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program analyses to model program and input structure, and
continuously gather dynamic information about the target.

Leveraging dynamic information drives fuzzer efficiency.
For example, coverage-guided greybox fuzzers—perhaps the
most widely-used class of fuzzer—track code paths executed
by the target.1 This allows the fuzzer to focus its mutations on
inputs reaching new code. Intuitively, a fuzzer cannot find bugs
in code never executed, so maximizing the amount of code
executed should maximize the number of bugs found. Code
coverage serves as an approximation of program behavior, and
expanding code coverage implies exploring program behaviors.

Coverage-guided greybox fuzzers are now pervasive. Their
success [2] can be attributed to one fuzzer in particular:
American Fuzzy Lop (AFL) [3]. AFL is a greybox fuzzer that
uses lightweight instrumentation to track edges covered in the
target’s control-flow graph (CFG). A large body of research has
built on AFL [4–12]. While improvements have been made,
most fuzzers still default to edge coverage as an approximation
of program behavior. Is this the best we can do?

In some targets, control flow offers only a coarse-grained
approximation of program behavior. This includes targets
whose control structure is decoupled from its semantics
(e.g., LR parsers generated by yacc) [13]. Such targets require
data-flow coverage [13–17]. Whereas control flow focuses on
the order of operations in a program (i.e., branch and loop
structures), data flow instead focuses on how variables (i.e.,
data) are defined and used [14]: indeed, there may be no
control dependence between variable definition and use sites
(see §III for details).

In fuzzing, data flow typically takes the form of dynamic
taint analysis (DTA). Here, the target’s input data is tainted
at its definition site and tracked as it is accessed and used at
runtime. Unfortunately, accurate DTA is difficult to achieve
and expensive to compute (e.g., prior work has found DTA
is expensive [18, 19] and its accuracy highly variable across
implementations [18, 20]). Moreover, several real-world pro-
grams fail to compile under DTA, increasing deployability
concerns. Thus, most widely-deployed greybox fuzzers (e.g.,
AFL [3], libFuzzer [21], and honggfuzz [22]) eschew DTA in
favor of higher fuzzing throughput.

While lightweight alternatives to DTA exist (e.g.,
REDQUEEN [23], GREYONE [19]), the full potential of
control- vs. data-flow based fuzzer coverage metrics have not
yet been thoroughly explored. To support this exploration, we

1Miller et al.’s original fuzzer [1] is now known as a blackbox fuzzer,
because it has no knowledge of the target’s internals.
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I. INTRODUCTION

Fuzzers are an indispensable tool in the software-testing 
toolbox. The idea of fuzzing—to test a target program by 
subjecting it to a large number of randomly-generated inputs—
can be traced back to an assignment in a graduate Advanced 
Operating Systems class [1]. These fuzzers were relatively 
primitive (compared to a modern fuzzer): they simply fed a 
randomly-generated input to the target, failing the test if the 
target crashed or hung. They did not model program or input 
structure, and could only observe the input/output behavior 
of the target. In contrast, modern fuzzers use sophisticated
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present DATAFLOW, a greybox fuzzer that tracks a program’s
data flow (rather than control flow) without requiring DTA.
Notably, our work performs data flow analysis inline with
the execution, directly guiding the fuzzer. This is in contrast
to prior work (e.g., GREYONE), which performs post-hoc
trace analysis in an attempt to infer or approximate data flow.
Unlike DTA, which strives for accuracy, we take inspiration
from popular greybox fuzzers (e.g., AFL) and embrace some
imprecision in an effort to reduce overhead and thus maximize
fuzzing throughput.

We perform a preliminary evaluation of DATAFLOW’s
effectiveness. So far, our results indicate data-flow-driven
fuzzing provides little advantage over control-flow-driven
fuzzing for most targets we evaluated. However, data-flow-
driven fuzzing appears to have a niche, showing promise on
targets where control flow and semantics are decoupled. We
will continue this evaluation on acceptance of this paper.

Our contributions can be summarized as follows:

1) A framework for reasoning about and constructing data
flow-based coverage metrics for greybox fuzzing;

2) A data-flow-driven fuzzer, DATAFLOW, to explore data
flows in a target program at low overhead; and

3) A preliminary evaluation and comparison of control-flow,
taint-analysis, and data-flow-driven fuzzers.

We make our material available at https://github.com/
HexHive/datAFLow.

II. BACKGROUND & RELATED WORK

A. Fuzzing
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Fig. 1: High-level overview of a typical greybox fuzzer.

Fuzzing is a dynamic analysis for finding bugs in a target
program by subjecting it to random inputs. Coverage-guided
greybox fuzzers—the most popular class of fuzzer—do not just
blindly feed these random inputs into the target. Rather, they
use a feedback loop based on a coverage metric. This feedback
loop guides the fuzzer towards generating inputs that explore
new parts of the target (as determined by the coverage metric).

