
Registered Report: NSFuzz: Towards Efficient and
State-Aware Network Service Fuzzing

Shisong Qin∗, Fan Hu†, Bodong Zhao∗, Tingting Yin∗ and Chao Zhang∗�
∗Tsinghua University, {qss19,zbd17,ytt21}@mails.tsinghua.edu.cn, chaoz@tsinghua.edu.cn

†State Key Laboratory of Mathematical Engineering and Advanced Computing, fanhu 17@foxmail.com

threats to the entire cyberspace, and it is vital to explore
vulnerabilities in protocol implementations.

Today, fuzzing is one of the most popular vulnerability
discovery techniques, and has been widely used and studied
in both academia and industry, due to its ease of usage, high
efficiency, and low false positives. In the early days, fuzzers
for network services mainly worked in black box style [6],
[7], which in general blindly and continuously generate and
send messages to the service under test (SUT) located at a
given IP address and port. Although black box fuzzing is easy
to launch, it is relatively blind due to lacking the internal
feedback of the SUT during fuzzing, which leads to limited
code coverage and vulnerability discovery effectiveness. In
recent years, grey box fuzzing solutions that combine genetic
algorithms and code coverage feedbacks have become more
and more popular [8], [9], [10]. For instance, the representative
fuzzer AFL [8] has greatly improved the code coverage and
overall fuzzing effectiveness.

However, such traditional grey box fuzzing approaches
cannot be directly well applied to network services due to two
main challenges: (1) Service state representation. Most existing
grey box fuzzers are mainly designed for stateless local appli-
cations. The protocol-based network services usually involve
state transition during multiple message handling, allowing
network service to respond differently according to the current
session state when receiving the same input message. Hence,
grey box fuzzing solutions without awareness of service states
could not acquire complete feedback, which would mislead the
evolutionary direction of genetic algorithms. (2) Testing effi-
ciency. Network service programs are in general designed as
C/S architecture and action usually involves multiple network
I/O interactions, which means that an effective fuzzer has to
conduct multiple interactions with the target service. Hence,
fuzzers that do not send each message in time with the target
service would waste the time of testing.

Notably, there have been some recent attempts to introduce
grey box fuzzing for network services. AFLNET [11] first
proposed a grey box fuzzing solution targeted at stateful
protocol implementations. It extracted the response code from
the response messages to represent the service states, then
used the response code sequence to infer a state model of
the protocol implementation, and further utilized the inferred
model to guide the fuzzing process. STATEAFL [12] attempted
to use programs’ in-memory states to represent the service
states, then performed state collection and state model infer-
ence by instrumenting the service under test. In each round
of network interaction, STATEAFL dumped program variables
to an analysis queue and performed post-execution analysis to

Abstract—As the essential component responsible for com-
munication, network services are security-critical, and it is vital
to find v u lnerabilities i n t h em. F u zzing i s c u rrently o n e o f the
most popular software vulnerability discovery techniques, widely
adopted due to its high efficiency and low false positives. However,
existing coverage-guided fuzzers mainly aim at stateless local
applications, leaving stateful network services underexplored.
Recently, some fuzzers targeting network services have been pro-
posed but have certain limitations, e.g., insufficient o r inaccurate
state representation and low testing efficiency.

In this paper, we propose a new fuzzing solution NSFuzz for
stateful network services. Specifically, w e s t udied t y pical imple-
mentations of network service programs and figured o u t how
they represent states and interact with clients, and accordingly
propose (1) a program variable-based state representation scheme
and (2) an efficient i n teraction s y nchronization m e chanism to
improve efficiency. We h ave i mplemented a p rototype o f NSFuzz,
which uses static analysis to identify network event loops and
extract state variables, then achieves fast I/O synchronization
and efficient s t ate-aware f u zzing v i a l i ghtweight compile-time
instrumentation. The preliminary evaluation results show that,
compared with state-of-the-art network service fuzzers AFLNET
and STATEAFL, our solution NSFuzz could infer a more accurate
state model during fuzzing and improve the testing throughput
by up to 50x and the coverage by up to 20%.

I. INTRODUCTION

Network services are specific i mplementations o f a ll kinds
of network protocols, which define h o w d i fferent entities
communicate in the network. However, it introduces more
threats to computer systems than local applications, since it is
much easier for attackers to exploit vulnerabilities in network
services to launch remote attacks than in local applications.
For example, the Heartbleed [1] vulnerability from one of the
TLS protocol [2] implementations —— OpenSSL [3], could
be used by malicious attackers to leak confidential d a ta in
the memory of remote devices. In addition, the vulnerability
in the implementation of Microsoft’s Server Message Block
(SMB) protocol [4] has also led to a worldwide WannaCry
ransomware cyberattack [5]. Since OpenSSL is a widely used
library for TLS encryption communication, and the vulnerable
SMB protocol runs on countless Microsoft Windows OS
devices, such vulnerabilities have a vast range of influence.
Therefore, vulnerabilities of network services are significant

International Fuzzing Workshop (FUZZING) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-77-0
https://dx.doi.org/10.14722/fuzzing.2022.23006
www.ndss-symposium.org

update the state model. However, these two network service
fuzzers still suffer from the aforementioned two challenges.
As for the state representation challenge, the response code
scheme proposed by AFLNET assumes the protocol will embed
special code in response messages, which is not always the
case. Besides, as pointed out in STATEAFL, response code
could only provide a poor indication of the network service
state and even lead to redundant states. Regarding the testing
efficiency challenge, since there is no clear signal indicating
whether the SUT has completed processing one message or
not, both AFLNET and STATEAFL use a fixed timer to control
the fuzzer to send messages to SUT. However, the time window
of the timer is either too short (in which case the SUT will
miss messages sent by the fuzzer) or too long (in which case
the fuzzer will waste too much time on waiting). Besides,
STATEAFL requires post-execution analysis for state sequence
collection and state model inference, introducing the additional
run-time overhead and further lowering the testing throughput.

