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Abstract—The decentralized and modular architecture of open
radio access networks (O-RAN) enhances flexibility and inter-
operability but introduces significant challenges in efficiently
managing resource allocation. The disaggregation of network
functions across distributed unit, centralized unit, and RAN
intelligent controller (RIC) creates complexities in coordinating
resources across multiple network slices, each with distinct
and dynamic quality of service (QoS) requirements. Traditional
machine learning (ML) approaches for resource management
often rely on extensive offline training, which is impractical in the
highly variable and real-time environments of O-RAN systems.
This paper presents LLM-xApp, a novel large language model
(LLM)-powered xApp framework for adaptive radio resource
management in O-RAN systems. The proposed framework is
based on intelligently prompting LLM agents to dynamically
optimize resource allocation to different network slices. Experi-
mental evaluations are conducted on the OpenAI Cellular (OAIC)
platform showcasing significant improvements in average data
rates as well as the reliability of the slices, demonstrating the
potential of LLMs to enhance real-time decision-making in next-
generation wireless networks.

Index Terms—Open radio access network (O-RAN), large
language models (LLM), xApp, network slicing.

I. INTRODUCTION

The evolution of telecommunications networks from 5G
to Next-Generation (NextG) systems has introduced unprece-
dented challenges in managing highly dynamic and hetero-
geneous environments. These networks must cater to diverse
service requirements such as ultra-reliable low-latency com-
munication (URLLC), massive machine-type communications
(mMTC), and enhanced mobile broadband (eMBB), all while
maintaining exceptional efficiency, scalability, and adaptabil-
ity [1], [2]. This increasing complexity necessitates intelligent
automation to ensure optimal resource allocation and seamless
operation across these varied use cases. Machine Learning
(ML) and Artificial Intelligence (AI) have emerged as foun-
dational technologies for addressing these challenges. Their
ability to process vast amounts of real-time data and make
adaptive decisions has proven invaluable for network man-
agement, optimization, and orchestration [3]–[5]. In particular,
open radio access network (O-RAN) architectures, with their

Fig. 1: Architecture of LLM-xApp and interface with O-RAN.

disaggregated and modular design, provide a fertile ground for
integrating AI-driven solutions [6]–[8]. The RAN intelligent
controller (RIC), a key component in O-RAN, allows for the
deployment of third-party xApps that can monitor, control,
and optimize RAN operations in near-real time. Existing
xApps, such as those implemented in platforms like OpenAI
Cellular (OAIC) [9], have shown promise in tasks like secure
slicing [10] and RAN management [11]. However, leveraging
xApps for dynamically adapting RAN resources in O-RAN
slices, particularly in response to dynamic user equipment
(UE) needs [12], remains a nascent area of research.

The concept of intent-based networking is crucial in this
context. Intents represent the desired outcomes or service
requirements of UEs, such as reduced latency, increased
throughput, or optimized energy efficiency. Translating these
high-level, dynamic intents into actionable network configu-
rations is complex, particularly in scenarios with diverse and
competing service demands. Large Language Models (LLMs)
have recently emerged as a transformative technology in ad-
dressing such challenges [13], [14]. Their capabilities in under-
standing, reasoning, and generating human-like responses from
complex inputs make them well-suited for interpreting and
managing UE requirements [15], [16]. Unlike traditional rule-
based or model-specific approaches, LLMs generalize across
tasks, making them particularly effective in environments
with high variability and incomplete information. For intent-
driven resource allocation, LLMs excel at: (i) understanding
diverse and ambiguous intent expressions from UEs; (ii)
mapping these intents to actionable network configurations;
and (iii) optimizing resource allocation dynamically while
considering network constraints and priorities [17]. In this
paper, we present the first xApp powered by an LLM for
intent-driven resource allocation in O-RAN slices. The high-
level architecture is shown in Fig. 1. Our approach focuses
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on understanding UE QoS requirements expressed in real
time, translating them into precise network configurations, and
optimizing resource allocations dynamically to meet service
requirements. This framework is implemented and tested on
the open-source OAIC platform, demonstrating its feasibility
and effectiveness in managing O-RAN slice resources under
real-world conditions. The main contributions of our work are
as follows:

• We introduce a novel xApp that leverages LLMs for real-
time, intent-driven resource allocation in O-RAN slices.

