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when fuzzing FFmpeg [12] with sampled configurations were
not reached by its default configuration. This result suggests
a missed opportunity to achieve higher code coverage and/or
to find more bugs than when a fuzzer is used to test a single
configuration.

A simple remediation to this problem is to fuzz all valid
program configurations. However, the configuration space of
real-world programs is often large, making it infeasible to
exhaustively fuzz all configurations. The software testing lit-
erature has conducted extensive research on this issue. A
widely adopted solution is combinatorial testing [9], [10],
which proposes to test a sample of configurations that covers
certain properties of the configuration space (e.g., all pairs
of options appear in some configurations in the sample).
In addition, dictionary- or grammar-based approaches have
been developed to fuzz program configurations [26], [24].
Program configurations generated by these techniques can then
be used as inputs to fuzz the program’s input file. However,
lacking further in-advance knowledge, prior techniques would
spend equal time on each configuration even though different
configurations enable different amounts of reachable code;
such equal treatment wastes resources.

This observation motivated us to design ConfigFuzz, which
enables efficiently fuzzing program options and the normal
program input at the same time (Section III). ConfigFuzz sepa-
rates a program’s input space into two parts: the configuration
bytes and data bytes. We encode the program options into
the configuration bytes in a transformed program, and allow a
fuzzer’s mutation operators to decide when and how to mutate
the program’s configurations during the fuzzing campaign.
As the configuration space is highly structured, ConfigFuzz’s
encoding ensures that the mutations on program options always
generate valid configurations. At the same time, the data bytes
(i.e., the normal input) are also mutated by the fuzzer, and
given as an input of the target program’s main function. While
it is possible to fuzz program options along with data bytes
by modeling them as unbounded strings (similar to AFL’s
argv_fuzzing feature [2]), we find this approach wastes most
of the time trying to reach a valid configuration.

Specifically, ConfigFuzz takes a program’s options
specification—essentially a grammar for the options—as input.
This specification distinguishes different option types (i.e.,
bool, choice, numeric, and string), and specifies valid values
of each option. For example, the valid values of a numeric
option are integer or real numbers that can be specified with
a range. Users of ConfigFuzz can use this specification to
control which options to fuzz, because some options may not
be useful to fuzz (e.g., they are not used in a security-critical
context). ConfigFuzz then outputs a C code wrapper that first
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aware fuzzing. To start, we assess how program configurations 
affect fuzzing performance by performing an empirical study 
that ran AFL [2] on three common, configurable fuzzing 
targets (Section II). We found that fuzzing configurations with 
different option settings resulted in significant difference in 
code coverage, and some code could only be reached by a 
unique configuration. For example, about 35% lines reached
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parses in an encoding of the options (i.e., configuration bytes)
from the start of the program input, and then invokes the
main function of target with its options set to the decoded
values; the remaining input (i.e., data bytes) is used by the
target program as usual. The fuzzer, e.g., AFL, fuzzes the
transformed (wrapped) program. We design the expanded input
to ensure that the mutation on a specific byte always updates
the setting of the same option. This makes the feedback mecha-
nism built in existing fuzzers useful for fuzzing configurations.
ConfigFuzz is parameterized to decide the number of program
options that can be explicitly set (through a parameter in the
options specification file).

While the approach of ConfigFuzz is applicable to many
languages, our current implementation focuses on C programs.
We used ConfigFuzz to transform three common fuzzing
targets—cxxfilt, objdump, and xmllint—and carried out a
preliminary evaluation using a modified version of Google’s
FuzzBench [14] framework, running the AFL and AFL++
[13] fuzzers (Section IV). We compare ConfigFuzz’s fuzzing
performance against that of two baselines: (1) when always
fuzzing the single default configuration; and (2) when fuzzing,
in sequence and with equal time, each of a sample of con-
figurations drawn from 2-way covering arrays. For xmllint,
ConfigFuzz shows better performance than the baseline setups,
and parameterizing ConfigFuzz to fuzz configurations with
up to 2 options leads to higher code coverage than up to
1 option. On the other 2 programs, ConfigFuzz does not
always outperform the baselines. We raise hypotheses on the
internal mechanism of ConfigFuzz to understand the results,
and propose future plans to test the hypotheses and expand
the evaluation, using data visualization. In this registered
report, we used different fuzzing targets for the empirical
study and ConfigFuzz evaluation because the experimental
environments were set up differently. We will update both the
study and evaluation to include the same programs and run
under FuzzBench.

