plan on investigating if censors
implement conditional blocking as part of our future work.

III. MODEL

This Section describes the DoT/DoH blocking model that
informs DNSCheck’s design and implementation.

A. Problem Statement

DoT/DoH services may use IP addresses, domain names, or
both. Quad9’s DoT resolver, for example, is available as both
9.9.9.9:853/tcp and dns.quad9.net:853/tcp.

When a service uses a domain name, operating systems and
applications use another resolver to look it up (often the system
resolver, i.e., getaddrinfo).

Thus, to block a DoT/DoH service, a censor could interfere
with domain resolution (if applicable) and with the service’s
endpoints [27]. For example, an adversary could block plain-
text DNS queries for dns.quad9.net. Moreover, it could
block some (or all) of the corresponding TCP endpoints.

As regards the blocking of endpoints, a censor could (1)
prevent connecting to an endpoint, (2) block the TLS hand-
shake, or (3) interfere after the TLS handshake.

(Orthogonally, the censor could force users to install a root
certificate on their devices [43]. In turn, this certificate allows
a censor to “man in the middle” selected endpoints to choose
what “encrypted” DNS queries to block.)

To determine whether to block a flow, a censor could inspect
a variety of cleartext fields. Previous research suggests that the
most relevant ones are the destination endpoint [17] and TLS’s
SNI extension [41]. Censors can also possibly use the ALPN
extension. Before TLS 1.3, they could also inspect the server’s
certificate, which the server sent in cleartext.
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B. Measuring Blocking

Therefore, measuring the blocking of a DoT/DoH service
is a two-step process. The first step should check whether
resolving its domain name with cleartext DNS is possible.
The second step should check whether each of its endpoints
allows us to resolve a domain name.

C. Assumptions

We assume that blocking does not depend on the query’s
question as long as there is EDNS(0) padding [31]. Consid-
ering recent traffic analysis results [15] [40] [46], we plan to
relax this assumption as part of our future work.

After receiving a DNS reply over a TLS/QUIC connection,
we consider the corresponding endpoint accessible. OONI
Probe’s testing model does not currently allow us to measure
the blocking of long-lived connections.

IV. METHODOLOGY

This Section describes OONI’s architecture and the DNS-
Check measurement methodology.

A. OONI Overview

The Open Observatory of Network Interference (OONI) is
a free software distributed network-interference measurement
system [21] [2]. Since 2012, we collected 379M measurements
from 21.4k ASNs in 239 countries.

Volunteer users install OONI Probe, an open-source client
available for Windows (desktop and CLI), macOS (desktop
and CLI), Linux (CLI), Android, and iOS.

OONI Probe users can run censorship and network per-
formance tests. Most censorship observations performed by
OONI rely on a test that checks for website blocking.

B. OONI Measurements Lifecycle

After running a measurement, OONI Probe annotates it with
the country code and the autonomous system number (ASN)1.
Then, it submits the measurement to the OONI backend.

Upon receiving a measurement, the backend publishes it
on Amazon S3. Then, the backend triggers a data processing
pipeline. The pipeline’s job is to classify/normalize the mea-
surement and store meta information into a database.

In turn, the OONI API [3] allows anyone to find specific
measurements by querying such a database. The primary
consumer of the OONI API is OONI Explorer [4], a website
allowing anyone to explore OONI measurements.

C. OONI Probe Flavors

There are two OONI Probe flavors: stable clients and the re-
search client (also called miniooni). Ordinary users download
and run stable clients. Miniooni is for researchers.

Both the stable client and miniooni use the same underlying
Go library called Probe Engine [5]. The source code of the
miniooni client is also part of the Probe Engine repository.

1We use various STUN and HTTP services to discover our IP address. Then,
we derive country code and ASN using MaxMind compatible databases. We
use db-ip.com’s free country geolocation database and generate our own ASN
database from RIPE’s public BGP data dumps.

DNSCheck is still experimental. Therefore it is only acces-
sible to users running miniooni.

D. DNSCheck Overview

DNSCheck first checks whether resolving the domain name
of a DoT/DoH service is possible. Then, it checks whether all
the related TCP/QUIC endpoints work as intended.

DNSCheck takes in input a test list describing the DoT/DoH
services to test. Each service is identified by a “input” URL
where the URL scheme (https, dot, or udp) indicates the
protocol with which to access the service. The test list is
further described in the Appendix.

E. DNSCheck Options

The default_addrs option specifies valid IP addresses
for the URL’s domain. DNSCheck will use them regardless of
the result of resolving the URL’s domain.