Fig. 1 illustrates the architecture of a typical coverage-
guided greybox fuzzer. The user provides (a) an instrumented
program (the “target”), and (b) an optional set of starting inputs
(an “empty seed” is used if not provided [24]).

The fuzzer places the inputs into a queue and then:
(i) selects a seed from the queue; (ii) mutates the seed (via
bit-flipping, value substitution, etc.); (iii) executes the target
with the mutated seed, storing coverage (or an approximation
thereof) in a coverage map; and (iv) detects crashes and

newly-discovered coverage in the target (saving the former for
offline analysis and the latter back into the queue). This process
repeats until the “residual risk” of a missed bug falls beneath
a suitable threshold [25].

B. Data-flow Analysis

Data-flow analysis typically refers to a collection of tech-
niques for reasoning about the runtime flow of values in
a program. These techniques can be static—such as those
used by compilers for liveness analysis, constant propagation,
and reaching definition analysis—or dynamic. Dynamic data-
flow analysis is an approach adopted in software testing for
reasoning about the sequence of actions performed on data
(i.e., program variables) at runtime [26, 27]. These actions
are typically analyzed in terms of the interactions between
a variable’s definition—or def site—and how that variable is
used at one or more use sites [14, 17]. Data flows between
these definition and usage sites are known as def/use chains.

Empirical studies have shown the effectiveness of data-flow
coverage metrics over control-flow metrics when developing
software tests [14–17] and comparing program executions [28].
However, to the best of our knowledge, these data-flow tech-
niques have not yet been explored by the fuzzing community.

C. Related Work

Fuzzing is an active research area. Consequently, we focus
on recent fuzzing research related to coverage metrics.

The most popular fuzzers are those guided by code cover-
age [29]. Typically, this code coverage is measured at either
basic block or edge granularities. While edge coverage is
typically considered more sensitive than basic-block coverage,
as we shall see in §III, it is not without its own issues.
Indeed, TortoiseFuzz showed that basic-block coverage can be
effective when paired with other coverage metrics that increase
sensitivity (e.g., function call and loop coverage) [12].

To improve mutation precision, some fuzzers use dynamic
taint analysis (DTA) to track input bytes. This information is
used to infer which bytes to mutate. Unfortunately, DTA suf-
fers from accuracy and performance issues [18, 20, 30], limit-
ing deployment. To overcome performance issues, Angora [31]
amortizes DTA cost by limiting its application to once per
input (over many mutations) [31]. Other fuzzers avoid DTA in
favor of approximate taint tracking; e.g., REDQUEEN [23] uses
input-to-state correspondence, based on the idea that “parts of
the input directly correspond to the memory or registers at run
time”. Similarly, GREYONE [19] infers taint by monitoring the
value of variables as input bytes are mutated.

Alternatives to code coverage metrics are also being ex-
plored. Coppik et al. [7], Wang et al. [32] instrument the tar-
get’s memory accesses, storing this information in the fuzzer’s
coverage map. IJON [33] introduced an annotation mechanism
for tracking key state variables in the coverage map (e.g.,
Mario’s x and y coordinates in the game Super Mario Bros.).
Finally, INVSCOV [34] augments code coverage with the value
of and relationships between key program variables. These
variables are based on likely invariants (i.e., invariants that hold
for a set of dynamic traces but may not hold for all inputs); the
violation of a likely invariant indicates “interesting” program
behavior (and is recorded in the coverage map).
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Despite the body of work related to fuzzer coverage
metrics, pure data flow coverage remains an underexplored
metric. This is likely due to the perceived runtime cost of
measuring data flow [32, 34]. Nevertheless, we hypothesize
that lightweight data flow tracking is possible. To this end,
we introduce DATAFLOW, the first data-flow-driven greybox
fuzzer with a tunable sensitivity range.

III. MOTIVATING DATA-FLOW COVERAGE

1 size_t max; // Set by the user
2 unsigned int i = 0, j = 0;
3 char *prime = (char *)malloc(max);
4 memset(prime, 1, sizeof(char) * max);
5
6 for (i = 2; i < max; ++i) {
7 if (prime[i]) {
8 for (j = i; i * j < max; ++j) {
9 prime[i * j] = 0;

10 } } }

Fig. 2: Motivation for data-flow coverage. This example code
implements the Sieve of Erathosthenes for finding all prime
numbers up to max value.

A fuzzer’s coverage metric should accurately capture/ap-
proximate program behavior with minimal runtime overheads.
Here we discuss why control-flow-based metrics are not
enough to accurately capture program behavior, using Fig. 2
as a running example.