This paper makes the following contributions:

• An empirical study that motivates the importance of
fuzzing configurations of program options.

• ConfigFuzz, a tool that encodes program configura-
tions, specified by a grammar, into the input space
to allow reusing existing fuzzing algorithms to fuzz
program options.

• The implementation of ConfigFuzz that automatically
generates configuration stubs and the integration of
ConfigFuzz into FuzzBench.

• An evaluation that shows ConfigFuzz’s performance
comparing to the baselines, and the proposal of an
in-depth analysis of the internal mechanisms of Con-
figFuzz through visualization.

Related work: The idea of encoding the options into the
program input space as a prefix to the actual input was first
proposed by AFL [2]; its experimental feature argv_fuzzing
reads input from stdin and puts it into argv. A function call
to AFL_INIT_ARGV() needs to be inserted at the beginning
of the main function to enable argv_fuzzing. This approach
does not require a configuration grammar and encodes con-
figurations automatically, relying on the program itself to

TABLE I: Command-line options of target programs in the
preliminary study.

Program Bool Choice Numeric String
nm-2.28 14 3 0 0

gif2png-2.5.8 13 0 0 1
FFmpeg-n4.4 18 12 32 20

reject invalid ones. However, the option encoding chosen by
AFL often leads to invalid configurations, causing many early
terminations which waste resources; this point was observed
by the AFL authors [3], and we confirmed it with our own
experiments. We thus adopted a more efficient encoding that
ConfigFuzz automatically generates based on a configuration
grammar. Given that the grammar correctly models a pro-
gram’s configuration space, ConfigFuzz cannot find bugs in
the program logic that handles invalid configurations, while
AFL’s argv_fuzzing feature can.

TOFU [24] is a directed fuzzer, meaning that it aims
to drive the fuzzer to particular targets. Since such targets
might require certain options to be enabled, TOFU begins by
fuzzing the option space, using a grammar-based mutator to
try different options and see what coverage they enable. It
then selects configurations that cover code close to the targets
before starting fuzzing the program’s input file. ConfigFuzz is
more general: it enables exploring configurations along with
fuzzing program inputs, not just before, and it allows the reuse
of existing general-purpose fuzzers’ mutators.

The Fuzzing Book [26] introduces a tool that automati-
cally extracts command-line options and infers a configuration
grammar. The tool then uses the inferred grammar to generate
configurations to fuzz, assigning equal amount of resources
on each configuration. As already mentioned, assigning each
configuration equal weight very likely wastes resources since
different configurations offer uneven amounts of reachable
code; ConfigFuzz addresses this problem by fuzzing the op-
tions and the rest of the input together. The Fuzzing Book tool
also complements ConfigFuzz by automatically extracting the
configuration space of the target program.

II. HOW PROGRAM CONFIGURATIONS AFFECT FUZZING
PERFORMANCE?

We perform a preliminary empirical study to understand
how configurations make a difference in fuzzing outcomes.
While it is expected that different configurations could result
in different part of code being executed, there is no prior
study that focuses on understanding how tuning a program’s
configurations would affect a fuzzer’s results in terms of code
coverage. The answer to this question can be used to motivate
the design of a fuzzer that fuzzes configurations.