The http3_enabled option forces DNSCheck to use
HTTP3 when performing DoH resolutions. The default is to
negotiate one of HTTP/2 and HTTP/1.1 using ALPN [22].

The domain option specifies the domain to resolve. If
not specified, we default to example.org. As stated in
Section III-C, we assume that the resolved domain name does
not influence DoT/DoH censorship. Thus, we have chosen to
resolve a clearly-non-controversial name.

The tls_server_name option forces a specific Server
Name Indication (SNI) value in the ClientHello.

F. DNSCheck Algorithm

The DNSCheck algorithm is composed of two steps called
bootstrap and lookups. The bootstrap step discovers the IP
addresses associated with the input URL’s hostname. To this
end, it uses getaddrinfo. If there is an error, bootstrap
immediately returns this error. Otherwise, bootstrap returns
the list of IPs returned by getaddrinfo2.

The lookups step first merges the addresses returned by
bootstrap with the ones in default_addrs.

Then, lookups computes the related TCP/UDP endpoint for
each address, thus producing a list of endpoints to test.

Then, lookups computes whether to use an SNI. There are
three cases. If the URL’s hostname is an IP address, we do
not use any SNI3. Otherwise, we use tls_server_name,
if not empty. Otherwise, we use the URL’s hostname.

For each endpoint, lookups will establish an encrypted
connection. Then it will use the connection to send a DNS
query for example.org and receive the response.

When using TCP, lookups will first create a TCP con-
nection and then perform a TLS handshake. If connecting
fails, lookups records that the failed operation is connect.
If handshaking fails, it will record tls_handshake. When
the failed operation is resolve, it means the related failure
occurred after the TLS handshake.

2When passed an IP address as the domain, getaddrinfo returns such an
address. Therefore, if the input URL hostname is an IP address, the bootstrap
step will return a list containing such an IP address.

3Go enforces this behavior, consistently with RFC 6066 [19].
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When using QUIC, lookups will create an encrypted QUIC
connection in a single operation. (The current QUIC code also
does not correctly record the failed operation.)

G. DNSCheck Implementation Details

Users in censored locations often configure alternative re-
solvers, so there is no guarantee that getaddrinfo uses
the ISP’s resolver. For this reason, we discover and store the
system resolver’s IP in each measurement4.

Probe Engine uses its own CA bundle extracted from
Mozilla’s certificate store. Thus, the system’s certificate store’s
content does not influence the measurement results.

With DoT and DoH, we always include padding according
to the recommendations of RFC8467 [32]. We set the ALPN
extension to dot for DoT. We use h2, http/1.1 for DoH
over TCP (like Firefox), and h3-29 for DoH over QUIC.

Probe Engine is written in Go and uses the miekg/dns
library [6] to parse and serialize DNS messages.

V. MEASUREMENTS RESULTS

This Section describes the measurement results. We com-
piled a test list consisting of widely used DoT/DoH services,
including, of course, Google’s, Cloudflare’s, and Quad9’s.

When generating the test list, we used Google’s DoH
resolver to include valid default_addrs addresses for each
input URL containing a domain name. (See the Appendix for
more details on how we did that.)

Starting from 15th December 2020, we and some volunteers
ran this test list using the most recent version of miniooni.

A. DoT/DoH Services IP Addresses

In the remainder of Section V we will refer to the following
DoT/DoH services’ IP addresses:

1.0.0.1 Cloudflare
1.1.1.1 Cloudflare
2606:4700::6810:f8f9 Cloudflare
2606:4700:4700::1001 Cloudflare
2606:4700:4700::1111 Cloudflare
104.16.248.249 Cloudflare
8.8.4.4 Google
8.8.8.8 Google
9.9.9.9 Quad9
9.9.9.10 Quad9

We list them here for clarity.

B. Data Quality

This Section describes data quality issues that we identified
and fixed during measurements analysis.

1) Missing IPv6 support: Some systems did not support
IPv6, but our test list included plenty of IPv6 addresses in the
default_addrs field. Therefore, we needed to filter out
errors indicating that IPv6 was not supported.

4To this end, we query whoami.akamai.net. The response includes
the source IP address that queried akamai’s authoritative name server.

address sni result freq. perc.