While basic block and edge coverage (the most pervasive
coverage metrics in greybox fuzzers) are performant, they often
provide a poor approximation of program behavior. This is
because code coverage ultimately represents a static view of
the target, whereas data flow coverage more closely captures
the target’s runtime computations; i.e., how input is consumed
by the target.

Fuzzers using basic-block coverage cannot differentiate
between different orderings of the same blocks. This can be
improved by using edge coverage, which allows the fuzzer
to differentiate between a loop’s forward and backward edges
(such as the loops at Lines 6 and 8 in Fig. 2).

Unfortunately, edge coverage still loses important infor-
mation about program behavior (e.g., greybox fuzzers rely on
coverage information to decide which input mutations lead to
new program behaviors). However, the process for uncovering
new behaviors can be highly inefficient, because a fuzzer
driven by code coverage alone cannot identify which mutated
input bytes led to new program behavior. Differences in data
access and manipulation within a single code path are lost.

Some fuzzers address this issue (i.e., determining which
input bytes to mutate) by applying dynamic taint analysis
(DTA). DTA improves mutation accuracy by tracking the
subset of program values used as arguments to comparison
operations. However, the effectiveness of DTA depends on its
taint policy, which specifies the taint relationship between an
instruction’s input and output.

In Fig. 2, max is user-controlled (i.e., the user selects the
maximum prime number) and is therefore the taint source.

While max is read directly on Lines 3, 4, 6 and 8, it is prime
accesses that most accurately captures the program behavior.
From a bug-finding perspective, prime accesses are also the
most likely source of memory-safety vulnerabilities.

Given max determines the size of prime (via malloc,
Line 3), taint may propagate to prime. However, this is an im-
plicit flow that may not be captured by the taint policy. For ex-
ample, compiler-based DTA—e.g., LLVM’s DataFlowSanitizer
(DFSan) [35]—cannot track taint outside uninstrumented code
(e.g., through functions provided by external libraries, such
as malloc). Ensuring taint is accurately tracked in uninstru-
mented code requires a significant amount of manual effort.
Moreover, prior work has shown this accuracy to be highly
variable and dependent on the DTA implementation (e.g., due
to incorrect taint policies, unsupported instructions) [20].

DTA is also expensive. She et al. [18] found that none of
their targets completed within a 24 h period when run with the
Triton DTA tool. We also found that Angora’s compiler-based
DTA (built on top of DFSan) exhibited a runtime overhead
of 33.31× over the same uninstrumented code from the SPEC
CPU2006 benchmark suite. This is notable because prior work
has found DFSan to be one of the more performant DTA
frameworks (due to compile-time—rather than run-time—
instrumentation) [18].

Given the disadvantages of DTA (accuracy and cost), we
propose an alternate approach: tracking data flows between
prime’s def (Line 3) and use sites (Lines 7 and 9). The
following section describes our data-flow tracking approach.

IV. DESIGN AND IMPLEMENTATION

A greybox fuzzer should maintain accurate coverage in-
formation without negatively impacting performance. These
requirements exist irrespective of the coverage metric used.
With this in mind, we describe: (i) a theoretical foundation
for constructing data-flow-based coverage metrics; (ii) how
DATAFLOW incorporates these observations; and (iii) the
implementation of a DATAFLOW prototype, focusing on un-
covering memory-safety vulnerabilities.

A. Coverage Sensitivity

Based on §II-B, we define data-flow coverage as follows:

Data-flow coverage is the tracking of def/use chains
executed at runtime.

This definition allows us to explore data-flow-based cov-
erage metrics with different sensitivities [32, 36]. We adhere
to the program analysis literature and define sensitivity as
a coverage metric’s ability to discriminate between a set
of program behaviors [37]. In fuzzing, a coverage metric’s
sensitivity is its ability to preserve a chain of mutated test cases
until they trigger a bug [32]. Different sensitivities allow us to
balance efficacy and performance: more sensitive metrics incur
a higher performance penalty. For example, edge coverage can
be made more sensitive by incorporating context-sensitivity.
However, this requires additional instrumentation, increasing
runtime overhead [36].

Like traditional data-flow analysis (§II-B), our data-flow
coverage metrics require the identification of variable def and
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All types

... ints pointers structs ...

... int * arrays struct * ...

... ... int arrays ... ...

...

(a) Def site sensitivity lattice. Variables are partitioned
based on their type.

(b) Use site sensitivity lattice. Variables are partitioned
based on their access (e.g., read, write) and what infor-
mation about the access is recorded (e.g., offset, value).