• The developed LLM-xApp converts dynamic UE QoS
requirements into actionable configurations to optimize
resource utilization.

• The proposed framework is implemented and validated
on the OAIC testbed, showcasing its capability in realistic
O-RAN scenarios.

The rest of this paper is organized as follows. Section II
provides an overview of the system model and problem for-
mulation. Section III describes the design and implementation
of our LLM-powered xApp on the OAIC testbed. Section IV
presents experimental results, demonstrating the efficacy of the
proposed framework. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a 5G O-RAN system comprising two types
of UEs, each connected to a specific network slice. The
RAN system is considered to have two slices as follows:
S1, a high-priority slice with stringent QoS requirements, and
S2, a low-priority slice with more relaxed QoS demands.
The available radio resources are partitioned into physical
resource blocks (PRBs), which are dynamically allocated over
discrete reconfiguration slots, indexed by k = 1, 2, ..., during
which resource allocations are updated. Each reconfiguration
slot consists of multiple sampling periods, indexed by T =
{1, 2, 3, · · · , T}. Let S denote the set of operational network
slices, where each slice s ∈ S is allocated rsk ∈ Z

+ PRBs
at reconfiguration slot k. The total PRB resource budget R
is finite and shared among all slices, i.e.,

∑
s∈S rsk ≤ R.

The number of users connected to each slice can vary during
reconfiguration slots, affecting the experienced QoS. The QoS
for slice s in reconfiguration slot k is represented by the utility
vector: us

k = [us
k(tk), u

s
k(tk + 1), · · · , us

k (tk + τk)] ∈ Rτk
≥0,

where tk is the starting sampling period of reconfiguration
slot k, and τk denotes the number of sampling periods in slot
k. If us

k(t) < us
th for any t, the slice experiences reliability

degradation.
The utility of slice s at any sampling period t is modeled

by the QoS-aware utility function U t
s(σ̂

t
s), where σ̂t

s and σt
s

represent the measured and requested data rates, respectively.
For the high-priority slice (S1), the utility is defined as

U t
s(σ̂

t
s) =

1

1 + exp (−a (σ̂t
s − σt

s + b))
, (1)

where a and b are parameters that shape the sigmoid curve.
For low-priority slice (S2), the utility is defined as follows:

U t
s(σ̂

t
s) =

log (σ̂t
s + c)

log (σt
s + c)

, (2)

Fig. 2: LLM-driven optimization of resource provisioning in
O-RAN.

where c controls the scale of the utility. The reliability of
slice s at sampling period t, denoted by θts, is computed as
the fraction of time windows where the utility falls below the
threshold us

th. The reliability is defined as

θts =

∑t+Tw/2
τ=t−Tw/2 1[us

k(τ)≤us
th]

Tw
,

where Tw is the size of the measurement window, and 1[.] is
the indicator function.

The objective of the proposed xApp in the near-realtime
RIC is to maximize the time-averaged reliability across all
slices and sampling periods. This can be formulated as

max
rsk≥0

∑
s∈S

∑
t∈T

1

|S||T |
θts, (3)

s.t.
∑
s∈S

rsk ≤ R. (4)

The relationship between the allocated resources rsk and
the measured data rate σ̂t

s is unknown but positively cor-
related. Additionally, the number of sampling periods τk
within each reconfiguration slot k can vary dynamically. These
characteristics result in a complex and dynamic mixed-integer
optimization problem, where the optimization is constrained
by both the discrete nature of the resource allocations and the
time-varying dynamics of the system. In the following section,
we propose a novel LLM-driven approach to address these
challenges effectively.