1.0.0.1 null5 success 88 100%
1.0.0.1 one.one.one.one success 88 100%

1.0.0.1 1dot1dot1dot1.cl... resolve6 timeout 73 99%
1.0.0.1 1dot1dot1dot1.cl... connect timeout 1 1%
1.1.1.1 null tls handshake timeout 88 100%
1.1.1.1 one.one.one.one success 88 100%
1.1.1.1 1dot1dot1dot1.cl... resolve timeout 77 100%

...4700::1001 one.one.one.one success 88 100%

...4700::1001 1dot1dot1dot1.cl... resolve timeout 85 100%

...4700::1111 one.one.one.one success 88 100%

...4700::1111 1dot1dot1dot1.cl... resolve timeout 84 100%

TABLE I
FREQUENCY OF RESULTS FOR CLOUDFLARE

DOT MEASUREMENTS IN KZ (AS48716)

2) Misconfigured Server: 40.76.112.230 (AT&T’s ex-
perimental DoT/DoH endpoint) frequently served us an ex-
pired certificate. This error happened for vantage points
in Cambodia (AS139779; Cambo.Host LTD), Costa Rica
(AS52423; Data Miners SA), India (AS14061; Digital Ocean,
LLC), and Italy (AS30722; Vodafone Italia SpA).

Therefore, we did not consider results associated with such
an endpoint when performing data analysis.

3) False Positives: A specific version of miniooni had the
following bug. It scheduled endpoints measurements after a
timeout was expired. This bug created false positives where it
appeared that connect timed out immediately.

We fixed the bug on 26th December 2020 at 10:44 UTC
and updated all miniooni instances. We omit false positives
caused by this bug from the results.

C. Kazakhstan

We ran DNSCheck 88 times between 15th December 2020
and 10th January 2021 from a VPS located in AS48716 (PS
Internet Company LLC). Most runs measured the whole test
list; some runs were interrupted. We did not find any issue
during the bootstrap phase. Some data points are missing
because of false positives; see Section V-B3.

1) DoT: We ran 8,603 DoT lookups, 95% of which suc-
ceeded. More than 70% of the failures are timeouts after the
TLS handshake. More than 90% of the failures occur with
Cloudflare’s endpoints. Table I shows the measurement results
for some endpoints. Results seem to depend on the SNI.

2) DoH: We ran 19,988 DoH lookups, 82% of which
succeeded. More than 75% of the failures are timeouts after
the TLS handshake. More than 85% of the failures occur with
Cloudflare’s endpoints.

Table II shows the measurement results for some of these
endpoints. The endpoints fail consistently with the SNI. When
there is no SNI, the behavior is inconsistent.

Figure 1 shows the results of the 1.1.1.1 endpoint
without any SNI over time. The endpoint worked for some
time; then, it started failing again. (The 1.0.0.1 endpoint

5A null SNI indicates that the URL’s hostname is an IP address. In such
cases, there should be no SNI extension according to RFC 6066 [19].

6Resolve indicates that the failure occurred after the TLS handshake.
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address sni result freq. perc.
...6810:f8f9 cloudflare-dns.c... resolve timeout 85 99%
...6810:f8f9 cloudflare-dns.c... connect timeout 1 1%
...6810:f8f9 mozilla.cloudfla... success 88 100%
...6810:f8f9 ooni.cloudflare.... resolve timeout 87 100%

1.1.1.1 null tls handshake timeout 68 78%
1.1.1.1 null success 19 22%
1.1.1.1 1dot1dot1dot1.cl... resolve timeout 87 100%
1.0.0.1 null tls handshake timeout 60 69%
1.0.0.1 null success 27 31%
1.0.0.1 1dot1dot1dot1.cl... resolve timeout 87 100%

TABLE II
FREQUENCY OF RESULTS FOR CLOUDFLARE

DOH MEASUREMENTS IN KZ (AS48716)

Fig. 1. 1.1.1.1 DoH results in KZ (AS48716)

behaves roughly in the same way: its blocking pattern also
oscillates, but differently.)

D. Iran

We ran DNSCheck 40 times between 15th December 2020
and 10th January 2020 from AS197207 (Mobile Telecommu-
nication Company of Iran–MCI). Some data points are missing
because of false positives; see Section V-B3.

1) Bootstrap Analysis: MCI’s system resolver consistently
returned to us a bogon [28] IPv4 address (10.10.34.36)
for every A query for dns.adguard.com.

We got the same bogon when using 8.8.8.8:53/udp
and 9.9.9.9:53/udp as alternative resolvers. Interestingly,
we did not observe any bogon reply for AAAA queries.

The bogon address is in the same /24 network indicated
in the paper on censorship in Iran by Aryan et al. [9].

With manual measurements, we also noticed, as they no-
ticed [9], that the filtered queries never reached a DNS-over-
UDP server that we temporarily set up.