Fig. 3: Example def and use site sensitivity lattices. Sensitivity
of coverage metrics increases towards the bottom.

use sites. Following Horgan and London [26], we define a
data flow variable def site as a name referring to storage
allocated statically (e.g., storage class static, global) or au-
tomatically (i.e., local to a procedure). We deviate from this
definition by (a) including calls to dynamic memory allocation
routines (e.g., malloc), and (b) excluding reallocations that
would traditionally kill a definition. Consequently, a use site
includes both reads/writes from/to a def site. We deviate from
the classic definition to ensure scalability: the difficulties of
scaling data-flow analyses on real-world programs are well
known [17, 38]. We believe reducing precision by not killing
definitions is a suitable tradeoff to maintain scalability.

Once def and use sites are identified, DATAFLOW in-
struments these sites (using compiler-based instrumentation,
discussed in §IV-B) so that def /use chains can be tracked at
runtime. However, exactly which def /use sites are instrumented
(and hence which are tracked) depends on the required sen-
sitivity. Inspired by Wang et al. [32], this leads us to define
a pair of sensitivity lattices—one for def sites and another
for use sites, in Fig. 3—that can be composed to achieve the
desired overall sensitivity (we discuss the threats to validity
with this approach in §IV-C).

1) Def Site Sensitivity: Complete data-flow coverage re-
quires all variable def sites to be identified and instrumented.
Unfortunately, the overhead to achieve this level of sensitivity

is prohibitively expensive [39]. Therefore, a method for identi-
fying (and hence instrumenting) a subset of important program
variables is required. Ideally, this would be an (almost entirely)
automated process, to reduce the developer burden on the user.

One approach is to partition def sites by type, and restrict
instrumentation to def sites of a given type (or type set).
Figure 3a shows the sensitivity lattice for this type-based
partitioning.

Partitioning def sites by type has several advantages. For
example, instrumenting array variables focuses the fuzzer on
memory-safety vulnerabilities. Similarly, tracking the data flow
of structs may allow for the discovery of type confusion
vulnerabilities [40, 41]. Type-based partitioning requires some
upfront knowledge of the target to ensure meaningful vari-
ables are tracked at runtime. For example, important program
behaviors (and hence bugs) may be missed if “uninteresting”
variables are tracked (e.g., max in Fig. 2).

Tracking all data flows is prohibitively expensive.
Identification (and instrumentation) of only impor-
tant variables is required.

2) Use Site Sensitivity: Fig. 3b shows the use site sen-
sitivity lattice. Variables are either read from or written to
(i.e., “accessed”). Variable accesses are strictly more sensitive
than just writes or reads on their own. The simplest and least
sensitive metrics only track when a variable is accessed (shown
at the top of the lattice).

Conversely, the most sensitive data flow coverage metrics
are ones that track not only when a particular variable is
accessed, but the value of that variable when accessed. This
is akin to traditional data-flow testing, which focuses on the
values that variables take at runtime [14, 17], and is similar to
GREYONE, which monitors (a subset of) program variables
and their values to infer taint [19]. Depending on the def
site sensitivity, this approach will quickly saturate the fuzzer’s
coverage map (due to the path collision problem [9]); a middle
ground between this overly sensitive approach and simple
accesses is required.

This middle ground is achieved by incorporating more
fine-grained spatial information into a variable’s use. This
is particularly useful when def sites include arrays and/or
structs (e.g., line Line 9 in Fig. 2), as def /use chains are now
differentiated by the offset at which an array/struct is accessed.

Information at different granularities is recorded at
use sites. When recording more precise information,
care must be taken to ensure the coverage map does
not saturate, clogging the fuzzing queue.

3) Composing Sensitivity Lattices: Different def /use sen-
sitivities can be composed to track data flow at different
granularities. We reuse the code in Fig. 2 to illustrate how we
achieve this. Given the def sensitivity lattice in Fig. 3a, either:
(i) all three variables (prime, i, and j); (ii) the indices i
and j; or (iii) only the prime array are instrumented (and
hence tracked). Here we restrict def site instrumentation to
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array variables. Consequently, only prime is tracked. This
leads to varying def /use chains depending on the use site
sensitivity.

Simple access: The yellow region in Fig. 3b. Tracks
when prime is accessed (Lines 7 and 9 in Fig. 2). This results
in two def /use chains: Line 3 Line 7 and Line 3 Line 9.
This is essentially equivalent to basic block coverage (per
§II-A): to reach the use at Line 9 requires the execution of all
basic blocks in the CFG. Like block coverage, this provides a
poor approximation of program behavior (as information about
the loop and how it affects data is lost).

Access with offset: The red region in Fig. 3b. Tracks
when prime is accessed along with the offsets where prime
is accessed (indices i and j). This provides a more complete
view of how prime is used with negligible overhead (our
implementation incurs a 3 % overhead over the simple data
flow coverage for the code in Fig. 2). In some respects this is
similar to MEMFUZZ’s approach, which incorporates memory
accesses into code coverage [7]. This results in 2× (max− 2)
def /use chains: one for every read/write at each index where
prime is read from/written to.