In this paper, we propose NSFuzz, an efficient state-
aware grey box fuzzing solution for network services. We
have studied many representative network service programs
to understand their typical implementations. We found that
such programs always use program variables to describe the
program states directly. Besides, we also noticed that the net-
work services always come with a network event loop, which
is responsible for dispatching incoming messages. Hence, to
address the first challenge, we propose a lightweight variable-
based state representation scheme to represent the service
states with higher accuracy. As for the second challenge, the
intrinsic event loop of network services could be utilized to
yield appropriate signal feedback, which enables an efficient
synchronization between network services and the fuzzer and
facilitate the fuzzer sending new messages to reduce waiting
time overheads. Moreover, the signal-based synchronization
could also enable the fuzzer to actively conduct state sequence
collection and state model inference, thereby avoiding heavy
post-execution analysis used by STATEAFL.

Specifically, we use static analysis to automatically recog-
nize network event loops and state variables from the source
code of network services, and conduct lightweight compile-
time instrumentation to enable state-aware fuzzing and signal-
based fast I/O synchronization. We have implemented a proto-
type of NSFuzz. The evaluation results showed that, NSFuzz
could infer a more accurate state model during the fuzzing
process, and has a significantly higher fuzzing throughput than
AFLNET and STATEAFL. Besides, NSFuzz could reach higher
coverage and trigger crashes in much less time.

In summary, this paper makes the following contributions:

• We propose a variable-based state representation scheme to
recognize states of network services and infer their state
models, and use it to guide the fuzzing process.

• We propose an efficient synchronization mechanism based
on the network event loop of SUT, which enables a much
higher throughput for network service fuzzers.

• We have implemented a prototype of NSFuzz and briefly
evaluated it on several real-world network services. The
preliminary results showed that, NSFuzz could perform state
model inference more accurately and achieve much better
fuzzing effects than the state-of-the-art network fuzzers.

II. RELATED WORK

A. Black Box Network Fuzzing

Since the fuzzing technique was proposed, early re-
searchers mainly used generation-based fuzzers to perform
black box fuzzing. For network services, such methods rely on
prior knowledge of protocol format to generate valid testcases
for fuzzing. SPIKE [13] used a block-based analysis method to
automatically generate valid data blocks of protocol messages
with pre-defined generation rules. PROTOS [14] provided
some template-based generation and error injection primitives
for users to specify particular fields in the protocol format
to generate testcases. SNOOZE [15] and KiF [16] proposed a
scenario-based fuzzing method, which further required users to
pre-build the interaction scenarios by specifying the message
order to achieve fuzzing stateful protocols services. Until
today, the widely used black box network fuzzing tools such
as Peach [6], Sulley [17], and boofuzz [7] are still built on top
of these ideas. To reduce the reliance on prior knowledge and
manual work before fuzzing, AutoFuzz [18] proposed a more
automated fuzzing framework by using network traffic analysis
to extract the message format and the protocol state model, and
traversed the service state space by modifying the messages as
a built-in proxy during fuzzing. AspFuzz [19] would directly
change the sending order of generated messages sequence to
perform state-level fuzzing. PULSAR [20] went a step further.
It guided the fuzzer to traverse less fuzzed subspace in the
finite state model, which was built based on the analysis of
adjacent messages, to perform adequate fuzzing.

B. Grey Box Network Fuzzing

In recent years, after the grey box fuzzing solutions rep-
resented by AFL were proposed, combining program internal
feedback and genetic mutation algorithm to conduct fuzzing
has attracted much more attention. IoTHunter [21] first applied
the grey box fuzzing for stateful network services in IoT
devices. It used a multi-stage generation method to perform
fuzzing based on coverage feedback. yFuzz [22] performed a
similar idea to IoTHunter, while it mainly analyzed the imple-
mentation of AFL and proposed a multi-forkserver structure
design to achieve multi-stage fuzzing of the stateful protocol
services. AFLNET [11] and SGPFuzz [23], etc. [24], [25] used
response codes to represent the service state and performed
run-time state model building and state-guided fuzzing, and
these solutions are relatively more general state-aware fuzzers
towards network services. STATEAFL [12] tried to overcome
the limitation of the response code based state representation
scheme by using in-memory state to represent service state.
This method could infer a more reasonable state model, but
its vast post-execution analysis overhead still led to a low
fuzzing efficiency. Nyx-Net [26] used a snapshot-based method
to fastly restore the service state and achieved efficient fuzzing
for stateful services, but it lacks fine-grained state analysis and
guidance for network applications during the fuzzing process.

C. Program State Model Inference

The automated construction of program state models (es-
pecially for stateful protocols) has always been an attractive
and widely studied research area. In addition to AutoFuzz and
PULSAR, which are based on traffic analysis for automated
state model inference, Prospex [27] tried to use dynamic taint

2

analysis to infer the protocol state model and message format,
while PRETT [28] used binary tokens combined with network
traces to build minimized state model. Besides, IJON [29]
and FazzFactory [30] allowed users to annotate the specific
variables in the program under test via provided APIs, using
specific feedback to guide the fuzzer to perform domain-
specific fuzzing. In addition to AFLNET, STATEAFL, etc. [24],
[23] that built state models during fuzzing and performed
state guidance to improve the fuzzing effects. Recently some
researchers have also used fuzzing as a method to infer the
TLS/DTLS protocol state model and verify its security man-
ually to check whether the state model in the implementation
of services has logic flaws [31], [32].

III. STUDY ON NETWORK SERVICE

A. Implementation of Network Service

We carry out extensive research on network services pro-
grams and find they usually contain three typical stages:

• Service Initialization Stage. In this stage, network services
perform initial operations such as reading configuration and
initializing related data structure based on the startup pa-
rameters. Besides, services would use network programming
interfaces (such as socket() in Glibc) to conduct socket
creation, network port binding, and socket listening until
remote clients request socket connection.