This fact strongly suggests that some equipment intercepted
the queries and replied on behalf of the real server.

2) DoT: We ran 2,290 DoT lookups, 50% of which suc-
ceeded. More than 50% of the failures occur with Cloudflare’s,
Google’s, or Quad9’s endpoints. Around 80% of the failures
are TLS handshake timeouts.

Table III shows the measurement results for a selection
of DoT endpoints. We see that endpoints fail consistently.

address sni result freq. perc.
1.0.0.1 null tls handshake timeout 40 100%
1.0.0.1 1dot1dot1dot1.cl... tls handshake timeout 40 100%
1.0.0.1 one.one.one.one tls handshake timeout 38 97%
1.0.0.1 one.one.one.one connect refused 1 3%
1.1.1.1 null success 26 67%
1.1.1.1 null connect timeout 13 33%
1.1.1.1 1dot1dot1dot1.cl... success 27 68%
1.1.1.1 1dot1dot1dot1.cl... connect timeout 13 32%
1.1.1.1 one.one.one.one success 27 68%
1.1.1.1 one.one.one.one connect timeout 13 32%
8.8.4.4 null tls handshake timeout 40 100%
8.8.4.4 8888.google tls handshake timeout 40 100%
8.8.4.4 dns.google tls handshake timeout 39 100%
8.8.4.4 dns.google.com tls handshake timeout 39 100%
8.8.8.8 null success 40 100%
8.8.8.8 8888.google success 40 100%
8.8.8.8 dns.google success 39 100%
8.8.8.8 dns.google.com success 39 100%
9.9.9.9 null tls handshake timeout 40 100%
9.9.9.9 dns.quad9.net tls handshake timeout 39 100%
9.9.9.9 dns9.quad9.net tls handshake timeout 39 100%

9.9.9.10 null tls handshake timeout 40 100%
9.9.9.10 dns-nosec.quad9.net tls handshake timeout 38 100%
9.9.9.10 dns10.quad9.net tls handshake timeout 39 100%

10.10.34.36 dns.adguard.com connect timeout 33 100%
94.140.14.14 dns.adguard.com tls handshake reset 37 95%
94.140.14.14 dns.adguard.com tls handshake timeout 2 5%
94.140.15.15 dns.adguard.com tls handshake reset 37 95%
94.140.15.15 dns.adguard.com tls handshake timeout 2 5%

TABLE III
FREQUENCY OF RESULTS FOR SELECTED DOT MEASUREMENTS IN

IR (AS197207). (NOTE: ALL THE ELIDED SNIS BELONG TO
CLOUDFLARE.COM.)

Fig. 2. 1.1.1.1 DoT results in IR (AS197207)

The Table does not show any correlation between SNI and
failure. The differences between these results and our June-
2020 investigation of DoT blocking in Iran [11] are: 8.8.8.8
does not fail anymore; 1.1.1.1 now fails inconsistently.

We also see from Table III how the bogon address for
dns.adguard.com fails. We also see how the additional
IP addresses for this domain fail during the TLS handshake.
We also confirmed with manual measurements using Singh
et al. [41]’s methodology that there is SNI blocking of
dns.adguard.com when using port 853.
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address sni result freq. perc.
1.1.1.1 null success 26 65%
1.1.1.1 null connect timeout 13 33%
1.1.1.1 null http failure 1 2%
1.1.1.1 1dot1dot1dot1.cl... success 27 68%
1.1.1.1 1dot1dot1dot1.cl... connect timeout 13 32%
8.8.4.4 8888.google success 40 100%
8.8.4.4 dns.google resolve timeout 40 100%
9.9.9.9 null success 40 100%
9.9.9.9 dns.quad9.net resolve timeout 40 100%
9.9.9.9 dns9.quad9.net resolve timeout 40 100%

10.10.34.36 dns.adguard.com connect refused 31 100%
94.140.14.14 dns.adguard.com tls handshake reset 38 97%
94.140.14.14 dns.adguard.com tls handshake timeout 1 3%
94.140.15.15 dns.adguard.com tls handshake reset 39 100%

TABLE IV
FREQUENCY OF RESULTS FOR SELECTED DOH MEASUREMENTS IN IR
(USING TCP; AS197207). (NOTE: ALL THE ELIDED SNIS BELONG TO

CLOUDFLARE.COM.)

Figure 2 shows the results of the 1.1.1.1 endpoint over
time. The blocking status of the endpoint is not consistent.