Access with value: The blue region in Fig. 3b. Tracks
when prime is accessed along with the values (being read-
/written) during these accesses. This is the most sensitive use
site coverage metric, and achieves the goal of traditional data-
flow coverage: associate values with variables, and how these
associations can affect the execution of the target [14]. This is
also similar to GREYONE’s “taint inference”, which looks at
the value of variables used in path constraints [19].

Again, this level of sensitivity results in 2 × (max − 2)
def /use chains. Here, the values prime can take are fully
deterministic. However, in general these values may depend
on user input, and therefore will quickly saturate the fuzzer’s
coverage map.

Sensitivity lattice composition must balance efficacy
and performance: too precise and the fuzzer’s cov-
erage map will saturate, reducing throughput.

By composing def and use sensitivity lattices, we realize a
variety of data-flow-based coverage metrics. We do so in our
fuzzer, DATAFLOW, described in the following sections.

B. Implementation

Instrumented 
targetInstrument

def sites
Instrument
use sites

fuzzalloc
.so

Greybox
fuzzer

Target obj

.obj .obj

.obj.obj

Target
source

Fig. 4: High-level overview of DATAFLOW.

Fig. 4 depicts DATAFLOW’s high-level architecture, includ-
ing: (i) compiler instrumentation for capturing def /use sites at
the desired sensitivity (§IV-B1); and (ii) runtime libraries for

tracking data flows between instrumented def /use sites and
feeding this information to the fuzzing engine (§IV-B2).

Our architecture is agnostic to the underlying fuzzer. Thus,
the instrumented target produced by the compiler and linked
with our runtime libraries can be executed by any AFL-
based fuzzer (i.e., any fuzzer using an AFL-style coverage
map). However, instead of recording and tracking control-flow
coverage, the fuzzer’s coverage map tracks data-flow coverage.

1) Compiler Instrumentation: DATAFLOW’s compiler-
based instrumentation is realized through a set of LLVM (v12)
passes (2,270 LOC). These passes identify and instrument def
and use sites (at the IR level) so flows between these sites—
i.e., def /use chains—can be tracked at runtime.

Def/use site identification: Variable def and use sites
must first be identified so data flows between these sites can
be tracked. Per §IV-A, the selection of def sites to instrument
impacts coverage sensitivity: more instrumented def sites leads
to more complete data flow coverage. We implement a number
of def site instrumentation schemes based on the type-based
partitioning described in §IV-A1. Restricting def sites to arrays
(allowing us to focus on memory-safety bugs, which remain
one of the most common bug classes [42]) limits use sites to
memory access instructions. We apply existing LLVM trans-
forms, allowing us to focus on load and store instructions
(both of which are trivial to identify and hence instrument).2
Which of these instructions are instrumented depends on the
use sensitivity required (configurable at compile time).

Def/use site instrumentation: Previously-identified def
and use sites are instrumented so the fuzzer can track def /use
chains. Dynamically-allocated array def sites are instrumented
by replacing the memory allocation function (e.g., malloc)
with a tagged version (e.g., __tagged_malloc) accepting
an additional argument: a random 16-bit integer identifying
(i.e., tagging) the def site. This approach is analogous to AFL’s
static assignment of basic block identifiers (which are also ran-
dom 16-bit integers) to track edge coverage. For static arrays
(i.e., stack, global), we adopt an approach similar to CCured’s
and heapify these variables [43]. While heapification incurs
runtime overheads unacceptable in production environments,
we find these overheads acceptable for fuzzing.

We reuse the code from Fig. 2 to demonstrate
DATAFLOW’s tagging operation. The allocation of prime
(Line 3 in Fig. 2) is rewritten and tagged with the iden-
tifier 0x123 (Line 6 in Fig. 5). Use sites (i.e., memory
accesses) are similarly instrumented. Figure 5 shows an ex-
ample of this instrumentation: both writes (Line 13) and reads
(Line 10) to/from prime are instrumented with a call to
__mem_access (discussed in §IV-B2). The offset at which
prime is accessed is also statically determined (or set to zero
for less-sensitive coverage metrics). We reuse a number of
techniques from LLVM’s AddressSanitizer (ASan) [44] to limit
the number of instrumentation sites, thereby reducing overhead
without sacrificing precision.

This combination of heapification, allocation site tagging,
and memory access instrumentation enables tracking the run-

2Specifically, we lower atomic memory intrinsics and expand llvm.mem*
intrinsics.
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1 extern void *__tagged_malloc(tag_t tag, size_t s);
2 extern void __mem_access(void *ptr, int offset);
3
4 size_t max; // Set by the user
5 unsigned int i = 0, j = 0;
6 char *prime = (char *)__tagged_malloc(0x123, max);
7 memset(prime, 1, sizeof(char) * max);
8
9 for (i = 2; i < max; ++i) {

10 __mem_access(prime, i);
11 if (prime[i]) {
12 for (j = i; i * j < max; ++j) {
13 __mem_access(prime, i * j);
14 prime[i * j] = 0;
15 } } }

Fig. 5: Instrumented Sieve of Erathosthenes.

time uses of variables. We achieve this via our memory
allocator, fuzzalloc.

