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Abstract—The current mobile network is migrating towards
a programmable, interoperable, and cloud-native architecture,
known as OpenRAN. This enables software-defined services to
be integrated as modular applications (xApps and rApps) in
a centralized RAN Intelligent Controller (RIC). While prior
research has demonstrated a few xApps on OpenRAN for
security, optimization, etc., a critical development challenge
remains. We observe that a fundamental obstacle is the
Telemetry Gap: an OpenRAN application has to acquire the
necessary analytic telemetry which may not be supported by
the corresponding RAN vendors. Unfortunately, the OpenRAN
standard does not specify how to address this challenge, and
current solutions are typically vendor lock-in, significantly
limiting their portability. To bridge this gap, we present our
preliminary work on TELERAN, a fully vendor-agnostic agent
that enables protocol-level fine-grained visibility and seamless
O-RAN integration for virtual RAN nodes at the edge by
utilizing extended Berkeley Packet Filter (eBPF). It is driven
by two synergistic cross-layer components: (1) an eBPF-based
programmable filter that brings in universal and efficient cellular
packet filtering at the OS kernel level, and (2) a user-space parser
that reconstructs packet semantics based on ASN.1 specifications,
enabling operators to customize and program various RAN
telemetry. We have implemented a prototype of TELERAN,
demonstrating that its seamless integration to two leading open-
sourced RAN implementations, OpenAirInterface and srsRAN,
with zero source code modification. We also show that TELERAN
can be programmed for a wide range of telemetry types for both
performance and security analytics, further supporting diverse
xApp use cases on OpenRAN.

I. INTRODUCTION

Cellular networks are the backbone of modern wireless
communication, playing an integral part in numerous
applications from transportation and entertainment to manu-
facturing and healthcare. In recent years, the next-generation
cellular network is moving towards a software-defined and
interoperable architecture, which is considered a major
breakthrough over the legacy cellular infrastructures. Such an
innovative architecture, also known as Open Radio Access
Network or OpenRAN [6]. It disaggregated the monolithic
base station into Centralized Units (O-CU) and Distributed

Units (O-DU), and decouples the network control logic into
a centralized network controller called the RAN Intelligent
Controller (RIC) that can be enriched with programmer-
defined “plug-n-play” xApps and rApps [3]. This further
brings tremendous flexibility and programmability to mobile
networks, improving it from various aspects including
intelligence, resilience, and security.

However, there exists a critical telemetry gap between
OpenRAN application developers and Radio Access Network
(RAN) vendors, which hinders OpenRAN adoption in the
industry. Specifically, the telemetry gap refers to the challenge
for the OpenRAN apps to obtain the required telemetry to
perform the analysis, which may not match what the connected
RAN actually offers. Unfortunately, the OpenRAN standard,
specifically the E2 service models (E2SMs) [3] only specifies
how telemetry should be reported through the E2 interfaces
(via E2SM-KPM [4]), while the telemetry collection is solely
implemented by the RAN software vendors. To fill this gap,
the mobile network community has proposed solutions for
realizing programmable and dynamic telemetry for OpenRAN
networks [14, 16, 21, 23, 28, 32]. However, we observe
that these solutions fall short as they either require intrusive
modifications to the RAN implementations or rely on vendor-
specific interfaces to code telemetry generation logic. These
drawbacks limit their adoption in complicated 5G deployment
in practice, where 6G system integrators may employ multi-
vendor RAN solutions, which do not allow modification,
recompilation, or reboot during operation.

To bridge this gap, we present TELERAN, the first vendor-
agnostic OpenRAN data plane agent, which can generate and
report fine-grained and programmable data telemetry to the
OpenRAN control plane. The key idea of TELERAN is to
apply introspection, a common cybersecurity technique for
monitoring the run-time status of virtual machines by using
an external program. We migrate this concept to the cellular
network domain, enabling it to reconstruct and generate
dynamic telemetry of a 5G or 6G RAN, by leveraging its
exposed information from standard cellular network interfaces
available to the host. The design of TELERAN involves non-
trivial technical challenges: (1) how do we efficiently extract
desired telemetry from large-volume network traffic? (2) how
do we reconstruct cellular packet semantics from raw traffic?
(3) how do we design mechanisms to generate vendor-agnostic
and standard-compliant cellular telemetry?
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Contributions. TELERAN addresses these technical chal-
lenges by employing novel designs, including a kernel-based
efficient packet filter using the Extended Berkeley Packet
Filter (eBPF) [15], and a user-space parser that utilizes
only 3GPP’s ASN.1 specifications as guidance to reconstruct
packet semantics for telemetry extraction [10, 12, 13]. These
enable several critical benefits. First, it makes TELERAN
non-intrusive, indicating that it operates independently outside
the native RAN and does not require any modification and
recompilation of the RAN software. Second, TELERAN is
vendor-agnostic as it only requires standard-level knowledge
as guidance, which makes it fully decoupled from proprietary
vendor implementations compared to similar frameworks
like Janus [16]. This makes TELERAN a “one-size-fits-all”
solution that works on any 3GPP-compliant network vendor.
Furthermore, the eBPF-based filter ensures efficient, low-
latency packet processing at the kernel level, minimizing the
impact on performance-critical RAN nodes. By leveraging
the eBPF verifier to guarantee kernel stability and prevent
system crashes, TELERAN maintains security and broad
compatibility across general-purpose Linux servers.