• Service Processing Stage. During the processing stage, net-
work services work in an event loop. They process requests
from the client and give responses in this loop. Once the
client requests coming, the services parse the message,
invoke the corresponding function handler, and return the
response message. Network services would exit this stage
only when the client actively quits or any exception occurs.

• Service Cleanup Stage. When the network services are
going to be actively terminated, this stage is responsible for
program cleanup such as the resource releasing, then exit to
stop providing service.

Since network services need to provide long-term services
for arbitrary remote clients, they usually run persistently in
the background or run as a daemon. Therefore, the network
services program runs most of the time in the second stage,
processing the request message sent by the remote client
continuously in the network event loop. In addition, it should
be noted that developers always use some variables to represent
the server state in their implementation for network services
running stateful protocols.

Listing 1 shows a Service Processing Stage code snippet in
a real-world network service implementation Bftpd [33]. From
Line3 to Line6 contains a network event loop, where Bftpd
receives the request message at Line3 and parses it at Line
5. Bftpd FTP protocol service would repeat these operations
until remote client user actively closes the network socket or
the service ends itself by any exception. In Bftpd, developers
use commands structure to store each kind of request’s type
name, function pointer of the handler, and state requirements.
In the parsecmd() function, Bftpd first tries to match the type
of the incoming request message (Line13), and performs a
state check (Line16), then invokes the corresponding handler
(Line18) only after passing the state check, otherwise responds
a failure message to the client based on current service state.

1 i n t main () {
2 . . . / / s e r v i c e i n i t i a l i z a t i o n s t a g e
3 w h i l e (f g e t s (s t r , MAXCMD, s t d i n)) {
4 . . . / / t r i m ”\ r\n ” from s t r
5 parsecmd (s t r) ;
6 }
7 . . . / / s e r v i c e c l e a n u p s t a g e
8 }
9 i n t parsecmd (c h a r * s t r) {

10 . . . / / remove g a r b a g e i n t h e s t r i n g
11 f o r (i = 0 ; commands [i] . name ; i ++) {
12 / / s t r matches t h e commands [i]
13 i f (! s t r n c a s e c m p (s t r , commands [i] . name , s t r l e n (

commands [i] . name))){
14 . . . / / s p l i t r e q u e s t t y p e and p a r a m e t e r s
15 / / s t a t e check
16 i f (s t a t e >= commands [i] . s t a t e n e e d e d) {
17 / / i n vo ke t h e c o r r e s p o n d i n g h a n d l e r
18 commands [i] . f u n c t i o n (s t r) ;
19 r e t u r n 0 ;
20 } e l s e {
21 s w i t c h (s t a t e) {
22 c a s e STATE CONNECTED:
23 r e s p o n s e (” 503 USER e x p e c t e d ”) ;
24 r e t u r n 1 ;
25 c a s e STATE USER :
26 r e s p o n s e (” 503 PASS e x p e c t e d ”) ;
27 r e t u r n 1 ;
28 c a s e STATE AUTHENTICATED :
29 r e s p o n s e (” 503 RNFR b e f o r e RNTO e x p e c t e d ”) ;
30 r e t u r n 1;}
31 }
32 }
33 }
34 }
35 / / h a n d l e r f o r ”PASS” r e q u e s t message
36 vo id command pass (c h a r * password) {
37 i f (s t a t e > STATE USER) {
38 r e s p o n s e (” 503 Al ready l ogg ed i n ”) ;
39 r e t u r n ;
40 }
41 i f (b f t p d l o g i n (password)) {
42 s t a t e = STATE CONNECTED;
43 r e t u r n ;
44 }
45 }

Listing 1: Simplified Code Snippet from Bftpd v5.7.

During the message handler, Bftpd would conduct specific
business processing and update the state of network services.

B. Insight

Based on the study, we find that the network event loop
serving as a natural structure of network services could provide
appropriate feedback to the fuzzer, indicating the network ser-
vices have finished a round of message handling. We take the
code snippet from Bftpd as an example to illustrate the func-
tionality of the network event loop. In the message processing
stage of Bftpd, the entry of the network event loop (Line3)
can indicate that the Bftpd server has processed the previous
FTP request message and is ready to receive the following FTP
request message. Therefore, the entry of the event loop can be
used as a synchronization point to actively notify the fuzzer to
send the following request message, thereby avoiding useless
time waiting. In addition, such synchronization can also tell
the fuzzer to perform state collection to avoid post-execution
analysis of state transition.

As mentioned above, network services always use variables
to represent the run-time service state. For example, when
Bftpd receives a PASS request message (used for user login),
it would invoke the command pass function with the password
field of the request as the function parameter (Line18) and ex-
ecutes different code branches according to the current service
state (from Line37 to Line44). Bftpd would update the service

3

Static Analysis

Static Analyzer Instrumented
Network Service

Execution

Coverage
Feedback

Efficient State
Feedback

Seed Pool testcase

Current
Coverage

State Model Inference

Fuzzing Loop

Network
Event Loop

State Variable
List

Compile-Time
Instrumentation

Crash Report

Message
Mutation

State Guided
Seed Selection

Seed
Preservation

Network
Service

Probe
Message

Backtrace

Source
Code

Initial
Seed

Fig. 1: Workflow of NSFuzz. It first performs static analysis on the source code to recognize state variables and event loops,
then instruments the target network service to enable fast I/O synchronization and yield state feedback to guide fuzzing.

state to STATE CONNECTED when login is successful. It
should be noted that an enumerated global variable state is
used to represent the state of the network service. It always gets
read (e.g., Line 21) or gets updated (e.g., Line 42) within the
network event loop. In addition, compared with the response
code, using the program variable to represent the service state
is also more accurate and reasonable. In the Bftpd code snippet
from Listing 1, response codes in the failure response message
under different service states are all 503 (from Line22 to
Line30), which shows that the response code cannot be used
to distinguish the actual state of network services.

In summary, according to our study, we propose to use
specific variables in the network service to represent the
service state accurately and use the network event loop as an
indicator to achieve efficient I/O synchronization.