2) Runtime Libraries: We reduce the runtime tracking of
data-flow to a metadata management problem (def site tags
are the metadata that must be efficiently retrieved at use sites).
We adopt a form of low-fat pointer [45–47] to implicitly store
the 16-bit def site tag within the pointer itself. This approach
provides a number of advantages—particularly over (mid-)fat
and tagged pointers [43, 48–50]—including compatibility with
uninstrumented/legacy code and cheap metadata access.

The design of our low-fat pointer system is similar to Duck
and Yap [45, 47]: we implement a custom memory allocator,
fuzzalloc, that exploits the large virtual address space
provided by the x86_64 architecture (which we assume for
DATAFLOW, because low-fat pointers are only practical on ar-
chitectures with sufficient pointer bit-width). The fuzzalloc
API consists of tagged versions of malloc, calloc, and
realloc. These tagged functions (inserted by the compiler
at def sites, per §IV-B1) provide a mechanism for mapping
heap-allocated data to def site tags.

This mapping is achieved by allocating separate “memory
spaces” for each def site such that the tag is stored in the
upper 16-bits of the memory space’s address. Consequently,
our low-fat pointer can be encoded in the following type:
union {

void *ptr;
struct {
uintptr_t def_site:16; // MSB
uintptr_t unused:48;

};
} p;

Fuzzalloc leverages ptmalloc’s (v3) mspace feature for
partitioning the heap into independent “memory spaces” [51]
(237 LOC). Each allocation site is assigned its own mspace,
allowing us to directly map def site tags to mspaces. Mspaces
are mapped into memory (via a combination of address-space
shrinking techniques [48] and mmap) such that the upper 16-
bits of the mspace’s address space contains the def site tag.
This process is illustrated in Fig. 6 (at ¬ and ).

Fig. 6 shows how a def site tag is retrieved from a
low-fat pointer allocated by fuzzalloc (at ®). X86_64
restricts addresses to the lower 48-bits of a pointer, so the

tag can be retrieved by right-shifting the pointer by 32-bits (in
__mem_access).

Unlike def sites, which are identified by a compile-time
tag, we use the program counter to identify use sites (at ¯).
Retrieving the program counter at the use site is an inexpensive
operation: on x86_64 it is accessible via the lea instruction.

3) Fuzzer Integration: Fuzzalloc constructs a def /use
chain by hashing together the def and use sites (at °). This
hash is used as a lookup into the fuzzer’s coverage map to
guide the fuzzer towards discovering new data flows. This is
analogous to AFL tracing edges to discover new control flow
paths. Consequently, we leverage techniques used by tradi-
tional greybox fuzzers (e.g., compact bitmaps) to efficiently
record data-flow coverage [29].

In particular, we use coarse data-flow coverage metrics—
def /use chain hit counts stored in a compact bitmap—to
achieve efficient fuzzing. While it is well known such tech-
niques result in path collisions [9], we are willing to tolerate
such imprecision to limit overhead costs. Coarse coverage
metrics also lower implementation costs, as they enable the
reuse of existing fuzzing engines (in our case, AFL++ [8]).

The following hash function maintains coverage:

(3× (def − DEFAULT TAG)⊕ use)− use

This hash function is designed such that uninstrumented def
sites (e.g., allocations made in linked libraries) all resolve to
the same bitmap index. All uninstrumented allocations are
implicitly tagged with the DEFAULT_TAG def site identi-
fier. This results in the hash calculation (3× 0⊕ use)− use ,
which simplifies to zero.

Finally, we modify ASan in order to detect a greater
range of memory safety bugs. This ensures dynamic memory
allocation requests are always routed through fuzzalloc.

C. Threats to Validity

1) Def Site Selection: Our def site selection approach
(§IV-A1) is incomplete: important data flows may be missed
if the appropriate def sites are not instrumented. For example,
our focus on array def sites means we may miss other relevant
data flows. We are willing to accept this trade-off, given (a) our
focus on memory safety vulnerabilities, and (b) the prohibitive
runtime overheads when tracking all def sites.

2) Array Def Site Identification: Identifying array def sites
is complicated by the fact that many applications do not di-
rectly call the standard allocation routines (e.g., malloc), but
indirectly through a custom memory allocator. For example,
standard memory allocation routines may be wrapped in other
functions. These functions may then be indirectly called via
global variables/aliases, stored and passed around in structs,
or used as function arguments.

