Programmable In-Network Obfuscation of DNS Traffic

Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford Princeton University

Do53 Traffic Reveals Sensitive Information

Even Encrypted DNS Communications Reveal Sensitive Information

DNSCrypt, DNS-over-TLS, DNS-over-HTTPS,... Query: Domain X Client A Public DNS resolver (IP = 1.2.3.4)Network-level adversary Client at [1.2.3.4] will visit website [???]

Encrypted DNS: DNS Resolver --- A Single Point of Privacy Failure

Need to hide client IP addresses from DNS resolvers

Proxy-based DNS Protects Client IP Addresses

Solutions: DNS over Tor, Anonymized DNSCrypt, Oblivious DNS, Oblivious DoH, ...

Proxy-based DNS: Practical Challenges

Solutions: DNS over Tor, Anonymized DNSCrypt, Oblivious DNS, Oblivious DoH, ...

- Higher latency
- Modifications to DNS client / infrastructure
- High deployment barriers for proxy-based solutions

Need a lightweight IP anonymization method that requires no modifications to DNS client and server

Can We Embed Proxy in Network Elements?

Opportunities:

- Programmable data-plane hardware
 - Offload privacy functionality to the network

 High speed
 Avoid end user involvement

- Growing ubiquity of IPv6 in the Internet core
 - Use IPv6 address to embed information

Our Solution: PINOT

PINOT: A lightweight in-network IP address obfuscation system

- Goal: Prevent public DNS services from associating client IP addresses to queries
- Use programmable switch to encrypt IP addresses at a high speed (12.8 Tbps)
- No modification to DNS protocols; No additional client software installation
- Complementary to encrypted DNS

PINOT in An Edge Network

Run PINOT at the network border

• DNS requests: Encrypt the source IP address in each packet

PINOT in An Edge Network

Run PINOT at the network border

- DNS requests: Encrypt the source IP address in each packet
- DNS responses: Decrypt the destination IP address and forward packets

Challenges

- Perform encryption on resource-constrained programmable switch
- Receive return traffic without cooperation
- Work with asymmetric routing

Programmable Switch Resource Constraints

- Limited memory
- Limited operations
 - 1 pipeline: a small number of stages
 - 1 stage: a limited number of table lookups, and math/logical ops

Efficient Encryption of IP in Data Plane

- AES is too expensive on data plane
- Solution: Two-round Even-Mansour encryption (2EM)

• 2EM can be implemented using table lookups and XORs

Efficient Encryption of IP in Data Plane

- AES is too expensive on data plane
- Solution: Two-round Even-Mansour encryption (2EM)
 - Encrypt IP using a single pass through packet processing pipeline
 - > Encrypt packets at 3.2 Tbps on our Intel Tofino switch!
 - Pad IPv4 address with random bits for stronger security and privacy
 - Consecutive requests from the same client have distinct client source IP addresses
- See paper for more details

IPv6 Encoding for Stateless Encryption and Routing

- Challenge:
 - Store ciphertext (> 32 bits) and encryption metadata (key version #)
 - Ensure successful routing of return traffic
- Solution: Convert IPv4 packets to IPv6 packets
 - Information required for decryption are stored in IPv6 address
 - PINOT only stores encryption keys

IPv6 Encoding for Stateless Encryption and Routing

- Challenge: Return traffic can go to any ingress point
- Solution: A centralized controller for distributing the per-AS secret keys

PINOT can handle asymmetric routing easily

PINOT is Complementary to Encrypted DNS

	Query encryption	IP hiding	Modification to client	Proxy overhead
Do53	No	No	-	-
Encrypted	Yes	No	Yes	-
Proxy	Yes	Yes	Yes	High
PINOT + Do53	No	Yes	No	Low
PINOT + Encrypted	Yes	Yes	No*	Low

*Assuming an encrypted DNS solution has already been deployed, using PINOT to achieve IP obfuscation does not require modifying the existing DNS client/server software

Using PINOT with encrypted DNS protocols offers better privacy with little performance overhead

Real-World Deployment of PINOT at Princeton

PINOT source Code: https://github.com/liangw89/p4privacy/tree/master/pinot

Evaluation of PINOT for Do53

- Target resolver: 350+ public resolvers with both IPv4 and IPV6 support
- Query: 10 queries for random domains from Top 1M to each resolver
- Setting: IPv6 network, IPv4 network, and IPv4 + PINOT

PINOT is feasible

- DNS responses are consistent across settings
- > PINOT introduces low latency
 - Potential overhead: IPv6 and IPv4 packets take different routing paths
 - PINOT does not add extra latency in 97% of the cases

PINOT for Other Connectionless Protocols

- NTP: IPv6 host discovery and scanning
 - Single-packet protocol like DNS
- WireGuard VPN: Client IP address collection
 - Crypto-key routing allows per-packet encryption without disrupting connectivity

PINOT prevents the public NTP/WireGuard VPN servers from learning the real client IP addresses

Conclusion

- > PINOT, an in-network proxy service
- Low performance overhead
- Low deployment barriers
 - Single network
 - No modification to DNS
 - No cooperation from end-users
- A network deploy can PINOT to provide extra privacy for users as a value-added service
- > A useful building block for bootstrapping more privacy applications!

PINOT Variants

- PINOT for IPv6 network
 - Use the lowest 64 bits of IPv6 address for encryption
- PINOT for connection-oriented protocols
 - Need to maintain per-connection state
 - Work with DoH and DoT