IV. METHODOLOGY

A. Overview Design

Figure 1 depicts the workflow of NSFuzz. At the high level,
NSFuzz has two main components: static analysis and fuzzing
loop. Firstly, NSFuzz takes the network service source code
as input and performs static analysis to identify the network
event loop (see Section IV-B1) and to extract state variables
(see Section IV-B2). Then it uses the result of static analysis
to conduct compile-time instrumentation (see Section IV-B3),
enabling the target service to have the capabilities of signal-
based synchronization and variable-based service state tracing.
In the fuzzing loop, NSFuzz takes the initial seeds as input
and performs seed selection and message mutation under the
guidance of code coverage and state information to generate
testcases. When executing testcase, NSFuzz sends a request
message each time and waits for the synchronizing signal(see
Section IV-C1). Once NSFuzz receives the signal, it collects
the program state and updates the state model to carry out
state-aware fuzzing(see Section IV-C2) NSFuzz would repeat
this process to find program crash until stop the fuzzing loop.

B. Static Analysis

NSFuzz uses static analysis to find two types of information
in the service under test. The first is the network event loop,
which is responsible for incoming request message handling
in the service processing stage. The second is the crucial
state variables representing the service state in the program
implementation. As we mentioned in III-B, the network

event loop is a natural indicator for message handling. Thus
it could provide timely feedback to the fuzzer in each loop
to avoid time-wasting. Compared with the response code-
based state representation scheme, the variable-based state
representation scheme could reflect the state of the network
service more realistically, thereby inferring a more accurate
state model. Besides, instead of STATEAFL that needs post-
execution online analysis to identify state variables, NSFuzz
extracts state variables by using pre-execution offline static
analysis and instruments the service under test during compi-
lation to achieve real-time mapping of state variable value to
shared memory, thereby further improving fuzzing efficiency.

1) Network Event Loop Identification: The main challenge
to identifying the event loop is to distinguish it from other
loops in the network service program because there are too
many different loops in the implementation. A typical example
is in the service initialization stage. Many services may use
a file I/O loop to read configurations. Besides, the event
loop itself may also contain nested loops, which also brings
difficulty for the static analyzer to identify the network event
loop accurately. Hence, we trace the network I/O operations
in the service processing stage and distinguish the outer loop
via backtraces to address the problems.

Firstly, we set breakpoints on input-related system calls
such as read, recv, recvmsg, etc., when the network service has
completed the initialization and enters the service processing
stage. Then the fuzzer establishes a socket connection to the
SUT and sends a probe message. The SUT saves the backtrace
of the function call stack when breakpoints are hit. Finally, we
take the backtrace as an assistance input of our static analyzer
to identify the network event loop. The static analyzer first
records all the loops contained I/O operation in the service
as candidate loops, and scans the backtrace call stack from
the bottom (e.g., libc start main) to match the first function
(the outer one) that contains an I/O loop, then regards it as
network event loops. This is because that the backtrace only
contains the call stack within the network event loop during
the service processing stage, and matching the outer function
that contains an I/O loop could also avoid nested loops.

2) State Variable Extraction: After identifying the network
event loop, the static analyzer then extracts the state variables.
Due to the lack of run-time information, static analysis always
has false positives. Therefore, based on our study about the
network service implementation and our analysis of the char-

4

acteristics of state variables in the service programs, we use
the following heuristic rules for the static analyzer to reduce
false positives when extracting state variables.

• The state variables related operations in network services
are always executed in the network event loop. Hence the
static analyzer only performs analysis within the network
event loop to reduce the analysis range.

• The state variables in network services are always read (for
state checking) or written (for state updating) in the network
event loop or message handlers. Hence the static analyzer
only extracts variables that are both loaded and stored.

• The state variables of network services are often global
enumeration variables or integer member variables in data
structures, and they are only be assigned constants to rep-
resent a specific state. Hence the static analyzer only keeps
global integer variables or user-defined structure members
assigned constant values in their store operation.

According to the above heuristic rules, the static analyzer could
extract all state variables from services with relatively low false
positives and assign a unique string ID to each variable.

3) Compile-Time Instrumentation: After obtaining the net-
work event loop and the list of state variables through static
analysis, NSFuzz performs two types of instrumentation on
the target network service at compile time. On the one hand,
NSFuzz inserts a raise (SIGSTOP) statement at the entry of
the network event loop, thus the service under test could raise
signal feedback to the fuzzer after each request message has
been processed, to indicate that it is ready for receiving the
following request message. On the other hand, to pass the
state variable’s value feedback to the fuzzer engine in real-
time, NSFuzz instruments the STORE operation of each state
variable, which uses the variable value being written as the
key to update the state-related memory shared between the
SUT and the fuzzer. To distinguish it from the shared memory
that records code coverage, we denote the shared memory
that records state information as shared state. The specific
mapping method is as follows:

shared state[hash(var id)⊕ cur store val] = 1;

shared state[hash(var id)⊕ pre store val] = 0;

Firstly, NSFuzz hashes the unique string ID of each state
variable and XORs the hash value with the new state value
to be written, then uses the XOR result as an index to update
the shared state. Besides, NSFuzz also uses the same method
to calculate the index based on the previous old state value to
restore the shared state. After that, NSFuzz has generated the
instrumented program as a service under test for fuzzing.

C. Fuzzing Loop

After using static analysis to obtain the two types of
information and instrument the target service, NSFuzz then
starts to fuzz the instrumented service under test. Compared
with the traditional coverage-guided grey box fuzzers, NSFuzz
introduces a signal raising feedback, so the fuzzer also needs
to cooperate with the instrumented signal feedback to achieve
fast I/O synchronization during the testcase execution. In ad-
dition, the instrumentation at the STORE operation of the state
variable makes NSFuzz also need to check the shared state at
an appropriate time and collect the state transition sequence to
help infer the state model.

execution
request

Fuzzer NET_FORKSERVER

connect(socket) socket connect

request message

SUT pid

SUT status

fork()�

post
processing

all message
sent?