To address the challenge imposed by custom memory
allocators and memory allocation patterns, DATAFLOW allows
the user to specify wrapper functions to tag (in addition to the
standard allocation routines). While our prototype requires the
user to manually find these wrappers, existing tools [52] could
assist in this process. We statically track the use of memory
allocation routines (including wrappers) and detect when they
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 a = __tagged_malloc(0x1234, 
                     size);

 b = __tagged_calloc(0xabcd, 
                     100); 

 

 __mem_access(b, i); 
 b[i] = ...; 

. 

. 

.
0xabcd00000000

. 

. 

.

Program + libraries 
Stack 

>> def site = 0xabcd 

fuzzalloc-managed 
memory spaces

Instrumented target

0x123400000000

①

②

③

④ use site = lea [rip]
+

__mem_access(void *ptr, int offset)

⑤

Fig. 6: Mapping def sites to memory spaces to allow efficient retrieval at use sites. Def sites are mapped to unique mspaces at ¬
and . The use at ® retrieves ptr’s def site via a right-shift. The use site is identified by the program counter (rip register
on x86_64), which is retrieved via a lea instruction at ¯. Finally, the def and use identifiers are hashed together to create a
def /use chain at °. Depending on the sensitivity, the offset at which ptr is accessed may also be included in this hash.

are stored in other locations (e.g., globals, struct elements).
This information is used to select def sites to instrument.

3) C++ Dynamic Memory Allocation: C++ new calls
are rewritten as malloc calls to simplify our instru-
mentation. However, this prevents us from handling any
std::bad_alloc exceptions. This means any failed alloca-
tions will cause a program crash, irrespective of any exception
handlers in place. These false negatives are filtered out by
replaying the inputs through the original binary.

4) Coverage Imprecision: Storing coarse coverage infor-
mation in a compact bitmap is inherently inaccurate and
incomplete [9]. While this may limit DATAFLOW’s ability to
discover and explore data flows, this limitation is not unique
to DATAFLOW, and affects many greybox fuzzers [3, 4, 7, 10–
12, 19, 31–34].

V. EVALUATION

We perform a preliminary evaluation of DATAFLOW,
comparing it against state-of-the-art greybox and DTA-based
fuzzers (§V-B). We describe future evaluation in §V-C.

A. Methodology

Fuzzer Selection: Our evaluation aims to compare
the performance of fuzzers using (i) pure control-flow-based
coverage; (ii) pure data-flow-based coverage; and (iii) exact
and approximate DTA, combining control-flow coverage with
data-flow tracking. We select AFL++ as the pure control-
flow-driven fuzzer because it is the current state-of-the-art
coverage-guided greybox fuzzer. We configure AFL++ with:
(i) link-time optimization instrumentation, eliminating hash
collisions; (ii) the forkserver disabled, because it is currently
unsupported by fuzzalloc; and (iii) with and without “Cm-
pLog” instrumentation. Cmplog—inspired by REDQUEEN’s
input-to-state correspondence—approximates DTA by captur-
ing comparison operands. We select Angora as the exact-DTA-
based fuzzer. We configure DATAFLOW by (a) restricting def
instrumentation to arrays (static and dynamic), and (b) using
two use site sensitivities: simple access and access with offset.
We refer to these sensitivities as “A” and “A+O”, respectively.

Benchmark Selection: We evaluate our fuzzers on a
subset of the Magma benchmark [53] (for bug finding) and the
jq JSON processor [54] (for coverage). We select the subset
of Magma targets all fuzzers successfully build and run.3 We
select jq because its yacc-based LR parser exemplifies the
decoupling of control structure from semantics [13].

Experimental Setup: All experiments were conducted
on an Ubuntu 20.04 AWS EC2 instance with a 48-core Intel®
Xeon® Platinum 8000 3.6 GHz CPU and 192 GiB of RAM.
Each fuzz run was conducted for 24 h and repeated five times.
Magma targets were bootstrapped with the provided seeds,
while jq was bootstrapped with an afl-cmin-minimized
corpus of JSON files sourced from Herrera et al. [24]. Finally,
we (a) manually located and specified memory allocation
functions for DATAFLOW to tag, and (b) used Angora’s default
behavior to discard taint when calling an external library.

B. Preliminary Results

Following prior work [24, 53, 55], we use survival analysis
to summarize our bug-finding results. Table I uses the restricted
mean survival time (RMST), measuring the average time for a
bug to “survive” (i.e., remain undiscovered) up to a specified
time point (here, 24 h, the length of a fuzz run).

