
Assessing Supply Chain Risks in 5G O-RAN
Components Using Static Analysis

Himashveta Kumar1 Tianchang Yang1 Arupjyoti Bhuyan2 Syed Rafiul Hussain1

1The Pennsylvania State University 2Idaho National Laboratory
hkk5340@psu.edu, tzy5088@psu.edu, arupjyoti.bhuyan@inl.gov, hussain1@psu.edu

Abstract—The emergence of the 5G Open Radio Access Net-
work (O-RAN) architecture introduces increased flexibility and
modularity to cellular networks, but its sudden shift toward
software-centric and multi-vendor deployments also expands the
software supply chain (SSC) attack surface, which is particularly
concerning given the critical role of 5G infrastructure. SSC
vulnerabilities can lead to severe consequences, including service
disruption, unauthorized backdoors, and code injection. In this
work, we systematically identify and analyze SSC vulnerabilities
in O-RAN RAN Intelligent Controller, which performs latency-
sensitive edge control and optimization in 5G networks. Us-
ing static analysis tools, we evaluate production-grade O-RAN
components primarily implemented in Go and find 57 security-
relevant issues after manual validation. We highlight key limita-
tions of off-the-shelf analyzers, quantify false-positive results, and
contextualize identified risks within O-RAN deployments. Our
findings emphasize the need for improved SSC security practices
tailored to O-RAN systems.

I. INTRODUCTION

To meet 5G’s demands of high bandwidth, low latency,
and massive device connectivity, the Open Radio Access
Network (O-RAN) architecture has been proposed [1]. O-
RAN introduces software-defined control and open interfaces
to increase flexibility and interoperability among radio compo-
nents, enabling multi-vendor support, reduced costs, and rapid
development and deployment cycles. However, this openness
and software-centric design also expand the attack surface,
exposing O-RAN systems to critical software security threats
such as memory safety violations, remote code executions,
logical vulnerabilities such as authentication bypass, and ser-
vice degradation [2]–[4]. In this work, we focus on security
risks introduced through the software supply chain (SSC) [5]–
[8], which remain under-examined in O-RAN due to complex
inter-component interactions, deep dependency chains, and
fragmented build and deployment pipelines. SSC vulnera-
bilities could arise from poor coding practices, developer
oversights, or malicious backdoors [5]–[7] and lead to severe
consequences [6], [7], including system crashes and remote
code execution. As 5G and O-RAN are increasingly adopted to

support critical communication systems [9], [10], the need for
rigorous supply chain risk management to ensure the security
and resilience of 5G systems is further emphasized [11].

Static program analysis enables early identification of vul-
nerabilities without requiring code execution or reliance on
observed runtime behavior. While dynamic analysis is also
effective in detecting vulnerabilities in mobile RAN [4], [12]–
[14], its reliance on deployment-dependent testbeds, realistic
message traces, and complex orchestration makes it less suit-
able as a lightweight check that can be integrated into daily
development pipelines. Conversely, static analysis scales well
to large and deeply nested dependencies and is more readily
applicable across evolving, multi-vendor O-RAN ecosystems.

In this work, we apply static analysis tools to 12 O-
RAN RAN Intelligent Controller (RIC) components, which
are central to intelligent edge control of RAN nodes and
radio resources, covering both platforming components and
xApps. Security issues in the RIC can propagate to other
RAN elements, including Distributed Units (O-DUs) and
Centralized Units (O-CUs) via the E2 interface, amplifying
their potential impact. Most open-source O-RAN implemen-
tations are written in Go, which is widely adopted for its
memory-safety properties and cloud-native support. However,
prior work has shown that Go ecosystems remain susceptible
to software supply chain vulnerabilities, particularly through
third-party dependencies [15]. Rather than aiming to discover
new vulnerabilities through fuzzing [4], [14] or other testing
techniques [12], [13] that require extensive harnessing and
deployment-specific setup, we focus on identifying supply
chain risks arising from known vulnerability patterns and
vulnerable dependencies using readily available static check-
ers. We apply Go-specific static analysis tools [16]–[18] to
production-grade O-RAN codebases [19], [20], uncovering 57
valid security-relevant issues alongside 65 false positives that
introduce significant noise for operators. Our goal is not to
survey static analysis tools, but to provide a manually validated
empirical characterization of their precision and failure modes
on O-RAN RIC codebases. Based on these findings, we
highlight the need for O-RAN-specific context and CI/CD
integration to improve the precision and operational usefulness
of static supply chain security analysis.

To summarize, we make the following contributions.
• We present a manually validated empirical evaluation of

four widely used static analyzers on production-grade O-

Workshop on Security and Privacy of Next-Generation Networks
(FutureG) 2026
23 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-9-7
https://dx.doi.org/10.14722/futureg.2026.23070
www.ndss-symposium.org



RAN Near-RT RIC repositories.
• We quantify precision gaps across tools and identify key

sources of false positives in real RIC codebases, high-
lighting practical limitations of generic static analysis.

• Based on these insights, we derive actionable implica-
tions for O-RAN CI/CD security testing, arguing that
reachability- and repository-structure-aware scanning are
key requirements for effective O-RAN hardening.

II. BACKGROUND AND RELATED WORKS

O-RAN disaggregates the traditionally monolithic RAN into
modular components connected by standardized interfaces
(Figure 1), enabling interoperability and rapid feature deliv-
ery [1]. RAN Intelligent Controllers (RICs) provide software-
defined control and optimization at the network edge through
modular applications (xApps/rApps) [21]. This openness ex-
pands the software supply chain (SSC), as each component
depends on direct and transitive third-party packages and
multi-vendor applications, making dependency compromise
and vulnerable updates critical security threats [6], [7].
Prior works. Prior work explains why SSC threats are preva-
lent and hard to detect at scale in various domains [5]–[8],
[22]–[28]. Empirical evaluations show static analyzers often
have uneven coverage and high false-positive rates, requiring
extensive manual validation [29]. In the cellular domain, most
prior systems [4], [12]–[14] focus on discovering new vulner-
abilities through domain-informed dynamic or specification-
aware analysis. In contrast, our work targets software supply
chain risk by identifying known vulnerability patterns and
dependency-related issues in real RIC codebases. In O-RAN
components, Thimmaraju et al. identify security issues from
deployment and interface configurations [30]. This work is
orthogonal, as we focus on SSC risk introduced through third-
party dependencies and multi-vendor components.