No

Yes

write(pipe)

raise(SIGSTOP)waitpid()

Service
Under Test

get testcase

read(pipe)

read(pipe) write(pipe)

write(pipe)read(pipe)

accept(socket)

send(socket) recv(socket)

Network
Event Loop

Fuzzing Loop

Synchronization
Mechanism

SUT resume

signal
feedback

kill(SIGSTOP)

Fig. 2: The I/O synchronization mechanism among the fuzzer,
NET FORKSERVER, and service under test.

1) Fast I/O Synchronization: To improve fuzzing effi-
ciency, AFL introduced FORKSERVER to be responsible for
the fork creation and recycling of the target under test. Both
AFLNET and STATEAFL are implemented based on AFL.
When they execute a testcase, they first notify the FORK-
SERVER to create a process to be fuzzed, then send each
request message in turn at a manually specified time interval
and finally wait for the FORKSERVER to write the execution
result through the communication pipe after the service ended.

NSFuzz implements NET FORKSERVER to cooperate
with the signal feedback from service under test to achieve
fast I/O synchronization, thus avoiding the manually specified
time wait interval. In such cases, each time the fuzzer of
NSFuzz sends a request message, it waits for feedback from
NET FORKSERVER through the pipe. As the parent process
of the fuzzed network service, NET FORKSERVER waits
directly for the raised signal from the service under test to
determine whether the target has completed a round of I/O
interaction or just crashed based on the signal type, then passes
such information back to the fuzzer. Figure 2 shows the I/O
synchronization among the fuzzer, NET FORKSERVER, and
service under test in the NSFuzz framework.

2) State-Aware Fuzzing: Whenever the fuzzer receives the
message processing result from NET FORKSERVER via the
communication pipe, it calculates the hash of the shared state
buffer. This hash can be used to represent the current state of
the SUT, and the reason is as follows. If a message causes a
state transition, it will update the values of certain state vari-
ables, which will then update shared state buffer. As a result,
after this message is processed, the fuzzer will get a hash of
the shared state buffer which is different from the one before
this message. In other words, whenever the SUT state changes,
the hash of the buffer will change. Therefore, the fuzzer could
use the buffer’s hash to collect a state transition sequence for
inferring the state model after each synchronization. Compared
with STATEAFL, which continuously dumps all the variable
values to an analysis queue during each message processing
and performs post-execution analysis to conduct state infer-
ence, NSFuzz uses the shared state hash to represent the state
more adequately. This could fully use the variable-based state
representation scheme, thereby achieving more efficient state
feedback. Apart from new code coverage, NSFuzz would also

5

TABLE I: The target services from ProFuzzBench used for
preliminary evaluation.

Target Service Network Protocol Version/Commit Transport Layer Language

LightFTP FTP 5980ea1 TCP C
Bftpd FTP v5.7 TCP C

Pure-FTPd FTP c21b45f TCP C
Exim SMTP 38903fb TCP C

Dnsmasq DNS v2.73rc6 UDP C
TinyDTLS DTLS 06995d4 UDP C
Kamailio SIP 2648eb3 UDP C

preserve the testcase that triggered new service state or state
transition as an interesting seed for subsequent fuzzing. And
then NSFuzz would perform state-guided seed selection and
message mutation similar to AFLNET.

V. EVALUATION

We have built a prototype of NSFuzz. The implementa-
tion of NSFuzz adds about 4.5k lines of C/C++ code and
about 100 lines of Python script. In detail, we implement
the static analyzer and compile-time instrumentation based on
LLVM [34] framework, and the fuzzer engine is implemented
based on AFLNET. To elaborate the preliminary evaluation of
NSFuzz, we have performed several experiments to answer the
following research questions:

• RQ1: Accurateness of state module inferred by NS-
Fuzz: Could NSFuzz inference relatively more accurate state
model based on the state variables during the fuzzing loop?

• RQ2: Effectiveness of NSFuzz state-aware fuzzing: Could
NSFuzz achieve higher fuzzing efficiency and overview
results than other existing approaches?

A. Experiment Setup

We selected some fuzzing targets in the network protocol
fuzzing benchmark, ProFuzzBench [35] to evaluate NSFuzz.
ProFuzzBench is a benchmark for stateful protocol fuzzing
which contains 13 network service implementations from 10
network protocols (including FTP, SMTP, SIP, etc.), and it
covers various network protocols based on TCP and UDP with
all implemented in C/C++. In addition, ProFuzzBench applies
necessary patches (such as derandomization) for these network
services to ensure the reliability of the fuzzing evaluation.
In this preliminary evaluation, we currently chose 7 network
services in ProFuzzBench as the evaluation targets of NSFuzz.
Table I shows the information of the target services we chose.

To make the comparison, we selected two state-of-the-
art grey box network fuzzers, AFLNET and STATEAFL, and
another network-enabled version of AFL, AFLNWE [36] as
baseline fuzzers to evaluate NSFuzz. AFLNET uses message
response codes to represent the service state and inference
the state model, then conducts state-guided fuzzing based
on such model during the fuzzing loop. STATEAFL collects
the changed variables during network I/O rounds. Then ex-
tracts state variables and infers the state model through post-
execution analysis. AFLNWE is another network service fuzzer
proposed by the author of AFLNET. It only changes the file
I/O interface from the original AFL to socket-based network
I/O to achieve network service fuzzing.

All experiments were running on the same testing machine
during this evaluation, and the testing machine contains 128

TABLE II: The static analysis result of NSFuzz. LoC means
the line of code of target services.

√
denotes NSFuzz could

identify the network event loop of the corresponding target.

Target Service LoC Network
Event Loop

State Variable
Analysis TimeNumber Example

LightFTP 4.4k √ 1 Access 0.7s
Bftpd 4.7k √ 6 state 1.8s

Pure-FTPd 30k √ 22 loggedin 3.9s
Exim 101.7k √ 58 helo_seen 45.1s

Dnsmasq 27.6k √ 15 found 11.4s
TinyDTLS 10.8k √ 4 state 3.2s
Kamailio 766.7k √ 58 state 441.9s

Intel(R) Xeon(R) Platinum 8358 CPUs and 384GB of SSD
memory. We built each target service with each fuzzer in
docker containers and used the same config for experimental
evaluation. We fuzzed each target service with different fuzzer
containers for 12 hours and repeated 4 times for a total of
1536 CPU hours of fuzzing evaluation.