A. Study Setup

We chose nm-2.28 [20], gif2png-2.5.8 [15], and FFmpeg-
n4.4 [12] as the target programs for this preliminary study.
These programs are popular fuzzing targets [22][7][16] with
command-line options. We inspected the configuration doc-
umentation of each target program to understand its allowed
options. Table I shows the number of options for each program.
We found that each command-line option falls into one of four
possible types:
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TABLE II: Total and unique line coverage for FFmpeg configurations.
Default -f flv -f mpeg -f h264 -f mp4 -f webm all configs

# of all lines 17496 13511 12916 9344 1836 1782 26919
# of unique lines 4954 2073 1707 3130 149 109 -
% of unique lines 28% 15% 13% 33% 8% 6% -

TABLE III: Total and unique line coverage for nm configurations.
-l –synthetic -s –defined-only –with-symbol-versions -f posix -a -f bsd -r

# of all lines 4060 3913 3844 3827 3809 3788 3780 3762 3732
# of unique lines 428 41 5 3 14 19 8 3 5
% of unique lines 11% 1% 0% 0% 0% 0% 0% 0% 0%

-g -A -n –special-syms -u -f sysv –size-sort -D all configs
# of all lines 3719 3676 3655 3591 2797 2728 2715 2486 4676

# of unique lines 6 6 19 0 4 38 96 7 -
% of unique lines 0% 0% 0% 0% 0% 1% 4% 0% -

TABLE IV: Total line coverage for gif2png configurations.
-g -r -b -v -h -O -i -p

# of all lines 2398 2392 2373 2369 2352 2352 2350 2334
-f -n -m Default -vv -s -w all configs

# of all lines 2310 2248 2237 2232 2167 2130 404 2667

• Bool: the setting of a bool option is a binary value to
decide the presence.

• Choice: the setting of a choice option is an element
in a finite set of possible choices.

• Numeric: the setting of a numeric option is either an
integer (i.e., the intnum subtype) or a real number (i.e.,
the realnum subtype).

• String: the setting of a string option is an arbitrary
string.1

To answer how program configurations affect fuzzing per-
formance, we generate multiple configurations of each pro-
gram, and perform fuzzing runs on each generated configura-
tion to compare their code coverage. For this preliminary study,
we used a subset of the command-line options of each program
in Table I (see Section V for the planned expanded study).
For nm, we generated 14 configurations, each enabling one
of its 14 bool options. We also generated three configurations
from the choice option -f, which has three settings posix,
sysv, and bsd. As a result, we used 17 nm configurations
for this preliminary study. For gif2png, we generated 13
configurations, each enabling one of its 13 bool options. In
addition, we used a default configuration that does not turn on
any of its option, totaling 14 gif2png configurations. FFmpeg
has a much larger configuration space; we selected 5 settings
(flv, mpeg, h264, mp4, and webm) for an important choice
option -f, which forces the format of FFmpeg’s audio and
video conversion. We also used a default configuration with
only -i option turned on to accept input file, totaling 6 FFmpeg
configurations.

We used AFL-2.52b as the fuzzer for this preliminary
study. We ran 3 trials for each configuration, and every trial

1The constraints of a string option are usually not shown in the configuration
documentation, even if the programs are checking the valid settings of a string
option at runtime (e.g., through regular expressions).

ran for 24 hours. All programs used an empty file as their
seed, except for gif2png which used the seed distributed with
AFL (because AFL had issues making progress with gif2png
when using the empty seed). Line coverage was extracted by
afl-cov [5] after the completion of each AFL trial.

B. Study Results

Overall, we observed that different configurations con-
tributed disproportionally to code coverage, while almost
every individual configuration enabled some unique code to
be reached. This result strongly motivates the design of an
effective fuzzer for program configurations.

Table II shows the total and unique numbers of lines
covered by each configuration in FFmpeg. We report the
number of lines covered by each configuration by aggregating
the distinct lines in all 3 trials. A unique line (third row) means
that this code was only reached in the fuzzing runs of a specific
configuration, and we also show the percentage of these unique
lines of all the lines covered by each configuration (fourth
row). The last column of Table II (“all configs”) shows the
number of distinct lines covered in the fuzzing runs of the
FFmpeg configurations.