Non-Real-Time RIC 

O1 Termination Near Real Time RIC

...

E2 Termination (E2T)

Internal Messaging Infrastructure

E2 Management Conflict
Mitigation

Shared Data
Layer (SDL)

O-DU

E2 Interface

Subscription
Management

RAN

A1 Interface

xApp 1

O-CU O-RU

A1 Termination

Security

Service Management and Orchestration System (SMO) 

xApp 1 xApp 1

Fig. 1: O-RAN architecture

III. ANALYSIS OVERVIEW

A. SSC Analysis Challenges in O-RAN

O-RAN’s multi-vendor, modular architecture significantly
amplifies software supply chain (SSC) risk. The complex inter-
dependencies and control-plane interactions among compo-
nents further enable faults or malicious behaviors to propagate
to RAN nodes and end users [6], [31]. Detecting SSC issues

TABLE I: Static analysis tools evaluated

Tool Focus Mechanism Key Limitation

Staticcheck [18] correctness/quality SSA/control-flow not security-specific
Govulncheck [16] dependency CVEs import/reachability only known CVEs
Gosec [17] security patterns AST/rule-based context-limited; FP-prone
CodeQL [33] semantic code

scanning
queries + taint/-
dataflow

build/extraction + context
still required

in O-RAN systems, however, is challenging due to strong
context dependence and ecosystem heterogeneity. Malicious or
vulnerable behaviors are only exploitable under specific calling
paths, configurations, or deployment modes, while static anal-
ysis tools that ignore calling context and function semantics
often generate excessive false positives (§V-C2). Furthermore,
the multi-repository, dependency-heavy RIC ecosystems re-
quire manual, context-aware validation to interpret findings in
realistic RIC workflows [6], [32].

B. Evaluated Static Analysis Tools

We use 4 complementary Go tools to balance SSC cov-
erage and precision (Table I): (i) govulncheck [16] for
known-vulnerability reporting with call-graph reachability; (ii)
gosec [17] for security anti-pattern detection via AST/rule-
based analysis; (iii) staticcheck [18] for correctness and
quality issues that can become security-relevant; and (iv)
CodeQL [33] to identify program anti-patterns, dataflow vul-
nerabilities, and non-Go issues (e.g., C/C++ calls in Go).

IV. METHODOLOGY

A. Target Components and Scope

We choose Go-based RIC services, SDKs, and xApps from
two commercially-adopted [34], [35] open-source O-RAN
systems: the O-RAN Software Community (OSC) [19] and
ONOS SD-RAN [20] (Table IV in Appendix).

B. Tool Execution

For each repository, we (i) resolve Go module dependen-
cies (when possible); (ii) execute the static analyzers using
recommended/default configurations; and (iii) record each
analyzer’s per-component output. Example outputs for each
tool are shown in Listings 1, 2, 3 and 4. Repositories that fail
dependency resolution, build steps, or result in analysis errors
for a given analyzer are discarded. Details on tool execution
failures are summarized in Appendix A.

C. Manual Classification

Previous studies show vulnerability scanning produces sig-
nificant false alerts [29], [30] (e.g., due to the tool’s over-
approximation). We manually label each alert as:

• True Positive (TP): a valid issue with a plausible ex-
ploitation path or SSC risk in realistic O-RAN execution.

• False Positive (FP): non-exploitable, test-only, or un-
reachable issues that do not lead to true exploitation.

Additional details on our manual labeling methodology are
provided in Appendix B.

2



V. RESULTS

A. Findings and Results Breakdown

We present a sample output for each evaluated tool in
Appendix G. Across the 4 evaluated tools, we collected 136
total findings, as summarized below:
Govulncheck: 39 total (22 TP and 17 FP). Findings primarily
correspond to known dependency vulnerabilities with par-
tial reachability evidence, including denial-of-service patterns
(e.g., panics) and HTTP/2 resource-exhaustion risks [36],
[37]. In several cases, the same advisory appeared in both
a reachable (TP) and a non-reachable/test-only (FP) context.
Overall, govulncheck had the highest precision among the
tools in our dataset.
Staticcheck: 15 total (4 TP and 11 FP). In general, static-
check flagged mostly those items related to maintainability or
correctness issues (e.g., dead/test-only code, ineffective assign-
ments, or minor misuse of the API). A TP label is assigned
only to the subset of findings deemed to have operational or
SSC impact (i.e., deprecated/insecure APIs or configuration
mistakes), whereas the FPs were style/refactoring-oriented
issues that were not exploitable.
Gosec: 68 total (31 TP and 37 FP). The dominant FP drivers
were benign/test-only paths and missing deployment reachabil-
ity/context, while TPs mostly reflect TLS/config issues, unsafe
file permissions, and input-handling anti-patterns [17], [38].
CodeQL: 14 total (1 TP and 13 FP). Most FPs were test-
only, debug-only, or not reachable in production call paths.
Several of these FPs match gosec findings (notably TLS
InsecureSkipVerify discussed in Appendix C and in-
teger conversion patterns), indicating that the same recurring
anti-patterns drive false alarms across tools. The remaining
alert is a request-forgery finding (CWE-918) flagged by Cod-
eQL’s go/request-forgery check [39].

Most of the TP counts concentrate in control-plane com-
ponents (e.g., onos-rsm), while also appear in policy/con-
trol (e.g., onos-a1t, onos-topo, onos-ric-sdk-go)
around TLS configuration and file handling [40]–[43]. Results
are summarized in Figure 2 (Appendix).