B. State Module Inference Evaluation (RQ1)

1) Static Analysis: NSFuzz first performed static analysis
to identify the network event loop and used such loop as
starting point to extract state variables. Table II shows the static
analysis results of NSFuzz for 7 target services.

As we can see, NSFuzz could successfully locate the net-
work event loop from different target services, which involves
multiple network protocols, and NSFuzz could also extract
state variables via static analysis. Besides, the number of
extracted state variables and the analysis time are generally
positively correlated with the scale of the target services (LoC),
which is consistent with intuition. It should be noted that the
name of the extracted state variable could sometimes directly
indicate its function of representing the state of the network
service. For example, one of the state variables extracted from
Pure-FTPD [37] by static analysis is loggedin, which is a
global variable used to indicate whether the incoming client
session has completed the FTP login authorization. Moreover,
the message handler could execute different code logic for the
same request message according to whether the client session
has completed the authorization in Pure-FTPD. Nevertheless,
even though multiple heuristic rules have been introduced, the
static analysis results may still contain some false positives.

2) Inferred State Module: After extracting the state vari-
ables and completing the instrumentation, NSFuzz performed
state-aware fuzzing on target network services. Like AFLNET
and STATEAFL, NSFuzz would also infer a state model for
the service under test during the fuzzing process. Table III
shows the average number of vertexes and edges of the state
model inferred these fuzzers for the target service in the 12-
hour fuzzing experiment.

Here we take LightFTP [38] as an example for a case study.
After the 12 hours fuzzing of LightFTP, NSFuzz inferred a
state model with 5 vertexes and 12 edges, as shown in Figure 3.
In this target, the static analyzer extracted one state variable
named Access, which is used to represent the access authority
of client sessions. After analyzing the source code manually,
we found that Access has 4 constant values to represent
different permission of the client user (NOT LOGGED IN,
READONLY, CREATENEW, FULL), and LightFTP would
conduct different message handling processes according to
the user permission. Note that the state model inferred by

6

TABLE III: The average number of vertexes and edges of state
models inferred by different fuzzers.

Target Service Fuzzer
State Module

Vertexes Edges

LightFTP
AFLNET 23 158
STATEAFL 11 47
NSFuzz 5 12

Bftpd
AFLNET 24 126
STATEAFL 4 6
NSFuzz 43 137

Pure-FTPd
AFLNET 27 260
STATEAFL 7 22
NSFuzz 8 22

Exim
AFLNET 12 60
STATEAFL 7 17
NSFuzz 128 225

Dnsmasq
AFLNET 89 271
STATEAFL 108 467
NSFuzz 3 5

TinyDTLS
AFLNET 9 24
STATEAFL 29 69
NSFuzz 32 115

Kamailio
AFLNET 13 93
STATEAFL 4 4
NSFuzz 99 328

NSFuzz contains all these 4 states with an additional initial
dumb state, which showed that NSFuzz could accurately infer
all states during the fuzzing process on LightFTP, thereby
establishing a direct mapping between state variables and the
model. On the other hand, the state model inferred by AFLNET
and STATEAFL with the same initial seeds respectively had
23 vertexes/158 edges and 11 vertexes/47 edges at the end
of fuzzing. However, according to our manual analysis, these
state models could not distinguish the different permissions
of client users, which may lead to incomplete state guidance.
Moreover, these models are also difficult to reflect a clear
relationship with the target service. Therefore, to a certain
extent, the state model inferred by NSFuzz is relatively more
accurate and interpretable than other works.

It is worth noting that even though for all FTP protocol
services, the inferred state model (number of vertexes and
edges) in different implementations would also be different. As
we mentioned above, the static analyzer would not only extract
the variables used to represent the service’s internal state, but it
would also identify some variables such as flag or mode in the
program as output, which is a refinement of the state of service
implementations. However, this shows that NSFuzz has the
ability to identify finer-grained states in the network service.
In this case, the state model inferred by NSFuzz by default is
an extension of the basic state model of the protocol. However,
since the static analysis in NSFuzz is a decoupled module from
the fuzzing loop, users could also choose to specify which state
variables to monitor to construct a state model, achieving state
model inference with different granularities.

1

2 3 4

0

Fig. 3: The inferred state model of LightFTP.

TABLE IV: The average time for the fuzzers to trigger the
first crash among 4 runs experiments.

Target Service
First Crash Trigger Time (s)

AFLNET AFLNWE STATEAFL NSFuzz
Dnsmasq 1551s 788.25s 765.25s 583s

TinyDTLS 26s 11.75s 47.75s < 1s

C. Fuzzing Efficiency Evaluation (RQ2)

To evaluate the efficiency of NSFuzz, we have counted the
average results of NSFuzz and other fuzzers among 4 running
experiments. Table V and Table IV illustrate the average
fuzzing throughput, final code branch coverage, and the time
to trigger the first crash during fuzzing evaluation.

1) Fuzzing Throughtput: The fuzzing throughput of fuzzer
demonstrates the number of testcases executed per second.
Obviously, a higher fuzzing throughput indicates that the
program under test has executed more testcases, and the overall
test efficiency is also higher.

As shown in Table V, the fuzzing throughput of NSFuzz
is significantly better than that of AFLNET and other works.
NSFuzz has improved various from 1x to more than 50x
throughput in different target services. Because STATEAFL
needs to collect variable values during the fuzzing process for
post-execution analysis to perform state model inference, the
additional overhead introduced by STATEAFL causes a decline
in its fuzzing throughput compared with AFLNET. It is worth
noting that AFLNWE, the only fuzzer without state-aware, also
improves fuzzing throughput compared to AFLNET. This is
mainly because that AFLNWE is just a network I/O enabled
version of AFL, which only sends one-time data to the service
under test, thus saving the waiting delay and state-related
overhead in multiple network interactions. However, even in
this case, its fuzzing throughput is still not as good as NSFuzz,
which proves that the synchronization mechanism of NSFuzz
based on lightweight instrumentation could significantly im-
prove the overall fuzzing efficiency.