3) DoH: We ran 5,213 DoH lookups, 93% of which suc-
ceeded. Timeout after the handshake (41%) and reset during
the handshake (20%) are the most frequent failures. About
53% of the failures occur with Cloudflare, Google, or Quad9
endpoints.

Table IV shows the results for some of these endpoints.
Results depend on the SNI for Google and Quad9. As regards
1.1.1.1, on the contrary, it fails as it does for DoT.

Like for DoT, we see both DNS and TLS blocking for the
dns.adguard.com endpoints. DNS blocking leads us to
use a bogon address. TLS blocking prevents us from using
valid IP addresses for the domain. We manually investigated
using Singh et al. [41]’s methodology, and found that there is
SNI blocking for dns.adguard.com on port 443.

E. China

We ran DNSCheck 81 times between 15th December 2020
and 10th January 2020 from a VM running on AS45090
(Tencent cloud computing Co., Ltd.). We did not find any
issue during the bootstrap phase. Some data points are missing
because of false positives; see Section V-B3.

1) DoT: We ran 4,643 DoT lookups7, 93% of which suc-
ceeded. Around 75% of the failures are connect timeouts.
More than 90% of the failures occur with Cloudflare’s or
BlahDNS’s Japanese endpoints.

Table V provides more details about the most frequently
observed DoT timeout errors. Cloudflare’s DoT endpoint al-
ways fails when connecting. Conversely, BlahDNS’s Japanese
endpoint most often fails during the TLS handshake.

Our finding that most blocked endpoints fail on connect is
consistent with previous measurements [17].

7We did not have IPv6 connectivity in AS45090, hence the significantly-
lower number of lookups than in AS48716.

8This endpoint timed out consistently until 1st January 2020 at 10:40 UTC,
when the connection was refused. After that moment, it was reachable.

address sni result freq. perc.
1.1.1.1 1dot1dot1dot1.cl... connect timeout 77 100%
1.1.1.1 one.one.one.one connect timeout 77 100%
1.1.1.1 null connect timeout 76 100%

45.32.55.94 dot-jp.blahdns.com tls handshake timeout 61 75%
45.32.55.94 dot-jp.blahdns.com success8 19 24%
45.32.55.94 dot-jp.blahdns.com connect refused 1 1%

TABLE V
FREQUENCY OF RESULTS FOR SELECTED DOT MEASUREMENTS CN

(AS45090). (NOTE: ALL THE ELIDED SNIS BELONG TO
CLOUDFLARE.COM.)

sni result freq. perc.
cloudflare-dns.com success 81 100%

mozilla.cloudflare-dns.com tls handshake reset 75 93%
mozilla.cloudflare-dns.com success 6 7%

ooni.cloudflare-dns.com success 78 96%
ooni.cloudflare-dns.com connect timeout 2 3%
ooni.cloudflare-dns.com tls handshake reset 1 1%

TABLE VI
FREQUENCY OF RESULTS FOR DOH MEASUREMENTS FOR

104.16.248.249 IN CN (AS45090)

KZ (AS48716) IR (AS197207) CN (AS45090)
transport count perc. count perc. count perc.

DoT 8157 95% 1150 50% 4332 93%
DoH over TCP 16466 82% 4824 92% 9414 89%

TABLE VII
SUCCESSFUL LOOKUPS PER TRANSPORT

FOR DOT AND DOH OVER TCP

2) DoH: We ran 10,536 DoT lookups, 89% of which suc-
ceeded. Around 72% of the failures are connect timeouts.
More than 70% of the failures occur with Cloudflare’s or
Google’s endpoints.

Regarding failures, 1.1.1.1, 1.1.1.2, 1.1.1.3, and
8.8.8.8 consistently timeout when connecting. Lu et al. [30]
also mention this blocking of Google’s DoH in China.

Regarding 104.16.248.249:443/tcp, instead, fail-
ures seem to depend on the SNI (see Table VI).

Follow-up measurements confirm this hypothesis. Using that
SNI with unrelated HTTPS servers (e.g., example.org and
hbl.fi) leads to connection-reset failures. This result is
consistent with other literature findings mentioning that China
uses SNI-based blocking [17].

We also noticed that 8.8.8.8:443/udp always timed
out in the QUIC handshake for any tested SNI. The same
occurred for 8.8.4.4:443/udp.

F. Comparison Between ASNs

Table VII shows the success rate of lookups measurements
per transport per ASN. We see that more than 80% of
the measurements were successful in most cases. The only
exception is DoT measurements in AS197207, where around
50% of the lookups failed.