B. Overlap Analysis

Overlap reports between the evaluated tools were limited,
as each tool aims at detecting distinct classes of issues.
In practice, govulncheck provided the highest precision
for known, dependency-reachable vulnerabilities, gosec pro-
vided the broadest coverage but with higher noise (FP alerts),
and staticcheck helped flag correctness and dead/test-only
code that reduced false alarms during manual triage. CodeQL
corroborated many of the results from gosec with some code
patterns beyond Go-specific linters (e.g., C/C++ issues), but
in general, it produced very low precision and required more
manual validation to filter false positives.

C. Case Studies

Below, we present case studies of representative true and
false alerts reported by evaluated tools. Additional false posi-
tive cases are included in Appendix C.

1) Representative True Positives:
a) Index Panic (DoS) - onos-pci [44]: Using

govulncheck, we identified an index-out-of-range
panic in asn1.BitString.GetLen(), which reads
bs.Bytes[0] without checking length. When malformed
ASN.1 inputs induce an empty slice, the handler can panic
and crash the onos-pci process, enabling denial-of-service.
onos-pci depends on onos-lib-go@v0.10.24, which
predates a guard fix; upgrading to a version that includes
commit 55579ff mitigates this issue.

b) gRPC HTTP/2 CONTINUATION Flood (DoS) -
ric-sdk [43]: govulncheck reports that ric-sdk
depends on golang.org/x/net@v0.8.0, vulnerable
to HTTP/2 CONTINUATION-flood denial-of-service
(GO-2024-2687 [45], [46]). The risk is relevant for
gRPC-facing modules and is mitigated by upgrading to
v0.23.0 or later, which enforces frame limits.

2) Representative False Positives:
a) Weak Crypto Primitive (MD5) Used Non-

Cryptographically - onos-a1t [41]: gosec reports
a G401 (CWE-328) warning for MD5 usage in
pkg/rnib/rnib.go. Manual inspection showed MD5
is used for deterministic identifier generation rather than
cryptographic integrity and therefore is not impacted by the
weak cryptographic guarantee of MD5.

b) Dependency Present but Not Runtime-Reachable
- SD-RAN sdran-in-a-box [47]: In SD-RAN’s
sdran-in-a-box, govulncheck reports a
containerd vulnerability because the module appears
in the dependency graph. Manual inspection indicates the
references occur only in deployment/test helpers (e.g.,
Helm/Kubernetes orchestration) without reaching the
vulnerable containerd code.

c) Error String Capitalization (ST1005)
- onos-topo [42]: In onos-topo,
staticcheck reports an ST1005 warning in
pkg/northbound/service.go:221, indicating that an
error string begins with a capital letter, which violates Go’s
error formatting convention. This is just a style-only issue
that does not affect control flow, security properties, or SSC
exploitability. While it is not a security issue, it introduces
unnecessary noise and could flood the security alerts.

VI. DISCUSSION

A. Key Observations

We summarize the precision evaluation across tools in
Table II. govulncheck is the most precise tool in our setting
because it ties known vulnerabilities to dependency usage with
(partial) reachability evidence [36], [37]. The most critical
recurring issues were DoS risks, e.g., ASN.1 parsing panics
in onos-lib-go, and HTTP/2 resource-exhaustion vul-
nerabilities affecting gRPC-heavy modules (e.g., ric-sdk,
onos-uenib) [36], [43], [48]. However, deployment/test
scaffolding still triggered reports, requiring manual con-
text checks to separate operational risk from non-reachable
code [47], [49], [50]. We summarize dominant drivers of

3



false positives in Table III in Appendix. staticcheck
primarily surfaces correctness and maintainability issues (e.g.,
unused code, style) that we consider FP, as it is not ad-
versarially exploitable. However, staticcheck identifies
unreachable/test-only code regions, reducing noise compared
to other tools. Only a smaller subset of reported issues
was actionable (e.g., deprecated io/ioutil usage, miss-
ing configuration fields) [18], [38]. gosec provides the
broadest coverage but also the highest noise [17], [29].
Many integer-conversion and weak-crypto reports are FP af-
ter context inspection, while the most relevant TPs involve
insecure TLS settings, path/permission handling, unchecked
unmarshalling/error handling, and injection-style risks that
can enable tampering or MiTM-style threats under externally
influenced inputs [17], [38], [51].

Across the repositories where CodeQL executed success-
fully, we found 14 alerts (12 labeled by CodeQL as High,
2 Critical). The only TP represents a request forgery vul-
nerability (CWE-918) and is labeled Critical, and the other
Critical an FP, arising from debug-only/local-file logic (CWE-
134). Most CodeQL FPs overlapped with recurring gosec
anti-pattern classes (e.g., TLS InsecureSkipVerify and
integer-conversion patterns), demonstrating that severity alone
does not reflect SSC exploitability. We discuss additional
precision trade-off insights in Appendix D.

TABLE II: Precision comparison of evaluated tools

Tool Total Findings TP FP Precision (%)

gosec 68 31 37 45.59%
govulncheck 39 22 17 56.41%
staticcheck 15 4 11 26.67%
codeql 14 1 13 7.14%

B. Threats to Validity

Manual labeling may introduce subjectivity despite the use
of consistent, well-defined criteria, particularly for context-
dependent cases [29], [38]. We mitigate this risk by having
two domain experts independently label the data and cross-
validate results to ensure consistency. Tool coverage is further
constrained by build-process and environment assumptions,
such as repositories that fail go mod resolution or require
deployment-specific scaffolding [38]. Finally, our study is
limited to a representative set of O-RAN repositories and
static analysis tools, and broader survey across additional com-
ponents, ecosystems, programming languages, and dynamic
validation techniques could strengthen generalizability [29].