We conducted a lightweight evaluation using a simulated
cellular testbed built on OpenAirInterface (v2.1.0) and
OpenRAN SC RIC (I-Release). Our results demonstrate that
TELERAN introduces minimal system overhead to the RAN,
maintaining a <1ms control-plane packet processing latency,
with peak resource consumption under 4% of a single i5-13500
CPU core and a memory footprint of 11MB. Looking ahead,
we expect TELERAN to provide a fully vendor-agnostic and
extensible solution to bridge the gap between OpenRAN app
and Open CU, DU (OCUDU) [17] developers, further enabling
numerous opportunities for innovative OpenRAN applications.

II. MOTIVATION

The practical adoption of OpenRAN faces a fundamental
challenge: the telemetry gap between the application
developers and RAN providers. The fragmented RAN
implementations introduce poor extensibility and portability,
as they typically extract telemetry data by directly accessing
vendor-specific internal data structures and proprietary
APIs [7]. Consequently, this fragmentation and the resulting
development overhead hinder the interoperability promised by
OpenRAN. In the following, we discuss the alternative and
existing solutions that could be utilized to address this issue.
Generic Network Packet Parser. There are user-space
packet dissectors and parsing tools such as libpcap [30],
tcpdump [19], and tshark (or dumpcap) [36], some of which
are capable of dissecting ASN.1 encoded cellular packets.
While these can be alternative solutions, we argue that
TELERAN’s design has two unique advantages. First, the
aforementioned parsing tools incur high performance overhead
due to frequent context switches, which impacts the real-
time data transmission for the 6G RAN. For instance, our
experiment shows that running dumpcap to monitor the F1AP
interface brought significant latency overhead and caused a UE
to disconnect. To mitigate performance issues, TELERAN’s
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Figure 1: A detailed design view showing TELERAN’s
internal architecture and workflow.

eBPF-as-a-filter approach significantly reduces overhead as
packets are filtered and mirrored at the OS kernel level without
affecting normal traffic flow.

Open-sourced RAN Agents. The FlexRIC agent [28] and
ONOS E2 agent [1] are two open-sourced implementations
dedicated to certain RAN and RIC frameworks. They support
several E2 service models and xApps such as E2SM-KPM [4]
and RAN Control (RC) xApps [5]. Unfortunately, both agents
require extensive instrumentation in the RAN source code,
introducing deep dependence on vendor-specific APIs and data
structures. Moreover, these agents typically support only a
small set of telemetry that does not fulfill the requirement
for most RIC xApps, such as those recently developed
in the security context that typically require fine-grained
information [20, 27, 29, 33].

Janus. As a closely-related framework, Janus [16] also
supports dynamic RAN telemetry. Its key components are
known as the Janus codelets, which are eBPF-like user-
space programs implementing custom telemetry collection
and control logic. From its design, we notice that Janus’s
programmability is not fully decoupled from the vendor
implementations, as it relies on hooks that are attached to
key interfaces and locations within the RAN code stack.
As in practice, RAN software is extremely complex and
fragmented [7, 18], which makes it costly to adapt Janus
to various vendors. Janus’s design indicates its users have to
program on top of vendor-defined functions and parameters.
Its user-space instrumentation may also incur performance
overhead for latency-sensitive RAN nodes.

