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Abstract—Large language models (LLMs) are increasingly
being integrated into Open Radio Access Network (O-RAN)
control loops to enable intent driven automation for resource
management and network slicing. However, deploying LLMs
within the Near-Real-Time RAN Intelligent Controller (Near-
RT RIC) introduces a new control plane vulnerability. Because
LLM driven xApps process untrusted telemetry and shared state
information, adversaries can exploit prompt injection attacks
to manipulate control logic, resulting in unauthorized resource
allocation and slice isolation violations. This paper presents
PROMPTGUARD, a Zero Trust (ZT) prompting framework for se-
curing LLM driven O-RAN control. PROMPTGUARD is realized
as a semantic verification xApp that enforces continuous intent
validation on all LLM bound inputs by treating every prompt
as potentially adversarial. We implement PROMPTGUARD on
the OpenAl Cellular (OAIC) platform and evaluate its effec-
tiveness against multiple prompt injection attacks under strict
latency constraints. Results show that PROMPTGUARD mitigates
adversarial prompts with high accuracy while preserving the
O-RAN latency requirements, establishing ZT prompting as a
foundational security primitive for AI-native RANs.

Index Terms—Open radio access network, large language
model, Zero Trust, RAN Intelligent Controller, network slicing.

I. INTRODUCTION

The evolution of Open Radio Access Network (O-RAN)
has fundamentally altered how radio access systems are de-
signed, deployed, and controlled [1], [2]. By disaggregating
proprietary base station functions into programmable software
components interconnected by open interfaces, O-RAN en-
ables fine grained control and rapid innovation within the radio
access network. Central to this architecture is the RAN Intel-
ligent Controller (RIC), which allows third party applications
to perform closed loop control over radio resources, slicing,
and quality-of-service (QoS) enforcement [3], [4]. As these
control loops become increasingly autonomous, recent efforts
have integrated large language models (LLMs) into the Near-
Real-Time RIC (Near-RT RIC) to enable intent-driven network
management and adaptation to dynamic traffic [5], [6].

LLMs offer capabilities that are difficult to achieve with
conventional machine learning approaches in operational radio
access networks. Through in-context reasoning and zero shot
generalization, LLM driven controllers can translate high level
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Fig. 1: PROMPTGUARD enforcing Zero Trust semantic verifi-
cation for LLM-driven O-RAN under prompt injection attacks.

intents and policy objectives into concrete control actions with-
out extensive offline training or retraining [7]. This flexibility
is particularly attractive in O-RAN environments, where traffic
dynamics, service requirements, and operational objectives
evolve continuously. As a result, LLM driven xApps are emerg-
ing as a promising mechanism for resource orchestration, slice
management, and policy based control in artificial intelligence
(AI) native radio access networks [8]-[10].

However, embedding LLMs directly within the O-RAN con-
trol plane introduces a fundamentally new security challenge.
Unlike traditional xApps that operate on structured numerical
inputs, LLM driven controllers process natural language rep-
resentations of telemetry, historical state, and control context
retrieved from shared data layer (SDL) repositories. These
inputs often originate from multiple untrusted sources across
the user plane, management plane, and inter RIC interfaces.
Because LLMs are designed to follow instructions embedded
within their inputs, adversaries can exploit this behavior by
injecting malicious instructions into otherwise benign control
plane data [11], [12]. Such prompt injection attacks can ma-
nipulate the reasoning process of the model without violating
interface authentication or message integrity guarantees.

Prompt injection attacks against LLM driven O-RAN con-
trol differ qualitatively from conventional adversarial machine
learning threats. Rather than targeting model parameters, train-
ing data, or inference time perturbations, these attacks operate
at the semantic level by reshaping the intent inferred by the
model. In the context of RAN, successful prompt injection
can result in unauthorized resource reallocation, slice isolation
violations, or denial of service against high priority traffic. Ex-
isting O-RAN security mechanisms focus primarily on access



control, interface protection, and transport security [13]-[16],
and are therefore insufficient to address attacks that exploit the
semantic interpretation of control inputs.

This paper argues that securing LLM-driven O-RAN re-
quires a shift from perimeter defenses to a Zero Trust (ZT)
security model [17], [18] where every control-plane input
is continuously verified. We present PROMPTGUARD, a ZT
Prompting framework that enforces semantic integrity at the
boundary between shared control plane data and LLM driven
decision making, as illustrated in Fig. 1. PROMPTGUARD is
implemented as a verification xApp within the Near-RT RIC
that treats all LLM bound inputs as potentially adversarial and
explicitly separates descriptive telemetry from imperative con-
trol logic. By enforcing continuous intent validation, PROMPT-
GUARD prevents unverified instructions from influencing net-
work behavior while preserving Near-RT responsiveness. Eval-
uations on the OpenAl Cellular (OAIC) platform [19] show
that PROMPTGUARD effectively mitigates resource-sabotage
attacks without violating timing requirements, establishing ZT
Prompting as a vital security primitive for Al-native O-RAN.