C. Recommendations & Future Work

No single static analyzer is sufficient for securing O-RAN
RIC codebases. Instead, the evaluated tools exhibit com-
plementary coverage, and in practice, combining them with
lightweight manual triage provides the best overall results.
However, this approach also produces substantial noise from
false positive reports (Table II). In addition, existing tools
rely primarily on template-based detection and therefore focus
on known vulnerability patterns, which limits their ability

to identify trigger-based behaviors such as logic bombs or
backdoors that activate only under specific runtime conditions
in cross-service workflows [32], [52].

a) Reachability- and O-RAN-Aware Contextual Triage:
Our analysis indicates that false positives can be significantly
reduced by incorporating deployment reachability together
with O-RAN–specific context. Future work can explore au-
tomating this process by mapping reported findings to realistic
Near-RT RIC entry points, including A1/E2 handlers and
service endpoints, while explicitly filtering code that is only
exercised during testing, benchmarking, or CI pipeline stages.
Such domain-informed triage can leverage repository structure,
build artifacts, and pipeline metadata to distinguish test-only
scaffolding from production-relevant components. We further
observe that multiple tools often report the same recurring
anti-patterns, such as TLS InsecureSkipVerify or in-
teger conversion warnings, many of which are unreachable
in deployed services. Leveraging tool overlap to de-duplicate
such findings and prioritizing only production-reachable alerts
can substantially improve the operational usefulness of static
analysis in O-RAN CI/CD pipelines.

b) O-RAN-Specific Trigger Modeling: Beyond CVE
matching and syntactic anti-patterns, future analyses should
account for O-RAN-specific triggers that influence control-
plane behavior. One promising direction is to treat decoded
E2AP/E2SM message fields as structured sources and security-
relevant control actions as sinks. This enables targeted checks
for missing validation on protocol fields, unsafe use of ex-
ternally influenced values in resource-amplifying loops, and
configuration changes that affect security-sensitive settings,
improving both coverage and precision [52].

D. Responsible Disclosure

We followed standard responsible disclosure practices and
reported all 50 code-level issues to the corresponding project
maintainers. Two reported issues have already been confirmed
by maintainers, and one has been patched, mitigating down-
stream impact in components including onos-config and
onos-topo. The remaining reports are pending responses.

VII. CONCLUSION

Our empirical analysis of O-RAN Near-RT RIC components
using off-the-shelf static analyzers shows that, while existing
tools exhibit complementary strengths, notable precision gaps
remain. These findings highlight the need for more context-
aware and domain-informed static analysis. Improving such
tooling enables developers to better identify and mitigate
software supply chain risks at build time, reducing exposure
in O-RAN deployments.

ACKNOWLEDGEMENTS

This work is supported by the Public Wireless Supply Chain
Innovation Fund (PWSCIF) under Federal Award ID Number
51-60-IF007.

4



REFERENCES

[1] O-RAN Alliance, “O-ran: Towards open and intelligent radio access
networks.” [Online]. Available: https://www.o-ran.org/

[2] M. Liyanage, A. Braeken, S. Shahabuddin, and P. Ranaweera, “Open
ran security: Challenges and opportunities,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.01510

[3] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, N. Nikaein, and
R. Jana, “A survey on open radio access networks: Challenges, research
directions, and open source approaches,” Sensors, vol. 24, no. 3, p. 1038,
Feb. 2024. [Online]. Available: http://dx.doi.org/10.3390/s24031038

[4] T. Yang, S. M. M. Rashid, A. Ranjbar, G. Tan, and S. R.
Hussain, “ORANalyst: Systematic testing framework for open RAN
implementations,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, 2024, pp.
1921–1938. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/yang-tianchang

[5] S. Ladisa and K. Rieck, “Sok: Taxonomy of attacks on open-source
software supply chains,” in Proceedings of the 44th IEEE Symposium
on Security and Privacy (S&P). IEEE, 2023.

[6] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package managers
for interpreted languages,” in Network and Distributed System Security
(NDSS) Symposium, 2021. [Online]. Available: https://www.ndss-
symposium.org/wp-content/uploads/ndss2021 1B-1 23055 paper.pdf

[7] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “On the feasibility of
detecting software supply chain attacks,” in IEEE MILCOM. IEEE,
2020, pp. 476–481.

[8] M. Fourné, Y. Acar, and S. Fahl, “It’s like flossing your teeth: On the
importance and challenges of reproducible builds for software supply
chain security,” in Proceedings of the 44th IEEE Symposium on Security
and Privacy (S&P). IEEE, 2023.

[9] U.S. Department of Defense, “Dod awards project to develop open
radio access network prototype at fort bliss,” May 2024. [Online].
Available: https://tinyurl.com/oran-proto

[10] “DeepSig and SRS Chosen by DOD Future G Office to.”
[Online]. Available: https://www.deepsig.ai/deepsig-and-srs-chosen-by-
dod-futureg-office-to-lead-ocudu-the-open-source-5g-6g-ran-initiative/

[11] U.S. Department of Defense, “Private 5g deployment strategy,” https:
//tinyurl.com/dod-5g-strategy, 2024, accessed: 2025-05-29.

[12] E. Kim, M. W. Baek, C. Park, D. Kim, Y. Kim, and I. Yun,
“Basecomp: A comparative analysis for integrity protection in cellular
baseband software,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 3547–3562, august 9–11, 2023, Anaheim,
CA, USA. [Online]. Available: https://www.usenix.org/system/files/
usenixsecurity23-kim-eunsoo.pdf

[13] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec:
Comparative analysis of baseband software and cellular specifications
for l3 protocols,” in Network and Distributed System Security
(NDSS) Symposium 2021, 2021, 21–25 February 2021, Virtual.
[Online]. Available: https://www.ndss-symposium.org/wp-content/
uploads/ndss2021 6B-4 24365 paper.pdf

[14] N. Bennett, W. Zhu, B. Simon, R. Kennedy, W. Enck, P. Traynor, and
K. R. B. Butler, “Ransacked: A domain-informed approach for fuzzing
lte and 5g ran-core interfaces,” in Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’24), 2024, october 14–18, 2024, Salt Lake City, UT, USA. [Online].
Available: https://nathanielbennett.com/publications/ransacked.pdf

[15] J. Hu, L. Zhang, C. Liu, S. Yang, S. Huang, and Y. Liu,
“Empirical analysis of vulnerabilities life cycle in golang ecosystem,”
in Proceedings of the 46th International Conference on Software
Engineering (ICSE ’24). New York, NY, USA: Association for
Computing Machinery, 2024. [Online]. Available: https://doi.org/
10.1145/3597503.3639230

[16] G. S. Team, “govulncheck: Go vulnerability checker,” Go tool documen-
tation, 2023, https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck.