2) Code Coverage: Code coverage is always a standard
metric for evaluating fuzzers, which indicates how much code
in the service under test has been executed during the whole
fuzzing process. Usually, the higher the code coverage, the
more program vulnerabilities may be triggered.

Table V illustrates that NSFuzz could achieve a higher
code branch coverage on almost all target services. Moreover,
although AFLNWE has a relatively high fuzzing throughput
among these fuzzers, it could not achieve good code cov-
erage when fuzzing on network services due to its lack of
multiple network I/O interactions and state guidance. Besides,
the average number of code branches covered by STATEAFL
during the 12-hour fuzzing is not significantly different from
AFLNET. Figure 4 shows the growth of the number of code
branches explored with the fuzzing time during the 12-hour
fuzzing process among several fuzzers. As can be seen from
the figure, NSFuzz could not only cover more code branches
on most target services but also could explore the branches
much faster than any other fuzzers.

3) Crash Trigger: In addition to fuzzing throughput and
code coverage, the triggering of the crash directly reflects
the vulnerability discovery capabilities of fuzzers. Table IV

7

0 200 400 600
#Time (min)

100

150

200

250

300

350

400

#B
ra

nc
he

s

LightFTP

0 200 400 600
#Time (min)

380

400

420

440

460

480

500

#B
ra

nc
he

s

Bftpd

0 200 400 600
#Time (min)

500

600

700

800

900

1000

1100

1200

#B
ra

nc
he

s

Pure-FTPd

0 200 400 600
#Time (min)

1000

1500

2000

2500

3000

3500

4000

#B
ra

nc
he

s

Exim

0 200 400 600
#Time (min)

200

250

300

350

400

450

500

550

600

#B
ra

nc
he

s

TinyDTLS

0 200 400 600
#Time (min)

650

700

750

800

850

900

#B
ra

nc
he

s

Dnsmasq

0 200 400 600
#Time (min)

5000

6000

7000

8000

9000

10000

#B
ra

nc
he

s

Kamailio

AFLNET
AFLNWE
NSFuzz
STATEAFL

Fig. 4: The average code branch coverage growth of various fuzzers among 4 runs of 12 hours toward each target service. Note
that the initial seeds used by target services have covered some code branches, and the y-axis mainly displays the new coverage
triggered after the seeds, and thus it does not start from 0.

TABLE V: The average fuzzing throughput and final code branch coverage of various fuzzers among 4 runs of 12 hours toward
each target service compared to AFLNET. The AFLNET column displays the absolute number of these metrics, and all other
columns denote the changes compared to AFLNET.

Target Service
Fuzzing Throughput (exec/s) Final Code Branch Coverage

AFLNET AFLNWE STATEAFL NSFuzz AFLNET AFLNWE STATEAFL NSFuzz
LightFTP 8.42 +330.8% -55.6% +558.9% 346 -52.5% +0.5% +10.3%

Bftpd 4.09 +144.0% -45.2% +869.7% 479.25 -3.3% -3.9% +2.9%
Pure-FTPd 5.29 +115.3% -80.0% +175.0% 978.25 -0.7% -2.2% +25.5%

Exim 2.69 +108.6% +35.3% +113.4% 3862.5 -72.7% +4.3% +7.8%
Dnsmasq 7.24 +560.6% -84.4% +669.1% 865.25 -10.5% -5.9% -4.0%

TinyDTLS 2.66 +458.3% -47.0% +5488.0% 474 -27.5% -11.3% +22.9%
Kamailio 5.19 +20.8% -49.7% +512.5% 9617.5 -17.6% -1.8% +4.1%

illustrates the time taken by different fuzzers to trigger the
first crash during the fuzzing experiments on target network
services. As shown in the table, NSFuzz could trigger crashes
on the same targets compared to other fuzzers, and the average
time to trigger the first crash is significantly lower than
other competitors. Especially during the fuzzing process of
TinyDTLS network service, NSFuzz could always trigger the
program crash in less than 1s, which to some extent shows
that NSFuzz could trigger potential vulnerabilities in the target
program faster when fuzzing network services.

VI. FUTURE WORK

Currently, we preliminary evaluate NSFuzz under only
some of the targets in ProFuzzBench. The main reason is that
the static analysis part of NSFuzz still has some limitations.
Firstly, the static analysis part of NSFuzz currently could only
support analyzing C language targets but does not support the
analysis of C++ targets. This is mainly due to the indirect calls
generated by virtual functions in C++ that make it difficult to
build an accurate call graph which affects the result of static
analysis. Secondly, we notice that some network applications
use event-driven libraries (e.g., libevent) to build their service
programs. In this case, the network event loop we defined is
implemented in the library instead of the service code, which
brings challenges for the static analyzer to find the point to in-
strument raise function for achieving synchronization. Inspired
by IJON [29], etc. [30], we plan to introduce an annotation

mechanism into NSFuzz as a supplement to the proposed
static analyzer. We will design several APIs to help users
annotate state variables and synchronization points manually
in the SUT, which is expected to improve the applicability and
scalability of NSFuzz.

In addition, the current preliminary evaluation lacks suffi-
cient ablation study, i.e., assessments of the impact of variable-
based state representation scheme on the overall fuzzing effi-
ciency. Therefore, we will conduct the corresponding ablation
experiments in the future to study the influence of accurate
state representation in network service fuzzing.