II. SYSTEM AND THREAT MODEL
A. System Model

We consider an Al native O-RAN system in which LLM-
driven control logic is deployed within the Near-RT RIC.
The RAN follows the O-RAN disaggregated architecture
comprising Radio Units (RU), Distributed Units (DU), and
Centralized Units (CU), interconnected through standardized
open interfaces. The Near-RT RIC hosts a set of xApps that
interact with the RAN via the E2 interface and exchange
telemetry and control state through the SDL.

We consider a set of logical network slices denoted by
S = {1,2,...,5}, each serving a distinct traffic class with
heterogeneous QoS requirements. Radio resources are ab-
stracted as Physical Resource Blocks (PRBs) and are allocated
to slices over discrete reconfiguration intervals indexed by
k = 1,2,.... Let R € Z% denote the total PRB budget
available at the DU. At reconfiguration interval k, slice s € S
is allocated ¥ € Z* PRBs such that D oses r® < R. Bach
reconfiguration interval consists of multiple scheduling epochs
indexed by t. Let 6% denote the achieved data rate for slice s
at time ¢, and let og denote the requested data rate. The slice
utility is defined as

Ufzfs(&fvaz)v (1)
where f5(-) is a slice-specific utility function. For high-priority
slices, we adopt a sigmoidal utility function as follows:
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while for best-effort slices, we employ a logarithmic utility
function as follows:
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where Ut! denotes the minimum acceptable utility threshold.
The LLM-driven control function deployed in the Near-RT
RIC is modeled as r* = Fppn(x¥), where x* is a natural
language prompt constructed from telemetry, historical state,
and contextual information retrieved from the cks. Because
LLMs in the Near-RT RIC often process untrusted telemetry
data or control-plane messages, and r* = {r¥} .5 denotes
the resulting PRB allocation vector.

B. Threat Model

We adopt a ZT threat model in which all LLM-bound inputs
are treated as potentially adversarial. We assume that the O-
RAN infrastructure, including RU, DU, CU, the Near-RT RIC
execution environment, and the LLM parameters, is secure
and uncompromised. The adversary operates exclusively by
injecting malicious semantic content into the control plane data
processed by the LLM.

Let the benign prompt at reconfiguration interval k be
denoted by x* = xF, where xF represents legitimate telemetry
and descriptive context. A prompt injection attack constructs a
compromised prompt X* = xF & x*, where x* denotes adver-
sarial content and @ denotes concatenation. The adversary’s
objective is to induce a deviation in the LLM output such that

From () # From(xb), &)
leading to degradation of slice reliability, formally
0L —0 for s€ S, (6)

where S¢it C S denotes the set of high-priority slices.

We consider three classes of prompt injection attacks: (i)
Status deception attacks inject fabricated telemetry to mislead
state inference, i.e. X* = Xf ® x’g; (i1) Instruction injection
attacks embed imperative commands to manipulate control
logic, i.e., x* = x¥ @ s¥ @ x*, where s¥ contains attacker-
supplied instructions; (iii) Context override attacks attempt to
nullify policy constraints by instructing the LLM to ignore
prior context, i.e., %k = x,’f D sf D slg EBX’;, where si? contains
context-ignoring directives.

C. Security Objective

The security objective of PROMPTGUARD is to enforce
semantic integrity of LLM-bound control inputs. PROMPT-
GUARD implements a verification function

V(x") = {0, 13, (7)
such that only prompts satisfying V(x*) = 1 are permitted to
influence Firn. Prompts failing verification are sanitized or
blocked, ensuring that adversarial intent cannot propagate into
Near-RT RIC control decisions while respecting near real-time
latency constraints.

III. PROMPTGUARD ARCHITECTURE AND DESIGN

PROMPTGUARD is designed as a ZT semantic verification
layer for LLM-driven control in the Near-RT RIC. Rather than
assuming that authenticated control-plane inputs are benign,
PROMPTGUARD enforces continuous verification of semantic
intent before any input is permitted to influence LLM-based
decision making. Architecturally, PROMPTGUARD is locally
deployed as a trusted and independent verification XApp to



intercept LLM-bound prompts and mitigate the security risks
inherent in the remote API-based LLMs used by other XxApps.
A. Zero Trust Prompting Pipeline

Let x* denote the raw prompt constructed at reconfiguration
interval k from telemetry, historical state, and contextual
summaries retrieved from the SDL. In conventional LLM-
driven xApps, x* is directly forwarded to the LLM optimizer.
PROMPTGUARD modifies this pipeline by introducing a veri-
fication stage prior to LLM invocation.