[17] S. Team, “gosec: Golang security checker,” GitHub repository, 2023,
https://github.com/securego/gosec.

[18] D. Honnef, “staticcheck: Advanced linter for go,” Tool documentation,
2023, https://staticcheck.io/.

[19] “O-RAN Software Community,” https://o-ran-sc.org/.
[20] “SD-RAN,” https://opennetworking.org/open-ran/.
[21] O-RAN Alliance, “Near-real-time ran intelligent controller (ric) archi-

tecture,” 2021. [Online]. Available: https://www.o-ran.org/specifications

[22] A. Sejfia and M. Schäfer, “Practical automated detection of malicious
npm packages,” in Proceedings of the 44th International Conference
on Software Engineering (ICSE ’22). ACM, 2022, pp. 1681–1692.
[Online]. Available: https://dl.acm.org/doi/10.1145/3510003.3510104

[23] J.-U. Holtgrave, K. Friedrich, F. Fischer, N. Huaman, N. Busch, J. H.
Klemmer, M. Fourné, O. Wiese, D. Wermke, and S. Fahl, “Attributing
open-source contributions is critical but difficult: A systematic analysis
of github practices and their impact on software supply chain
security,” in Network and Distributed System Security Symposium
(NDSS). Internet Society, Feb. 2025. [Online]. Available: https:
//www.ndss-symposium.org/wp-content/uploads/2025-613-paper.pdf

[24] A. S. A. Yelgundhalli, P. Zielinski, R. Curtmola, and J. Cappos,
“Rethinking trust in forge-based git security,” in Network and
Distributed System Security Symposium (NDSS). Internet Society,
Feb. 2025. [Online]. Available: https://www.ndss-symposium.org/wp-
content/uploads/2025-1008-paper.pdf

[25] M. Moore, A. S. A. Yelgundhalli, and J. Cappos, “Securing
automotive software supply chains,” in Symposium on Vehicle
Security and Privacy (VehicleSec). Internet Society, Feb.
2024. [Online]. Available: https://www.ndss-symposium.org/wp-
content/uploads/vehiclesec2024 23015 paper.pdf

[26] F. Reyes, F. Bono, A. Sharma, B. Baudry, and M. Monperrus,
“Maven-hijack: Software supply chain attack exploiting packaging
order,” in Proceedings of the ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses (SCORED), 2025.
[Online]. Available: https://arxiv.org/abs/2407.18760

[27] X. Gao, X. Sun, S. Cao, K. Huang, D. Wu, X. Liu, X. Lin, and
Y. Xiang, “Malguard: Towards real-time, accurate, and actionable
detection of malicious packages in pypi ecosystem,” in 34th USENIX
Security Symposium (USENIX Security 25). USENIX Association,
Aug. 2025. [Online]. Available: https://www.usenix.org/system/files/
usenixsecurity25-gao-xingan.pdf

[28] A. Aijaz, S. Gufran, T. Farnham, S. Chintalapati, A. Sánchez-Mompó,
and P. Li, “Open ran for 5g supply chain diversification: The
beacon-5g approach and key achievements,” in 2023 IEEE Conference
on Standards for Communications and Networking (CSCN). IEEE,
2023, pp. 1–7. [Online]. Available: https://arxiv.org/abs/2310.03580

[29] A. Arusoaie, G. Ciobanu, and G. Rosu, “An empirical study on the
effectiveness of static c/c++ analyzers for vulnerability detection,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2022, pp. 318–329.

[30] K. Thimmaraju, R. Kashyap, A. Shaik, S. Flück, P. J. Fullana Mora,
C. Werling, and J.-P. Seifert, “Security testing the O-RAN near-real time
RIC & A1 interface,” in Proceedings of the 17th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec), 2024,
pp. 277–287.

[31] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the
npm ecosystem,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, 2019,
pp. 995–1010. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/zimmerman

[32] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola,
and J. Cappos, “in-toto: Providing farm-to-table guarantees for
bits and bytes,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, 2019, pp.
1393–1410. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/torres-arias

[33] “Codeql query suites,” GitHub Docs, accessed 2026-01-04.
[34] “Intelligent Private 5G Solution Based on Near-RT RIC,” https:

//stage-o-ran-v2.azurewebsites.net/classic/generation/2023/category/
intelligent-ran-control-demonstrations/sub/intelligent-control/251.

[35] “ONF and Deutsche Telekom demonstrate fully disaggregated Open
RAN,” https://opennetworking.org/news-and-events/press-releases/onf-
and-deutsche-telekom-demonstrate-fully-disaggregated-open-ran-with-
open-ric-platform/.

[36] Go Authors, “golang.org/x/vuln/cmd/govulncheck (package documen-
tation),” pkg.go.dev, 2025, accessed: 2025-12-30. [Online]. Available:
https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck

[37] The Go Team, “Govulncheck v1.0.0 is released!” Go Blog,
2023, accessed: 2025-12-30. [Online]. Available: https://go.dev/blog/
govulncheck

[38] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Pro-

5



ceedings of the 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 672–681.

[39] “Uncontrolled data used in network request (go request forgery),”
GitHub CodeQL Query Help, accessed 2026-01-04.

[40] O. Project, “Ran slice management xapp of onos,” https://github.com/
onosproject/onos-rsm, accessed: 2025-05-17.