III. SYSTEM DESIGN

To overcome the limitation with legacy static instrumen-
tation, we introduce TELERAN, a vendor-agnostic agent
designed to operate alongside black-box, cloud-native RAN
and Core workloads (e.g., O-DUs and O-CUs). As illustrated
in Figure 1, TELERAN employs a synergistic cross-layer
architecture: it combines an efficient OS kernel-level eBPF
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filter to identify relevant traffic with a user-space parser that
reconstructs protocol semantics, enabling the programming of
customizable telemetry. TELERAN relies solely on a standard
Linux environment and 3GPP compliance. By leveraging
eBPF [15], it injects dynamic, programmable probes into
the kernel’s high-performance network datapath without
requiring proprietary source code access, binary modifications,
or system reboots. This architecture further integrates an
independent agent to bridge arbitrary RAN implementations
with OpenRAN xApps and rApps, effectively democratizing
security analytics across heterogeneous infrastructure. The
specific design of these core components is detailed below.

eBPF-Based Cellular Packet Filters. The restricted execution
environment of the Linux kernel layer precludes the
decoding of complex cellular packets encoded with ASN.1
syntax. Consequently, TELERAN employs lightweight eBPF
programs to efficiently filter RAN packets directly at the OS
kernel level and offload them to user space, which only incurs
<1ms of control-plane packet processing latency for the RAN
according to our evaluation within a 5G SA testbed. These
eBPF programs instrument critical network data paths to parse
raw packet structures and mirror selected packets for cellular-
specific processing in user space. Specifically, we leverage the
eXpress Data Path (XDP), a high-performance programmable
data path available in Linux kernels since version 4.8. XDP
enables the filter to intercept and process traffic on critical 5G
interfaces such as F1AP and NGAP that contain essential data
for RAN and device analytics [10, 11].

As illustrated in Figure 2a, the eBPF filter logic operates
by inspecting packet headers. In this example, we utilize
standard Linux kernel libraries and helper APIs to recognize
SCTP packets to identify F1AP packets that carry UE to base
station traffic. Similarly, general-purpose protocols, including
Ethernet, UDP, TCP, and IP, are recognized and parsed at
the kernel layer, allowing for the effective extraction of
encapsulated content destined for higher layers. Once a target
RAN packet is identified, it must be forwarded to user space
for analysis, as the kernel lacks the necessary libraries for
complex ASN.1 decoding. To facilitate this, we employ eBPF
maps, a shared memory mechanism that bridges kernel and
user space. The kernel-side filter stores the relevant RAN
packet payloads into these maps. User-space applications
subsequently retrieve the data using standard library functions,
such as bpf_map_lookup_elem in libbpf.

Specification-Guided Semantics Reconstruction. A sig-
nificant challenge in our design is the semantic gap, as
filtered network packets consist of raw byte sequences without
structural context. To bridge this gap, our framework must
reconstruct the packet semantics, specifically the protocol
structures and field values. We employ a vendor-agnostic
approach to achieve this reconstruction in user space. Our
methodology leverages the standardized RAN interfaces
defined by 3GPP specifications, which describe packet
structures using ASN.1 [10, 11, 13]. These definitions can
be automatically compiled into source code using off-the-

SEC("xdp") // Define the eBPF XDP program
int ebpf_filter(struct xdp_md *ctx) {

void *data = (void *)(long)ctx->data; // Get packet data
void *data_end = (void *)(long)ctx->data_end;
...
// Check if the IP packet is an SCTP packet
if (iph->protocol == IPPROTO_SCTP) {

struct sctphdr *sctp = (struct sctphdr *)(iph + 1);
if ((void *)sctp + sizeof(*sctp) > data_end)

return XDP_PASS; // Boundary check
...
// Check if the packet is F1AP over SCTP
if (proto_id == SCTP_F1AP_ID)

// Mirror packet to eBPF maps
bpf_map_update_elem(&map, &key, &packet, BPF_ANY)

}
return XDP_PASS; // Pass the packet to user space

}

(a) A simplified kernel-level eBPF filter to identify and offload
F1AP packets to user space parsers via eBPF maps.
void process_rrc_ul_dcch(UL_DCCH_Message_t *ul_dcch_msg) {

// Parsing RRC Setup Complete Message
if (ul_dcch_msg->message.choice.c1->present ==
UL_DCCH_MessageType__c1_PR_rrcSetupComplete) {

// Updating KPM counter: RRC Successful Conn
update_telemetry_cntr("RRC.ConnEstabSucc", 1);
// Extract the UE TMSI from message
uint64_t tmsi = str2int(&ul_dcch_msg.ng_5G_S_TMSI)
update_telemetry("s_tmsi", ueid, tmsi); }

}

(b) A simplified user-space telemetry extractor code snippet
programmed on top of ASN.1-decoded data structures.