III. METHODOLOGY

Our approach builds upon the optimization by prompting
(OPRO) methodology proposed in [18], [19], leveraging LLMs
as dynamic optimizers to address the challenge of resource
allocation in O-RAN systems. The proposed LLM-xApp iter-
atively refines resource allocation strategies through structured
meta-prompts, enabling the system to converge on solutions
that maximize QoS metrics for network slices.

A. Agent Observation, Action, and Evaluation Function

The optimization process begins with the agent observing
the system state at each reconfiguration slot k, represented by
an observation vector

ok = [σ̂tk
1 , . . . , σ̂tk

|S|, σ
tk
1 , . . . , σtk

|S|] ∈ R2|S|
≥0 . (5)

Here, σ̂tk
s represents the measured data rate for slice s over

the previous observation window, and σtk
s is the requested data
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rate. Based on this observation, the agent takes an action
Ak = [ak1 , . . . , a

k
|S|] ∈ R|S|

≥0, (6)
where aks indicates the resource allocation proportion for slice
s. The actual resource allocation rks is computed as

rks = ⌈R · aks/
∑
s∈S

aks⌉, (7)

where R is the total available resource. The agent’s evaluation
function ensures fair and reliable resource distribution while
accommodating slices with higher QoS demands. The evalu-
ation function is defined as:

Vk(ok, Ak) =
∑
s∈S

βs · g

 2

Tw

tk∑
t=tk−Tw/2

σ̂t
s − σtk

s

+ γs,

(8)
where βs is the priority weight of slice s, γs is a bias term,
and g(x) is a convex function peaking at x = 0.

B. Resource Allocation Framework for LLM-xApp

The proposed framework, illustrated in Fig. 2, iteratively
allocates resources by translating the agent’s historical ob-
servations into a meta-prompt. This meta-prompt, constructed
with task descriptions and evaluation values, guides the LLM
to generate optimal resource allocation decisions. After each
iteration, the optimization history is updated in ascending order
of evaluation values to prioritize better-performing solutions.
To avoid local minima and ensure robust learning, a decaying
temperature mechanism gradually reduces the randomness
of LLM responses over iterations. High temperatures enable
diverse exploration but may reduce accuracy, while lower
temperatures yield more deterministic outputs. Algorithm 1
outlines the detailed LLM-driven orchestration process. The
meta-prompt encapsulates three key components: an objective
description, optimization history, and formatting instructions.
Fig. 3 provides an example of this design for dynamic
resource provisioning. The meta-prompt starts with a task
description, detailing the LLM’s role in maximizing utility
through resource allocation. It includes optimization histories
with evaluation scores sorted in ascending order, enabling the
LLM to identify patterns from in-context examples. Finally,
detailed output formatting instructions specify the required
parameters and structure, ensuring the LLM’s responses are
interpretable and actionable.

IV. IMPLEMENTATION AND ANALYSIS

A. Experiment Setup and workflow

The experiments were conducted using the OAIC testbed,
an open-source platform designed to adhere to the O-RAN
architecture. The implementation framework is built on the
secure slicing xApp (SS-xApp) API [10], with modifications
to handle the creation of NodeB, UEs, and slices. For LLM
models, we use the U-M GPT [20], an API based service
that allows access to the most popular LLM models such as
GPT4. The workflow begins by initializing UEs, environment
variables, the base station (BS), and the E2 interface between
the RAN and OAIC’s near-RT RIC. Once the 5G network
setup is operational, UEs initiate communication sessions, and

Algorithm 1 LLM-Driven Dynamic Resource Management

1: Initialization:
2: Initialize system parameters: t ← 0, k ← 0, Tem0 ←

Temmax , Tem∆, Temmin , T .
3: while t < T do
4: if t = tk then
5: Construct the prompt by incorporating the his-

torical observations of the agent and their respective
evaluation values.