[41] ——, “A1 termination of onos,” https://github.com/onosproject/onos-
a1t, accessed: 2025-05-17.

[42] ——, “Ric topology service of onos,” https://github.com/onosproject/
onos-topo, accessed: 2025-05-17.

[43] ——, “Onos ric sdk,” https://github.com/onosproject/onos-ric-sdk-go,
accessed: 2025-05-17.

[44] ——, “Pci xapp of onos,” https://github.com/onosproject/onos-pci, ac-
cessed: 2025-05-17.

[45] “Vulnerability report: Go-2024-2687,” https://pkg.go.dev/vuln/GO-
2024-2687, Apr. 2024, go Vulnerability Database. Accessed: 2026-01-
06.

[46] “net/http, x/net/http2: close connections when receiving too many
headers (cve-2023-45288) (issue #65051),” https://github.com/golang/
go/issues/65051, Jan. 2024, golang/go issue tracker. Accessed: 2026-
01-06.

[47] ONOS Project, “sdran-helm-charts: Helm charts for sd-ran,” GitHub
repository, 2025, accessed: 2025-12-30. [Online]. Available: https:
//github.com/onosproject/sdran-helm-charts

[48] O. Project, “Ue information base of onos,” https://github.com/
onosproject/onos-uenib, accessed: 2025-05-17.

[49] The Go Team, “Tutorial: Find and fix vulnerable dependencies
with govulncheck,” Go Documentation, 2025, accessed: 2025-12-30.
[Online]. Available: https://go.dev/doc/tutorial/govulncheck

[50] ONOS Project, “sdran-in-a-box (riab): Sd-ran development/test environ-
ment over kubernetes,” GitHub repository, 2025, accessed: 2025-12-30.
[Online]. Available: https://github.com/onosproject/sdran-in-a-box

[51] J. Lauinger, L. Baumgärtner, A.-K. Wickert, and M. Mezini,
“Uncovering the hidden dangers: Finding unsafe go code in the wild,”
2020. [Online]. Available: https://arxiv.org/abs/2010.11242

[52] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna, “Triggerscope: Towards detecting logic bombs in
android applications,” in 2016 IEEE Symposium on Security and
Privacy (S&P), 2016, pp. 377–396. [Online]. Available: https:
//sites.cs.ucsb.edu/∼vigna/publications/2016 SP Triggerscope.pdf

[53] SPDX Workgroup (Linux Foundation), “SPDX: The system package
data exchange,” https://spdx.dev/, accessed: 2025-12-30.

[54] CycloneDX Project (OWASP), “Cyclonedx specification overview,”
https://cyclonedx.org/specification/overview/, accessed: 2025-12-30.

APPENDIX

A. Tool Execution Failures

Some repositories did not produce analyzable output for
specific tools due to build-time constraints rather than tool
crashes. Common causes include (i) Go module resolution
failures involving internal O-RAN dependencies (e.g., Gerrit-
hosted modules), (ii) repositories that require deployment-only
scaffolding or generated code to type-check, and (iii) CGO
dependencies on external system headers/libraries unavailable
in our environment. For example, ric-app-kpimon-go
requires the F1AP wrapper headers via CGO and fails to
compile without them, preventing tools that rely on successful
compilation/type-checking from running. We therefore report
each tool’s results over the subset Stool where that tool
executed successfully.

B. Labelling methodology and insights

Methodology of identifying the findings and what we
learned: We took a repeatable triage approach that assigned
a higher priority to the important factors of whether a finding
can be exploited and the relevance to SSC. The initial step
for every alert was to confirm precisely where in the code

0 2 4 6 8 10 12 14
True Positive Count

onos-rsm

onos-a1t

onos-topo

onos-ric-sdk-go

onos-mlb

onos-pci

C
om

po
ne

nt

14

6

4

4

2

1

True Positive Vulnerabilities per Component

Fig. 2: True positive vulnerability detections per component

(i.e., within a file/line) the report referred to as it relates to
the semantics of the rule, and then to follow the call path
through to the calling function to determine if the code could
actually be called from a production environment (e.g., via
server initialization, using gRPC handler, etc.) as opposed to
being called from test related tools or examples, CI scripts
or deployment manifests. In the case of configuration-driven
issues (e.g., TLS settings), we then inspected what the actual
values were set to (i.e., default, flags, environment variables
or Helm charts). When labelling the results of our effort,
we labelled TP (True Positive) when there was a reasonable
likelihood of exploiting the finding or the potential that it could
have an adverse effect within normal O-RAN operation; in
contrast, we labelled a finding as FP (False Positive) if we
could definitively demonstrate that the finding was unreach-
able, only associated with test cases, relied on dead code or
was stylistic in nature. When the results of our work contained
ambiguity, we conservatively recorded sufficient descriptive
information based on what we had used to assess against our
criteria for reachability and impact and therefore we can revisit
these items and provide them a different label as the context
surrounding deployments evolves.

C. Additional False-Positive Examples

a) TLS Verification Disabled
(InsecureSkipVerify) in onos-topo: gosec
reports a G402 (CWE-295) warning for TLS
InsecureSkipVerify being set to true in
onos-topo/cmd/topo-scale/topo-scale.go:85.
While disabling certificate verification can enable server
impersonation and traffic interception if used in production,
manual inspection indicates this setting is confined to the
topo-scale benchmarking/scale harness rather than the
deployed onos-topo service path; we therefore classify it
as FP. [17], [42]

D. Other Result Insights

Our results show a coverage–precision tradeoff across static
tools. gosec produces the most TPs (31) but also substantial
noise (37 FP), staticcheck yields fewer security-relevant
TPs (4) with more FPs (11), and govulncheck achieves
the best balance (22 TP vs. 17 FP) via known-vulnerability
reporting with reachability evidence [17], [18], [36]–[38].