Figure 2: Example filter and telemetry extraction code of
TELERAN, working universally across vendors.

shelf tools such as the ASN1C translator [31]. We utilize
these generated artifacts to build modular plugins that facilitate
the precise parsing of RAN interface packets. Crucially, this
approach decouples the parsing logic from proprietary vendor
implementations, ensuring that semantic reconstruction relies
strictly on authoritative standards.

Protocol-Aware Telemetry Extraction. Building upon
the reconstructed semantic context, TELERAN instantiates
specialized handlers tailored to specific protocol families. As
demonstrated in Figure 2b (which depicts a handler for RRC
Uplink DCCH messages), telemetry extraction logic is embed-
ded directly within these handlers and executes on a per-packet
basis. To streamline data aggregation, the framework exposes
a suite of helper APIs. The update_telemetry_cntr
function is designed to manage global counters, facilitating
efficient Key Performance Measurement (KPM) collection.
Conversely, update_telemetry captures granular, packet-
specific attributes, such as recording the Temporary Mobile
Subscriber Identity (TMSI) for individual User Equipment
(UE) tracking. For the final stage of telemetry reporting,
TELERAN incorporates an autonomous E2/O1 agent. This
agent aggregates the extracted metrics and transmits them
to the OpenRAN RIC or Service Management and
Orchestration (SMO) [2] that hosts xApps and rApps via
OpenRAN compliant interfaces such as E2AP [3] and E2SM-
KPM [4]. Strict adherence to these standards ensures seamless
interoperability with any OpenRAN RIC platforms.
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Telemetry Category Handler LoC
UE C-RNTI Metadata F1AP 37
UE S-TMSI Metadata RRC 45
UE Cipher Algorithm Metadata RRC 35
UE Integrity Algorithm Metadata RRC 35
UE RRC State State RRC 169
UE NAS State State NAS 89
UE RRC Security State State RRC 169
UE NAS Security State State NAS 89
RRC Message ID State RRC 40
NAS Message ID State NAS 41

Table I: Security telemetry reproduced in TELERAN and
the lines of C code taken to implement them.

KPM Type Handler LoC Source
RRC.ConnEstabAtt CC RRC 16 5.1.1.15.1
RRC.ConnEstabSucc CC RRC 16 5.1.1.15.2
RRC.ConnEstabFailCause CC RRC 16 5.1.1.15.3
RRC.RelWithoutSuspendConfig CC RRC 16 5.1.1.15.4
UECNTX.ConnEstabAtt CC NAS 16 5.1.1.16.1
UECNTX.ConnEstabSucc CC NAS 16 5.1.1.16.2
RRC.ReEstabAtt CC RRC 16 5.1.1.17.1
RRC.ReEstabSuccWithUeContext CC RRC 16 5.1.1.17.2
RRC.ResumeAtt CC RRC 16 5.1.1.18.1
RRC.ResumeSucc CC RRC 16 5.1.1.18.2
RRC.ConnMean SI RRC 66 5.1.1.4.1
RRC.ConnMax SI RRC 78 5.1.1.4.2
RRC.InactiveConnMean SI RRC 66 5.1.1.4.3
RRC.InactiveConnMax SI RRC 78 5.1.1.4.4

Table II: 3GPP Key Performance Measurement (KPM) [8]
telemetry reproduced in TELERAN.

IV. SECURITY APPLICATIONS

Rogue Base Station Detection. Rogue base stations, such
as IMSI catchers, threaten cellular security by impersonating
legitimate infrastructure to intercept traffic or disrupt
service. Detection typically relies on identifying protocol-level
inconsistencies at the cellular control plane [25]. Specifically,
RRC Measurement Reports (e.g., RSRP, RSRQ) used for
periodic mobility management of UEs offer a strategic vantage
point for detection [24, 26]. By aggregating these reports,
the network can detect anomalies like implausible signal
gradients, inconsistent neighbor relationships, or impossible
cell locations. Cross-UE correlation and temporal analysis
further allow the system to distinguish malicious infrastructure
from benign radio fluctuations.

Protocol-based Attack and Anomaly Detection. Protocol-
based detection focuses on identifying attacks and misbehavior
by monitoring control-plane message sequences and state
transitions in cellular protocols. Table I lists the security
telemetry that is captured by the TELERAN implementation,
which have been used by prior studies to detect runtime
cellular control plane attacks [27, 33–35]. For example,
tracking temporal RRC and NAS message IDs enables the
detection of out-of-order message sequences, such as signaling
storms initiated with fabricated RRC connection requests [22].
Additionally, monitoring ciphering and integrity protection
algorithms allows the system to identify runtime security
violations, such as bidding-down or algorithm downgrade
attacks targeting specific UEs.