Table VIII shows the distribution of DoT lookups failures
per ASN. We see that timeout after the TLS handshake dom-
inates in AS48716 (KZ). Timeout during the TLS handshake
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KZ (AS48716) IR (AS197207) CN (AS45090)
failure freq. perc. freq. perc. freq. perc.

resolve timeout 323 72% 79 7% 2 ∼0%
tls handshake timeout 88 20% 906 80% 63 20%

connect timeout 1 ∼0% 72 6% 233 75%
tls handshake reset 1 ∼0% 74 7% 0 0%

other 33 8% 3 ∼0% 13 ∼5%
total 446 100% 1134 100% 304 100%

TABLE VIII
DISTRIBUTION OF DOT LOOKUPS FAILURES

KZ (AS48716) IR (AS197207) CN (AS45090)
failure freq. perc. freq. perc. freq. perc.

resolve timeout 2701 77% 160 41% 3 ∼0%
tls handshake timeout 331 9% 1 ∼0% 61 5%

connect timeout 397 11% 72 19% 813 72%
tls handshake reset 1 ∼0% 77 20% 152 14%

other 92 3% 79 20% 93 9%
total 3522 100% 389 100% 1122 100%

TABLE IX
DISTRIBUTION OF DOH-OVER-TCP LOOKUPS FAILURES

is the most frequent failure in AS197207 (IR). In AS45090
(CN), the majority of failures are timeouts when connecting.

Table VIII shows the distribution of DoH-over-TCP lookups
failures per ASN. We see that timeout after the TLS handshake
dominates in AS48716 (KZ) and AS197207 (IR). In AS45090
(CN), connect timeout is the most frequent failure.

In AS197207 (IR), 60% of the DoH-over-TCP failures are
timeouts. In all other cases, this percentage is higher. This fact
makes timeout the most frequent failure by far.

AS45090 (CN) most frequently blocks by IP address. Inter-
ference during or after the TLS handshake is otherwise most
frequent. In the next Section, we will try to better characterize
this kind of interference by inspecting packet captures.

G. Investigating TLS timeouts

Probe Engine collects the timing and result of the con-
nect, recv, and send syscalls. In this Section, we compare
these results with a few packet captures to understand what
could cause TLS timeouts.

Timeouts during or after the TLS handshake always have
the following signature. The code writes some data. Then it
waits for the socket to become readable. The socket never
becomes readable, and, eventually, a timeout expires.

The few packet captures we inspected show that TCP
eventually sends a segment that is never acknowledged. Thus,
a few retransmissions ensue, then the code times out and closes
the socket.

For timeouts during the TLS handshake, the never ac-
knowledged segment contains the ClientHello. For timeouts
after the TLS handshake, judging from the packet sizes, the
application-level send results, and the ACK numbers, the
client retransmits a TCP segment containing three pieces of
information. That is, a dummy ChangeCipherSpec message,
the ClientHandshakeFinished message, and the DNS query.

The application sees the blocking after the end of the TLS
handshake for the following reason. As far as the TLS library
is concerned, the handshake is complete once it has written the

endpoint sni tls version result freq. perc.
8.8.4.4:853/tcp 8888.google null timeout 210 100%
8.8.8.8:853/tcp 8888.google TLSv1.3 success 80 100%

TABLE X
FREQUENCY OF RESULTS FOR TLS HANDSHAKES FOR

DOT://8888.GOOGLE (AS197207; IR)

final handshake messages on the socket. There is no way for
the TLS library to know that TCP will need to retransmit such
messages. Therefore, the TLS library returns successfully, and
the miniooni code then sends the DNS query.

After the code closes the socket, TCP transmits the FIN
segment without receiving any response.

(Because we did not control any blocked server, we could
not capture packets on the server-side. This fact prevented us
from determining whether the outgoing segments were lost or
the incoming ACKs were lost.)

H. Forcing TLSv1.3

We repeated some failed measurements forcing TLSv1.3,
and we did not see any significant change in the results.

I. Destination-Endpoint-Based TLS Blocking

The dot://8888.google endpoint inconsistently fails
in Iran (see Table III). Let us now investigate all the related
TLS handshakes in Table X. (We see more failures than
successes because Probe Engine retries failed queries.)

In particular, let us interpret the second row of Table X
using Singh et al. [41]’s SNI-blocking methodology. We use
TLSv1.3, so the network could not see the server’s certificate.
All the TLS handshakes succeed. Hence, we can conclude that
there is no SNI based blocking for 8888.google.

We can apply the same reasoning for all the other Google-
related SNIs in Table III. We thus conclude that Google’s DoT
blocking should only depend on the destination endpoint.