6



E. False positive drivers.

As summarized in Table III, across the evaluated tools,
most false positives stem from structural mismatches between
what analyzers scan and what is actually shipped/exercised
in Near-RT RIC deployments. First, a frequent occurrence
of false alerts appears exclusively in test, benchmark, or
local harness code (e.g., CodeQL/gosec reports of TLS
InsecureSkipVerify that were confined to benchmark-
ing clients or unit-test scaffolding), which inflates severity
despite being non-production. Second, many findings are
non-deployment-reachable: dependency advisories or pattern
matches occur in optional modules, build helpers, or or-
chestration logic that is not reachable from realistic service
entry points (e.g., govulncheck flagging a containerd
advisory in SD-RAN sdran-in-a-box, where the vulner-
able code path is referenced exclusively in deployment/test
helpers and not exercised at runtime). Third, build-tag and
configuration-specific paths can cause tools to analyze code
that is excluded under release build constraints, yielding alerts
that do not apply to the deployed artifact. Fourth, tools
often over-flag benign uses of flagged primitives when threat
context is missing (e.g., gosec G401 for MD5 used for
deterministic identifiers rather than cryptographic integrity).
Finally, a smaller but important source of noise is missing
O-RAN semantics: generic analyzers lack protocol context to
map sources/sinks to E2/A1-triggered behaviors, so they may
both over-approximate exploitability in generic input-handling
patterns and under-capture protocol-specific constraints. These
drivers collectively explain why reachability evidence and
repository-/deployment-context signals are necessary to make
static scanning actionable in O-RAN CI/CD.

F. CI/CD Integration to Reduce Manual Effort

Our current evaluation required substantial manual valida-
tion because generic tool outputs do not encode deployment
reachability or artifact provenance [38]. A practical next step
is to integrate security check pipelines into CI/CD so that each
repository build produces (i) scanner reports (govulncheck,
gosec, staticcheck, and CodeQL where applicable), (ii)
SBOM/provenance artifacts, and (iii) an O-RAN-specific filter
that suppresses test-only findings and flags regressions when
reachable issues appear [32], [53], [54].

G. Sample Outputs of Evaluated Tools

The listings below are examples of the raw tool output
that was utilised during the manual triage process. The raw
output remains unchanged, but due to its size has been
truncated. The original wordings and fields are preserved with
the exception of any repetitive areas (i.e. long trace lists or
repeated style warnings). These examples illustrate the report-
ing level differences for each tool—govulncheck provides
fixed-version reference information, gosec/staticcheck
highlights patterns at the code-level, while CodeQLreports
on dataflow-taints of information. CodeQL did not re-
port any issues for ric-plt-a1, so another example for
ric-app-kpimon-go is given.

:˜/ric-plt-a1$ govulncheck ./...
=== Symbol Results ===

Vulnerability #1: GO-2025-3447
Timing sidechannel for P-256 on ppc64le in
↪→ crypto/internal/nistec

More info: https://pkg.go.dev/vuln/GO-2025-3447
Standard library
Found in: crypto/internal/nistec@go1.22
Fixed in: crypto/internal/nistec@go1.22.12
Platforms: ppc64le

...

Vulnerability #13: GO-2022-0322
Uncontrolled resource consumption in
↪→ github.com/prometheus/client_golang

More info: https://pkg.go.dev/vuln/GO-2022-0322
Module: github.com/prometheus/client_golang
Found in: github.com/prometheus/client_golang@v0.9.3
Fixed in: github.com/prometheus/client_golang@v1.11.1

Your code is affected by 13 vulnerabilities from 1 module
↪→ and the Go standard library.

This scan also found 5 vulnerabilities in packages you
↪→ import and 14

vulnerabilities in modules you require, but your code
↪→ doesn’t appear to call

these vulnerabilities.

Listing 1: govulncheck output for ric-plt-a1 (A1 mediator).

Results:

[ric-plt-a1/pkg/rmr/rmr.go:156] - G104 (CWE-703): Errors
↪→ unhandled (Confidence: HIGH, Severity: LOW)
json.Unmarshal([]byte(payload), &result)

...

[ric-plt-a1/pkg/resthooks/resthooks.go:742] - G104
↪→ (CWE-703): Errors unhandled (Confidence: HIGH,
↪→ Severity: LOW)
rh.deleteMetadata(policyTypeId, policyInstanceID)

Summary:
Gosec : dev
Files : 65
Lines : 9281
Nosec : 0
Issues : 6

Listing 2: Gosec output for ric-plt-a1 (A1 mediator).

staticcheck ./...

-: # gerrit.o-ran-sc.org/r/ric-plt/a1/config
↪→ [gerrit.o-ran-sc.org/r/ric-plt/a1/config.test]

config/configuration_test.go:31:34: config.Logging
↪→ undefined (type *Configuration has no field or
↪→ method Logging)

config/configuration_test.go:33:32: config.Rmr undefined
↪→ (type *Configuration has no field or method Rmr)
↪→ (compile)

pkg/policy/policyManager.go:38:5: error var
↪→ policyTypeNotFoundError should have name of the
↪→ form errFoo (ST1012)

pkg/policy/policyManager.go:38:31: error strings should not
↪→ be capitalized (ST1005)

pkg/policy/policyManager.go:39:5: error var
↪→ policyInstanceNotFoundError should have name of the
↪→ form errFoo (ST1012)

pkg/policy/policyManager.go:39:35: error strings should not
↪→ be capitalized (ST1005)

pkg/restful/restful.go:59:6: should omit comparison to bool
↪→ constant, can be simplified to !resp (S1002)

7



pkg/resthooks/resthooks.go:54:5: error var typeAlreadyError
↪→ should have name of the form errFoo (ST1012)

pkg/resthooks/resthooks.go:54:24: error strings should not
↪→ be capitalized (ST1005)

pkg/resthooks/resthooks.go:55:5: error var
↪→ InstanceAlreadyError should have name of the form
↪→ ErrFoo (ST1012)

pkg/resthooks/resthooks.go:55:28: error strings should not
↪→ be capitalized (ST1005)

pkg/resthooks/resthooks.go:56:5: error var
↪→ typeMismatchError should have name of the form
↪→ errFoo (ST1012)

...

pkg/resthooks/resthooks.go:59:31: error strings should not
↪→ be capitalized (ST1005)

pkg/resthooks/resthooks.go:395:2: this value of err is
↪→ never used (SA4006)

pkg/resthooks/types.go:41:6: type iRMRClient is unused
↪→ (U1000)

Listing 3: Staticcheck output for ric-plt-a1 (A1 mediator).