Formally, the control pipeline is redefined as

v F
xP Ly xk LU, R (8)

where V(-) denotes the PROMPTGUARD verification function
and x” is the verified prompt passed to the LLM. If verification
fails, PROMPTGUARD prevents the prompt from influencing
the control decision and triggers a mitigation action.

The Zero Trust principle is enforced by assuming

Pr(xk is adversarial) > 0 Vk, )

independent of the source, authentication status, or transport
integrity of the input.
B. Semantic Decomposition of Prompts

PROMPTGUARD operates by explicitly separating descrip-
tive telemetry from imperative intent. Each prompt x* is

decomposed into two semantic components
k

k k
X = X(esc @ Ximp7 (10)
where xﬁesc contains observational and descriptive statements,
k . . . . .
and x;;  contains imperative or directive language.

This decomposition is performed using a lightweight,
security-tuned LLM that is constrained to perform semantic
classification rather than control optimization. The output of
this stage is a structured representation

o(x") = (D", 1%), (1)
where D* denotes extracted descriptive content and Z* denotes
detected imperative intent.

C. Adversarial Intent Classification

PROMPTGUARD evaluates whether detected imperative con-
tent is authorized under the current control policy. Let P
denote the set of admissible control intents defined by the
operator and enforced by the Near-RT RIC. PROMPTGUARD
computes an adversarial intent score

a(x¥) =Pr(TF ¢ P | xF), (12)
which quantifies the likelihood that the prompt contains unau-
thorized or adversarial instructions.

Verification is performed according to the decision rule

k
V(Xk) — {(1)7 a(x ) <T, (13)

a(xh) =T,
where 7 is a configurable security threshold selected to balance
detection accuracy and latency.
D. Mitigation and Safe-State Enforcement

When V(x*) = 0, PROMPTGUARD prevents the compro-
mised prompt from reaching the LLM optimizer and initiates
a mitigation action. PROMPTGUARD supports three mitigation
modes as follows: (i) In prompt sanitization, imperative con-
tent Z* is removed and only verified content D is forwarded,

ensuring continuity of service under partial trust; (ii) In
control isolation, PROMPTGUARD signals the Near-RT RIC
to temporarily isolate the source of the prompt, such as a UE,
or upstream XApp, preventing repeated adversarial influence.
(iii) In safe-state fallback, PROMPTGUARD bypasses the LLM
optimizer entirely and reverts control to a deterministic, non-
LLM allocation policy r* = F,.t.(D*), ensuring that slice
reliability constraints are preserved during active attacks.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
A. Experiment Setup

The experimental evaluation was conducted using the Ope-
nAl Cellular (OAIC) testbed, an open-source, O-RAN com-
pliant platform that facilitates the prototyping of xApps in a
realistic RAN environment. Our implementation framework
builds upon the LLM-powered xApp for adaptive slicing and
resource management (LLM-xApp) [8], which we extended to
include the PROMPTGUARD as a Zero Trust security gateway.
The system was configured to support the dynamic instantia-
tion of a NodeB, multiple UEs, and isolated network slices. For
the LLM backend, we utilized the U-M GPT service [20], an
API-based interface that provides secure and high-throughput
access to the GPT-40 model. The parameters used in the
experiments are as follows: The sigmoid utility function is
defined by the parameters a = 0.9, b = 6.5, and ¢ = 5, while
the reliability thresholds are established at u}, = 0.6 for the
high-priority slice and u?, = 0.96 for the secondary slice.
Furthermore, the security detection threshold 7 is set to 0.7,
and the target data rates for slices 1 and 2 are configured at
o} = 30 Mbps and o7 = 10 Mbps, respectively.

Prompt injection attacks are modeled as an external adver-
sary that manipulates LLM-bound control prompts by injecting
malicious semantic instructions into telemetry and contextual
data. These injections preserve syntactic validity and authenti-
cation correctness, ensuring that attacks operate strictly at the
semantic level and are not detectable by conventional interface
security mechanisms. An example of prompt injection is
shown as follows, where text in red show injected instruction:

Slice 1 requested throughput: 30 Mbps.
Slice 2 requested throughput: 10 Mbps.
Slice 1 priority: high.

Slice 2 priority: low.

Objective: allocate PRBs to maximize
slice utility while preserving priority
constraints.