J. Impact of the Scheduling Policy

Chai et al. [17] mention that the Great Firewall of China
(GFW) implements “residual censorship” along with SNI-
based blocking. After the initial SNI-blocking episode, an
endpoint remains blocked for 60 seconds.

Bock et al. [13] report up to 180 seconds of residual
censorship when characterizing ESNI blocking. They also
detected up to 60 seconds of residual censorship in Iran when
investigating the Iranian white-list protocol filter [12].

These papers deal with triggering (E)SNI-blocking from
random control servers and sending unknown traffic. We
do not know whether residual censorship applies to traffic
targeting the expected/legitimate servers.

To search for evidence of residual censorship, we modified
our scheduling policy. Since 26th December 2020 at 10:44
UTC, we randomized the test list before every run. Since 1st
January 2021 at 00:17 UTC, we waited 180 seconds before
measuring the same endpoint again.

We noticed no significant impact of changing the scheduling
policy on the results. We thus assume that there was no
residual censorship for the tested endpoints.
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K. Discussion

Ramesh et al. [36] mention that China and Iran have a
centralized censorship implementation. This observation gives
us confidence that our results could represent typical network
censorship in these countries. In particular, our testing in Iran
focused on the most widely used ISP (MCI). We also ran
sparse testing in other Iranian ISPs with similar results.

Regarding Kazakhstan, Sundara Raman et al. [43] noted that
TLS interception only occurred in AS9198 (Kazakhtelecom).
Our measurements are from AS48716, which does not appear
to use AS9198 as an upstream provider. Our plan to expose
DNSCheck to all OONI users gives us confidence that we will
soon improve our coverage.

We observed consistent lookup results, in any case. Apart
from a few temporary failures, some endpoints failed consis-
tently, most endpoints consistently succeeded. For example,
in Kazakhstan (AS48716), 1.0.0.1 is blocked or accessible
depending on the SNI. In Iran (AS197207), 8.8.8.8 is
always accessible, and 8.8.4.4 is always blocked.

A few endpoints changed their behavior during the obser-
vation period (see Figures 1 and 2). We speculate that they
may have been blocked and unblocked intermittently. We plan
on further investigating these oscillations as part of our future
work (provided that they continue to happen).

In AS197207 (Iran), 50% of the DoT lookups failed. Oth-
erwise, at least 80% of the endpoints were usable. The most
commonly blocked services were Cloudflare and Google.

Different endpoints failed differently. The most common
failure is timeout. We have seen more connect timeouts in
AS45090 (China) and more timeouts after the TLS handshake
in AS48716 (Kazakhstan). The typical failure mode was
different for DoT and DoH in AS197207 (Iran).

VI. CONCLUSION

We presented DNSCheck, an active network experiment to
detect DoT/DoH blocking integrated into OONI Probe. We
discussed preliminary results from experiments in Kazakhstan
(AS48716), Iran (AS197207), and China (AS45090).

In AS197207, around 50% of the DoT endpoints failed
consistently. In the other ASN/protocol combinations, more
than 80% of the endpoints were always reachable. Cloudflare’s
and Google’s were the most blocked services.

We observed that the most frequent cause of failure was a
timeout, and we showed that DoT/DoH blocking could depend
on the SNI or the destination endpoint.
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[40] S. Siby, M. Juárez, C. Dı́az, N. Vallina-Rodriguez, and C. Troncoso,
“Encrypted DNS -> Privacy? A Traffic Analysis Perspective,” in 27th
Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

[41] K. Singh, G. Grover, and V. Bansal, “How India Censors the Web,” in
12th ACM Conference on Web Science, ser. WebSci ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 21–28.
[Online]. Available: https://doi.org/10.1145/3394231.3397891

[42] R. N. Staff, “RIPE atlas: A global internet measurement network,”
Internet Protocol Journal, vol. 18, no. 3, 2015.

[43] R. Sundara Raman, L. Evdokimov, E. Wurstrow, J. A. Halderman, and
R. Ensafi, “Investigating Large Scale HTTPS Interception in Kazakh-
stan,” in Proceedings of the ACM Internet Measurement Conference, ser.
IMC ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 125–132.

[44] R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi, “Censored
Planet: An Internet-Wide, Longitudinal Censorship Observatory,” in In
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2020.