CodeQL results:

[e2ap/wrapper.c:662] - cpp/tainted-format-string (CWE-134):
↪→ Uncontrolled format string
char* text = (char*)calloc(numbytes, sizeof(char));
fread(text, sizeof(char), numbytes, fp3);
fclose(fp3);
printf(text);

Description:
The value of this argument may come from string read by

↪→ fread and is being used as a formatting argument to
↪→ printf(__format).

The program uses input from the user as a format string
↪→ for printf style functions; this can crash the
↪→ program, disclose information, or enable code
↪→ execution.

Recommendation:
Use a constant format string, e.g., printf("%s", text).

Listing 4: CodeQL output for ric-app-kpimon-go: uncontrolled
format string (CWE-134).

TABLE III: Dominant drivers of false positives, ranked by frequency.
*Each FP is only assigned a single dominant driver.

FP Driver #FP Representative examples

Missing semantic or threat-model
context (benign primitive use)

38 gosec flags MD5 usage that
does not affect cryptographic in-
tegrity (e.g., deterministic identi-
fiers), bounded integer conversions,
or patterns that can only lead to
benign startup failures.

Test vs. production code separation 25 TLS InsecureSkipVerify and
similar anti-patterns confined to unit
tests, benchmarks, or scale/debug
utilities (e.g., test/ directories or
*-scale tooling).

Tool scope mismatch (style or cor-
rectness warnings)

12 staticcheck style or correctness
findings (e.g., ST1005 error-string
capitalization) that do not lead to
exploitability.

Lack of deployment reachability 4 Advisories or patterns reported
through transitive dependencies that
are not reachable from deployed
service entry points (e.g., unused
HTTP/2 or container tooling paths).

8



TABLE IV: O-RAN components and corresponding dependencies

Project Summary Dependencies

ric-plt-a1 A1 interface for policy control between Non-RT and Near-RT RIC. onos-api, onos-lib-go, viper, Go OpenAPI
ric-plt-xapp-frame SDK for rapid xApp development on Near-RT RIC. onos-lib-go, golog, REST, Prometheus,

stdlib
ric-app-hw-go Basic xApp with A1 interface, config, and health checks. ric-plt-xapp-frame, internal O-RAN SC

libs
ric-app-kpimon-go xApp for collecting RAN KPIs via E2. ric-plt-xapp-frame, InfluxDB, internal libs
onos-e2t Manages E2 interface to connect RIC and RAN nodes. onos-api, onos-lib-go, Atomix, gRPC,

protobuf
onos-a1t A1 interface for injecting policies into the RIC. onos-api, onos-lib-go, ONOS microser-

vices
onos-topo Shared topology service for RAN and xApps. onos-api, onos-lib-go, Atomix
onos-uenib Tracks UE state for mobility and performance use. onos-api, onos-lib-go, Atomix
onos-ric-sdk-go SDK for xApp APIs; abstracts RIC’s gRPC internals. onos-api, onos-lib-go, gRPC, protobuf
onos-pci xApp for PCI management and conflict resolution. onos-ric-sdk-go, onos-api, onos-lib-go,

OpenAPI
onos-mlb xApp for cell load balancing via handover tuning. onos-ric-sdk-go, onos-api, onos-lib-go,

Prometheus
onos-mho xApp for handover decisions using UE and RAN data. onos-ric-sdk-go, onos-api, onos-lib-go
onos-rsm xApp for managing RAN slicing and UE assignments. onos-ric-sdk-go, onos-api, onos-lib-go,

REST

TABLE V: CodeQL alerts and manual FP labeling (cross-check against Go tools).

Component Description File/Line Sev. Comparison FP?

onos-a1t Incorrect conversion between integer pkg/manager/manager.go:124 High GoSec Match YES
onos-topo Disabled TLS certificate check (test) test/utils/topo.go:25 High NO YES
onos-topo Disabled TLS certificate check cmd/topo-scale/topo-

scale.go:85
High GoSec Match YES

onos-ric-sdk-go Disabled TLS certificate check pkg/utils/creds/creds.go:22 High GoSec Match YES
onos-rsm Incorrect conversion between integer types (test) pkg/slicing/manager.go:205 High GoSec Match YES
onos-rsm Incorrect conversion between integer types (test) pkg/slicing/manager.go:106 High GoSec Match YES
onos-rsm Incorrect conversion between integer types (test) pkg/nib/uenib/uenib.go:321 High GoSec Match YES
onos-rsm Disabled TLS certificate check (test) test/utils/cli client.go:29 High GoSec Match YES
ric-plt-rtmgr Incorrect conversion between integer types pkg/sbi/sbi.go:162 High NO YES
ric-plt-rtmgr Incorrect conversion between integer types pkg/nbi/httprestful.go:702 High NO YES
ric-plt-submgr Incorrect conversion between integer types pkg/control/debug rest if.go:42 High NO YES
ric-plt-xapp-frame Zip Slip (not reachable in production code) pkg/xapp/Utils.go:166 High NO YES
ric-app-kpimon-go Uncontrolled format string (CWE-134; debug-only local file

input)
e2ap/wrapper.c:662 Critical NO YES

ric-app-kpimon-go Uncontrolled data used in network request (CWE-918; con-
strained SSRF/internal request forgery)

f1apHelper/f1apServer.go:76 Critical NO NO

9