VII. CONCLUSION

In this report, we analyzed the problems of state representa-
tion and testing efficiency of existing network service fuzzers.
Moreover, according to our study on the implementation
of network services, we proposed a high-efficiency fuzzing
framework combined with variable-based state representation
and synchronization mechanism. Then, we implemented the
prototype of NSFuzz by using static analysis and lightweight
compile-time instrumentation to achieve state-aware fuzzing.
Finally, we preliminary evaluated NSFuzz on ProFuzzBench,
and the results showed that NSFuzz could inference a relatively
more accurate state model to guide the fuzzing. Besides,
NSFuzz could achieve higher fuzzing throughput, reach higher
code coverage, and trigger crashes in a shorter time than other
stateful network fuzzers.

8

REFERENCES

[1] “The Heartbleed Bug,” https://heartbleed.com/, 2020.
[2] “The Transport Layer Security (TLS) Protocol Version 1.3,” https://

datatracker.ietf.org/doc/html/rfc8446, 2018.
[3] “OpenSSL,” https://www.openssl.org/, 2021.
[4] “Server Message Block (SMB) Protocol Versions 2 and 3,” https://docs.

microsoft.com/en-us/openspecs/windows protocols/ms-smb/, 2021.
[5] “WannaCry ransomware attack,” https://en.wikipedia.org/wiki/

WannaCry ransomware attack, 2021.
[6] M. Security, “Peach,” https://github.com/MozillaSecurity/peach, 2021.
[7] J. Pereyda, “boofuzz: Network Protocol Fuzzing for Humans,” https:

//github.com/jtpereyda/boofuzz, 2021.
[8] M. Zalewski, “american fuzzy lop,” https://github.com/google/AFL,

2021.
[9] Google, “Honggfuzz,” https://github.com/google/honggfuzz, 2021.

[10] “LibFuzzer,” https://llvm.org/docs/LibFuzzer.html, 2021.
[11] V. Pham, M. Böhme, and A. Roychoudhury, “AFLNet: A Greybox

Fuzzer for Network Protocols,” in Proceedings of the 13rd IEEE In-
ternational Conference on Software Testing, Verification and Validation
: Testing Tools Track, 2020.

[12] R. Natella, “StateAFL: Greybox Fuzzing for Stateful Network Servers,”
arXiv preprint arXiv:2110.06253, 2021.

[13] D. Aitel, “The advantages of block-based protocol analysis for security
testing,” Immunity Inc., February, vol. 105, p. 106, 2002.

[14] R. Kaksonen, M. Laakso, and A. Takanen, “Software security assess-
ment through specification mutations and fault injection,” in Communi-
cations and Multimedia Security Issues of the New Century. Springer,
2001, pp. 173–183.

[15] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “SNOOZE: toward a Stateful NetwOrk prOtocol fuzZEr,” in
International conference on information security. Springer, 2006, pp.
343–358.

[16] H. J. Abdelnur, R. State, and O. Festor, “KiF: a stateful SIP fuzzer,” in
Proceedings of the 1st international Conference on Principles, Systems
and Applications of IP Telecommunications, 2007, pp. 47–56.

[17] OpenRCE, “Sulley,” https://github.com/OpenRCE/sulley, 2012.
[18] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network

protocol fuzzing framework,” IJCSNS, vol. 10, no. 8, p. 239, 2010.
[19] T. Kitagawa, M. Hanaoka, and K. Kono, “Aspfuzz: A state-aware

protocol fuzzer based on application-layer protocols,” in The IEEE
symposium on Computers and Communications. IEEE, 2010, pp. 202–
208.

[20] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,”
in International Conference on Security and Privacy in Communication
Systems. Springer, 2015, pp. 330–347.

[21] B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing iot firmware
via multi-stage message generation,” in Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2525–2527.

[22] Y. Chen, T. Lan, and G. Venkataramani, “Exploring effective fuzzing
strategies to analyze communication protocols,” in Proceedings of
the 3rd ACM Workshop on Forming an Ecosystem Around Software
Transformation, 2019, pp. 17–23.

[23] Y. Yu, Z. Chen, S. Gan, and X. Wang, “SGPFuzzer: A State-Driven
Smart Graybox Protocol Fuzzer for Network Protocol Implementa-
tions,” IEEE Access, vol. 8, pp. 198 668–198 678, 2020.

[24] C. Song, B. Yu, X. Zhou, and Q. Yang, “SPFuzz: a hierarchical
scheduling framework for stateful network protocol fuzzing,” IEEE
Access, vol. 7, pp. 18 490–18 499, 2019.

[25] H. He and Y. Wang, “PNFUZZ: A Stateful NETWORK PROTOCOL
FUZZING APPROACH BASED ON PACKET CLUSTERING.”

[26] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-Net: Network Fuzzing with Incremental Snapshots,” arXiv
preprint arXiv:2111.03013, 2021.

[27] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 2009, pp. 110–125.

[28] C. Lee, J. Bae, and H. Lee, “PRETT: Protocol Reverse Engineering
Using Binary Tokens and Network Traces,” in IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer,
2018, pp. 141–155.

[29] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring
deep state spaces via fuzzing,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 1597–1612.

[30] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar,
“Fuzzfactory: domain-specific fuzzing with waypoints,” Proceedings of
the ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–29,
2019.

[31] J. De Ruiter and E. Poll, “Protocol State Fuzzing of {TLS} Implemen-
tations,” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 193–206.

[32] P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, and
J. Somorovsky, “Analysis of {DTLS} Implementations Using Protocol
State Fuzzing,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020, pp. 2523–2540.

[33] J. Smith, “Bftpd,” http://bftpd.sourceforge.net/, 2021.

[34] “LLVM,” https://llvm.org/, 2021.

[35] R. Natella and V. Pham, “Profuzzbench: A benchmark for stateful pro-
tocol fuzzing,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021.

[36] V. Pham, “AFLNWE,” https://github.com/thuanpv/aflnwe, 2021.

[37] F. Denis, “Pure-FTPd,” https://www.pureftpd.org/project/pure-ftpd/,
2021.

[38] “LightFTP,” https://github.com/hfiref0x/LightFTP, 2021.

9