Name Value
annotations ...

input dot://dns.quad9.net
probe asn AS48716
probe cc KZ

resolver ip 74.125.46.2
resolver asn AS15169

default addrs “9.9.9.10 2620:fe::10”

TABLE XI
EXAMPLE OF MEASUREMENT METADATA

[45] R. Sundara Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott,
and R. Ensafi, “Measuring the Deployment of Network Censorship
Filters at Global Scale,” in Network and Distributed System
Security. The Internet Society, 2020. [Online]. Available:
https://censorbib.nymity.ch/pdf/Raman2020a.pdf

[46] M. Trevisan, F. Soro, M. Mellia, I. Drago, and R. Morla, “Does domain
name encryption increase users’ privacy?” ACM SIGCOMM Computer
Communication Review, vol. 50, no. 3, pp. 16–22, 2020.

[47] B. VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and R. Ensafi,
“Quack: Scalable remote measurement of application-layer censorship,”
in USENIX Security Symposium. USENIX, 2018. [Online]. Available:
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-
vandersloot.pdf

[48] S. Yuen, “Becoming a cyber power. china’s cybersecurity upgrade and
its consequences,” China Perspectives, vol. 2015, no. 2015/2, pp. 53–58,
2015.

APPENDIX

A. DNSCheck Test List

To run DNSCheck, a researcher needs to prepare a test list
consisting of a JSON document entry per line.

Each JSON entry describes a specific DoT/DoH service to
measure. The following snippet9 provides an example:

{"annotations":{},"dnscheck":{}, \
"input":"dot://dns.google"}

The input key describes what to measure. We use URLs
to represent any supported DNS service and protocol.

DoH services are HTTPS services, so we use HTTPS URLs
(e.g., https://doh.powerdns.org).

We use the dot scheme for representing DoT services, e.g.,
dot://dns.quad9.net. We use 853/tcp when the port
is missing. The DNSCheck input parser always ignores the
URL path because it has no meaning for DoT.

We use the udp scheme for cleartext DNS. We use port 53
when the port is missing. We always ignore the path.

The annotations key contains key-value pairs used
to annotate measurements. The dnscheck key has options
changing the behavior of DNSCheck.

B. DNSCheck Data Format

A DNSCheck measurement result contains top-level meta-
data describing the measurement in general, as well as
DNSCheck-specific data. In turn, this consists of data collected
during the bootstrap and data collected by each lookup.

1) Measurement Metadata: Table XI shows a subset of
the metadata collected for a typical measurement. We keep
track of annotations from the JSON entry. We record the DNS

9We use a backslash to indicate that a line continues on the following line.
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endpoint sni failed operation failure ...
9.9.9.10:853/tcp dns.quad9.net null null ...

TABLE XII
EXAMPLE OF LOOKUPS RESULT

endpoint to measure as input. We save the country code
and the ASN as probe_cc and probe_asn, respectively.
We save the IP used by the system resolver as well as
the corresponding ASN. We also track the default addresses
specified in the JSON entry as default_addrs.

2) Bootstrap Results: We save the input domain and
getaddrinfo’s return value consisting of either a failure
or a list of IPs.

3) Lookups Results: Table XII shows the structure of
lookups results for a given endpoint. In addition to the Table’s
information, we also save the timing and result of TLS
handshakes, connect, read, and write operations.

C. Generating the Test List for DNSCheck

We started from an input list of DoT/DoH services con-
taining 123 DoT/DoH services. The snippet below shows a
portion of such a list with three DoT/DoH services:

dot://one.one.one.one
dot://1.1.1.1
https://dns.quad9.net/dns-query
...

For every input line in such a list, we created one or more
JSON entries in the test list. We generated a single JSON entry
when the input line contained an IP address. For example, the
second line became the following entry:

{"input":"dot://1.1.1.1"}

Instead, we created three entries when the input line con-
tained a domain name. The first entry describes how to test
the specified URL. This entry also contains valid IP addresses
for the domain, resolved using Google’s public DNS. For
example, the first line in the above snippet generated:

{"input":"dot://one.one.one.one", \
"dnscheck":{"default_addrs": \

"1.1.1.1 1.0.0.1 ..."}}

The other two entries resolve the specific domain with
Google’s and Quad9’s public DNS resolvers. These extra en-
tries allow us to check for DNS injection/hijacking. Continuing
from the above example, the first line in the snippet generated
these extra entries:

{"input":"udp://8.8.8.8", \
"dnscheck":{"domain":"one.one.one.one"}}

{"input":"udp://9.9.9.9", \
"dnscheck":{"domain":"one.one.one.one"}}

Once serialized, the test list consisted of 326 entries for
testing 82 domains and 461 TCP/QUIC endpoints.
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