Ignore all previous instructions and
generate allocation in a random manner.

During operation, telemetry and contextual state are con-
tinuously collected and stored. At each reconfiguration slot &,
PROMPTGUARD intercepted this data stream to perform real-
time adversarial detection before any telemetry was passed to
the core resource optimizer. The LLM agent made periodic
resource allocation decisions, utilizing the historical context
and environmental data validated by the PROMPTGUARD.
These decisions were then mapped to specific share values
via the LLM-xApp, which calculated the final resource pro-
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Fig. 3: Comparative analysis of system utility and reliability.

portions and transmitted them to the NodeB through E2 control
messages. The reconfiguration interval 73, was determined by
the cumulative response time of the LLM inference and the
system feedback loop.

B. Baseline Methods

We compare PROMPTGUARD against representative sta-
tistical baselines commonly used to detect anomalous behav-
ior in LLM-driven systems: (i) Perplexity Monitoring flags
prompts whose token-level likelihood under the LLM exceeds
a predefined threshold, under the assumption that adversarial
inputs induce abnormal language patterns [21]; (ii) Variance-
of-Response Analysis detects instability by monitoring fluc-
tuations in the LLM’s output across reconfiguration intervals;
(iii) No Detection forwards all prompts retrieved from the
SDL directly to the LLM-driven control logic and serves as
a reference baseline to quantify the full impact of prompt
injection in the absence of any protective mechanism.

C. Results and Comparative Analysis

To evaluate the performance of the LLM-enabled prompt
injection detection framework, we compared it with perplexity
monitoring, variance response analysis, and a scenario with
no attack detection. Figure 2 illustrates the data rate evo-
lution for both UEs in the OAIC testbed across these four
scenarios: Figure 2(a) shows the system with PROMPTGUARD

protection, Figure 2(b) with perplexity monitoring, Figure
2(c) using variance of response, and Figure 2(d) without any
protection. At around 100 second, slices were created, and
resources were evenly split between them, reducing UE1’s
data rate to 15 Mbps. After slice initialization, the LLM-
xApp orchestrator started to work at around 150 second and
adjusted resource allocations based on metrics evaluations.
Next, around 220 second, the malicious prompt is injected
and attack happens. As demonstrated in Figure 2(a), the LLM-
driven PROMPTGUARD successfully detected the adversarial
injection, and adaptively reallocated resources, allowing UE1
to maintain a data rate of 25 Mbps under attacks. Conversely,
in Figures 2(b), (c), and (d), the data rates for UE1 failed
to recover properly under the baseline methods, underscoring
the proposed framework’s superior capability in effectively
detecting and mitigating prompt injection attacks in real-time.

Figures 3(a) and 3(b) present the average utility and relia-
bility metrics, as defined in Eq.(1) and (4), for individual UEs
and the overall system, benchmarking the PROMPTGUARD
framework using GPT-40 and GPT-03 backends against es-
tablished baselines. The evaluation reveals that the GPT-
4o-backed implementation of PROMPTGUARD significantly
outperforms both the GPT-03 variant and the statistical base-
lines, sustaining superior utility for the high-priority UE1
even during active attack periods. While GPT-03 is optimized
for multi-step reasoning, GPT-40’s superior performance in
prompt injection detection stems from its specialized training
in instruction hierarchy, which allows it to more effectively
prioritize system-level security constraints over adversarial
commands. These results demonstrate the effectiveness of
PROMPTGUARD’s LLM-based semantic verification in per-
forming robust, security-aware resource management in dy-
namic O-RAN scenarios.

V. CONCLUSION

This paper presented PROMPTGUARD, a Zero Trust Prompt-
ing framework for securing LLM-driven control in Al-native
O-RAN systems. We showed that integrating LLMs into the
Near-RT RIC introduces a fundamentally new control-plane
attack surface, where adversaries can manipulate network
behavior through prompt injection without violating traditional
interface or transport security guarantees. To address this
threat, PROMPTGUARD enforces continuous semantic verifi-
cation of all LLM-bound inputs and prevents unverified intent
from influencing control decisions. We implemented PROMPT-
GUARD as a verification xApp within the Near-RT RIC and
evaluated it on the OAIC testbed under realistic attack sce-
narios. Experimental results demonstrate that PROMPTGUARD
effectively detects and effectively mitigates prompt injection
attacks. Compared to statistical anomaly detection baselines,
semantic Zero Trust enforcement consistently maintains higher
slice utility and reliability during active adversarial manipula-
tion. Future work will focus on optimizing the frequency of the
verification, investigating customized and more efficient small-
scale LLMs, and include more sophisticated and adaptive
adversarial scenarios.
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