6: Extract action Ak based on LLM response.
7: Map actions Ak to resource allocations rks .
8: Compute the evaluation score using (8).
9: Update optimization history based on ok, Ak, and

V k
(
ok,Ak

)
10: Temk+1 ← max (Temmin , T emk − Tem∆)
11: k ← k + 1
12: Update observation ok based on the previous sys-

tem response.
13: end if
14: t← t+ 1
15: end while

the xApp is deployed. Unlike traditional setups where a UE is
bound to a single slice, we created multiple slices and assigned
each UE to a separate slice.

For the experiment, two UEs were connected to srsRAN and
assigned to two distinct slices with an initial equal allocation
of PRBs. Traffic exchange was initiated using Iperf3 [21].
One of the UEs was programmed to request a higher data
rate with an altered instruction set, significantly increasing its
resource request frequency. After the deployment of the xApp,
the system began collecting data, and the LLM agent made
periodic resource allocation decisions at each reconfiguration
slot, using historical data and environmental context. These
decisions were mapped to share values via the ssxApp API,
which determined resource allocation proportions and were
transmitted to the NodeB via E2 control messages. The
reconfiguration interval τk was determined by the response
time of the LLM and system feedback. GPT-4 was employed
as the LLM model for this experiment, with the function
g(x) = −x2. Parameter details are provided in Table I.

Parameters Value Parameters Value
γ1, γ2 2000, 2000 Temmin 0.3
Tem∆ 0.05 β1, β2 2.5, 1
azk {1, 2, ..., 128} σ1

k , σ2
k 40, 10

a, b, c 0.9, 6.5, 5 u1
th, u

2
th 0.6, 0.96

TABLE I: Experiment Parameters.

B. Results and Comparative Analysis
To evaluate the performance of the LLM-driven resource

orchestration framework, we compared it with three base-
line approaches: random allocation, equal provisioning (equal
distribution of resources between slices), and proportional
provisioning (allocation based on the UEs’ data rate requests).
Figure 4 shows the data rate evolution for both UEs in the
OAIC testbed system, starting from the initialization of the
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Fig. 3: An example of meta-prompt and LLM response for resource allocation in O-RAN.

(a) (b)

(c) (d)
Fig. 4: Comparative results of resource allocation scheme –
(a) random, (b) equal, (c) proportional, and (d) LLM Driven.

Iperf test. Initially, with limited total resources, UE1 achieved
a data rate of approximately 30 Mbps. Around the 100-
second mark, slices were created, and resources were evenly
split between them, reducing UE1’s data rate to 20 Mbps.
Upon activation of the LLM-driven resource provisioning
method, the agent adaptively adjusted resource allocations
based on performance evaluations, as shown in Figure 4d.
This highlights the method’s ability to manage resource dis-
tribution effectively. Figures 5a and 5b present the window-
smoothed utility and reliability metrics for UE1, UE2, and
the overall system, averaged across both UEs. Figures 5c
and 5d summarize the metrics over the entire measurement
period. The results demonstrate that the proposed LLM-driven
approach outperforms the baseline methods in terms of utility
and reliability for both individual UEs and the overall system,
affirming its efficiency in dynamic resource management.

(a) Smoothed System Utility (b) Smoothed System Reliability

(c) Time Averaged Utility (d) Time Averaged Reliability

Fig. 5: Comparative analysis of utility and reliability.

V. CONCLUSIONS

This paper presented a novel framework leveraging LLMs
for dynamic resource allocation in O-RAN systems. The
proposed LLM-xApp effectively integrates contextual obser-
vations and historical optimization data into meta-prompts,
enabling adaptive and efficient resource orchestration. Our ap-
proach employs an adaptive temperature mechanism to balance
exploration and exploitation, ensuring robust convergence to
high-quality solutions. The implementation and evaluation on
the OAIC testbed demonstrate the superiority of the LLM-
driven framework over traditional methods. The results high-
light significant improvements in utility and reliability metrics
for both individual UEs and the overall system. These findings
underline the potential of LLMs as dynamic optimizers in
complex, real-time resource management scenarios.
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