Key Performance Monitoring. Key Performance Monitoring
(KPM), standardized in 3GPP TS 28.552 [8], defines a set of
performance metrics for monitoring RAN behavior, including
connection establishment success rates, re-establishment
attempts, and connection duration statistics. While originally
intended for performance management and troubleshooting,
these metrics provide valuable security signals. Sudden shifts
in connection failures, abnormal increases in re-establishment
attempts, or divergence between expected and observed
success ratios may indicate ongoing attacks, misconfigura-
tions, or rogue infrastructure interference. Integrating KPM
with security analytics enables lightweight, operator-friendly
anomaly detection that complements fine-grained protocol
and radio-level monitoring. Table II summarizes the KPM
telemetry that is captured by the TELERAN implementation

V. CONCLUSION AND FUTURE WORK

We presented TELERAN, a novel framework addressing
the fundamental telemetry gap in OpenRAN. By decoupling
packet inspection from proprietary vendor implementations,
TELERAN provides a fully vendor-agnostic, protocol-level
visibility layer without modifications to existing source code.
We envision three primary directions for future research:
• Encrypted Traffic Analysis: While TELERAN currently

operates on cleartext interfaces, production 6G networks
heavily utilize encryption. For kernel-level encryption (e.g.,
IPSec) [10, 11], advanced eBPF hooks at the Traffic Control
(TC) layer can be utilized to intercept packets before
encryption. For user-space encryption (e.g., PDCP and NAS
layers [12, 13]), it requires instrumentation at cryptographic
libraries to capture plaintext data before encryption or
after decryption, such as via eBPF’s uprobes and other
userspace monitoring solutions [37].

• Privacy and Security Hardening. Since TELERAN
exports plain-text control-plane telemetry, future work will
focus on hardening the kernel-to-user space data path. While
the current prototype relies on native Linux restrictions to
protect eBPF maps, further integration of Trusted Execution
Environments (TEE) could enforce strict isolation. These
mechanisms would ensure that sensitive telemetry remains
inaccessible to unauthorized processes, granting exclusive
access to the authenticated TELERAN user-space agent.

• Expansion to Open Fronthaul: We intend to extend
our protocol coverage beyond the F1 and NG interfaces
to include the Open Fronthaul (OFH) [9]. This involves
developing parsers for eCPRI and precise Ethernet-based
transport protocols, enabling TELERAN to detect fronthaul-
specific threats and synchronization anomalies.

ACKNOWLEDGMENT

This research was supported by a Small Business Innovation
Research (SBIR) Phase I award N6893625C0023 from the
Naval Air Warfare Center, the NSF convergence accelerator
program under award ITE-2326882, and CNS-2112471.

4



REFERENCES

[1] Sdran. https://docs.sd-ran.org/master/introduction.html.
[2] O-ran.wg1.tr.decoupled-smo-architecture-r004-v03.00: O-ran decoupled

smo architecture 3.0, October 2024.
[3] O-ran.wg3.ts.e2ap-r004-v08.00: O-ran e2 application protocol (e2ap)

8.0, October 2025.
[4] O-ran.wg3.ts.e2sm-kpm-r004-v07.00: O-ran e2 service model (e2sm)

kpm 7.0, October 2025.
[5] O-ran.wg3.ts.e2sm-rc-r004-v09.00: O-ran e2 service model (e2sm), ran

control 9.0, October 2025.
[6] O-ran alliance. https://www.o-ran.org/, Jan 2026.
[7] oai / openairinterface5g. https://gitlab.eurecom.fr/oai/

openairinterface5g, Janurary 2026.
[8] 3GPP. 5g performance measurements. https://www.3gpp.org/

DynaReport/28552.htm, Janurary 2026.
[9] 3GPP. Ng-ran architecture description. http://www.3gpp.org/

DynaReport/38401.htm, Janurary 2026.
[10] 3GPP. Ng-ran f1 application protocol (f1ap). http://www.3gpp.org/

DynaReport/38473.htm, Janurary 2026.
[11] 3GPP. Ng-ran; ng application protocol (ngap). http://www.3gpp.org/

DynaReport/38413.htm, Janurary 2026.
[12] 3GPP. Non-access-stratum (nas) protocol for evolved packet system

(eps). http://www.3gpp.org/DynaReport/24301.htm, Janurary 2026.
[13] 3GPP. Radio resource control (rrc). http://www.3gpp.org/DynaReport/

38331.htm, Janurary 2026.
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