The number of bugs triggered across all fuzzers is lower
(and their RMSTs higher) compared to previous Magma eval-
uations [24, 53]. We attribute this to the disabled forkserver,
which impacts fuzzer throughput. Even with this performance
regression, DATAFLOW triggered two bugs (LUA002 and
LUA003) not previously triggered by any other fuzzer in
prior evaluations. DATAFLOW also found XML001, which
remained untriggered by AFL++ and Angora in this evaluation.

Like FUZZBENCH [56], we compare coverage by replaying
the fuzzing corpus through Clang’s source-based coverage
instrumentation (Fig. 7a). We also replay the same corpora
through the DATAFLOW-instrumented jq to gain a sense of

3Angora failed to run sndfile_fuzzer, php failed to build with Cm-
pLog instrumentation, and DATAFLOW failed to build openssl.
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the def /use chains covered by each fuzzer (Figs. 7b and 7c).4

Figure 7a shows Angora and AFL++ (with and with-
out CmpLog) cover ∼3 % more code than DATAFLOW.
DATAFLOW remains competitive, despite the other fuzzers
using a control-flow-based coverage metric. Notably, the use
of data-flow analyses (exact and approximate DTA) offers no
statistically-significant improvement over using edge coverage
alone. Figures 7b and 7c show the value of a tunable sensitivity
range. When using memory accesses alone (the least sensitive
metric), def /use coverage is subsumed by edge coverage.
However, when access offsets are considered, DATAFLOW
offers a ∼5 % improvement in def /use coverage over AFL++,
and ∼35 % over Angora. This is likely due to jq’s table-driven
parser, supporting the intuition of Xin et al. [13].

C. Future Evaluation

We intend to test the following hypothesis:

Data-flow-driven fuzzing offers superior perfor-
mance on targets where control-flow is decoupled
from semantics.

Testing this hypothesis requires a more thorough evaluation
of DATAFLOW on a wider range of targets (e.g., those from
Google’s FUZZBENCH [56]) and a comparison against more
data-flow-driven fuzzers (e.g., SIVO [58]5) and a wider range
of def /use sensitivities. We intend to use the same methodology
and statistical analyses described in Sections V-A and V-B (i.e.,
survival analysis to summarize bug-finding results and corpus
replay to compare control- and data-flow-based coverage).
Specifically, we will perform the following experiments:

Understanding overheads: Does improving
DATAFLOW’s performance change our results? We will
answer this question by (a) adding support for AFL++’s
forkserver (which we have completed), and (b) investigating
where heapify operations can be removed (e.g., on local
variables that do not escape to other execution threads or
functions). Similarly, we aim to better understand the impact
of heapification by also heapifying def sites in AFL++.

Characterizing programs: Can we determine a priori
if a given target is amenable to data-flow-driven fuzzing?
To answer this question, we propose developing a static
analysis—based on techniques proposed by Chaim et al.
[38]—for determining whether a def /use chain is subsumed
by a control-flow measure (e.g., node, edge coverage). Fuzzing
with DATAFLOW may be redundant if the majority of def /use
chains are subsumed by control-flow measures.

Quantifying data-flow coverage: Control-flow coverage
can be quantified by reasoning over the target’s CFG. This is
commonly achieved by replaying the fuzzer’s queue through
an independent, collision-free coverage metric (e.g., Clang’s
source-based coverage [56]). However, the equivalent process
for quantifying data-flow coverage does not exist. We propose
computing an upper-bound of the target’s def /use chains using

4We recognize this approach is prone to biases introduced by the coverage
metric used in the original fuzz run. We will rectify this by adopting a sampling
approach in the final version of this paper [57].

5Unfortunately, most of the data-flow-driven fuzzers discussed in §II-C (e.g.,
Neutaint [18], GREYONE [19]) are not publicly available.

an LLVM-based static analysis (e.g., based on SVF [59]). This
allows us to quantify the percentage of def /use chains executed
during fuzzing, much like the percentage of lines-of-code is
quantified for control-flow coverage.

VI. CONCLUSIONS

Observing fuzzers that introduce taint tracking along with
control flow, we investigate data flow as an alternate coverage
metric, making data-flow coverage a first-class citizen.

Driven by empirical results and the conventional wis-
dom gathered over years of software-testing research, we
expected data-flow-driven fuzzing to offer drastic benefits
over traditional control-flow-driven greybox fuzzing. Instead,
our preliminary evaluation shows data-flow-based coverage
metrics offer little benefit over traditional control-flow-based
coverage metrics on most targets. However, data-flow-driven
fuzzing does show promise on programs where control flow is
decoupled from semantics.

Notably, we also found other data-flow analyses used by
fuzzers (exact and approximate DTA) provided little benefit
over pure control-flow-based coverage metrics in most cases.
Further investigation is required to shed light on why particular
targets and bugs do benefit from data-flow analyses.

We intend to perform further evaluation and analysis to
understand the advantages/disadvantages of control- vs. data-
flow-based coverage metrics.
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