We observe that while the default configuration covered
the most code, only 65% of all code covered (17496 out of
26919) by fuzzing these six configurations was due to the
default configuration. This indicates limiting runs to a single
program configuration, as most past fuzzing experiments have
done (e.g., [7], [13]), is a missed opportunity to reach more
code. We also see that different configurations make different
contributions to the overall code coverage. The default, -f
flv, and -f mpeg configurations all covered more than 10000
lines of code, but fuzzing the configuration -f webm only
covered 1782 lines. Nevertheless, there are unique lines only
covered by each FFmpeg configuration. About one third of the
lines covered by the configuration -f h264 were unique; even
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Fig. 1: Overview of ConfigFuzz.

the configuration that covered the least code (-f webm) had
109 unique lines.

Table III shows the total and unique numbers of lines
covered by each configuration in nm. All but one configuration
covered some unique lines. However, unlike FFmpeg where
each configuration covered 109-4954 unique lines (accounting
for 6% to 33% of all lines covered by each configuration),
76% (13 out of 17) nm configurations covered less than 20
unique lines. The option -l covered the most (4060) lines and
many (428) unique lines, an important option to test. On the
other hand, while the option -size-sort only covered 2715
lines, it produced the second most unique lines (96).

Table IV illustrates the aggregated lines covered for each
gif2png configuration. As of right now, we have not computed
the unique lines covered. Table IV shows that all but one
configurations covered between 2100 and 2400 lines, a smaller
variance in terms of line coverage. The configuration -w
covered 404 lines of code. We will add the unique lines
covered by each configuration to further analyze the impact
of gif2png’s configurations.

III. CONFIGFUZZ

Our study results suggest that different configurations can
have differing levels of impact on fuzzing code coverage. To
best allocate resources to a fuzzing task, we should prioritize
fuzzing the configurations that are likely to lead to more
coverage. However, it is difficult to know in advance which
are the high-coverage configurations.

We propose ConfigFuzz to address this challenge by trans-
forming the target program to integrate command-line options
into the program input that is subject to fuzzing. This allows
the fuzzer to change the configuration on the fly if doing
so will improve coverage. ConfigFuzz requires a grammar
of the configuration options accepted on the target program’s
command line, and uses these to drive the transformation. The
transformed program effectively allows the fuzzer to mutate
expanded inputs, which include both a configuration part and
a normal input data part.

Figure 1 shows an overview of ConfigFuzz and how to fuzz
with ConfigFuzz. Given a target program and its configuration
documentation as inputs, the test engineer first constructs a
formatted configuration grammar file. This grammar describes
each fuzzable program option with its type and constraints
(e.g., valid range of a numeric option). The configuration stub
generator then uses this grammar to create a C-code stub

1 {
2 "input options": ["-i"],
3 "options":
4 [{"id": 0,"opt": "-f", "type": "choice",
5 "choices":
6 ["mp4", "mpeg", "webm", "h264", "flv"]},
7 {"id": 1,"opt": "-vframes",
8 "type": "numeric", "range": [0,432000]},
9 {"id": 2,"opt": "-vn", "type": "bool"},

10 {"id": 3,"opt": "-filter",
11 "type": "string"}],
12 "dependence": [],
13 "conflict":
14 [["-vn", "-vframes"]],
15 "strmax": 19,
16 "maxopts": 2
17 }

Fig. 2: An excerpt of configuration grammar of FFmpeg.

that decodes binary input into a set of options. In particular,
the stub is fed the expanded fuzzable input, whose prefix
consists of configuration bytes and whose remainder consists
of data bytes. It decodes the configuration bytes into a set of
command-line options which it writes into argc and argv.
It directs the remaining data bytes into the program’s input
stream (e.g., stdin or an input file path). The generated stub
is injected into the start of the target program’s main function.
Doing so allows any fuzzer’s original algorithm (e.g., the
mutator) to fuzz both the program’s input configuration and
its normal input at once.

A. Configuration Grammar

The configuration grammar describes the allowed
command-line options of a program. Each option is specified
using an identifier (id), name, and type. There are five possible
types:

• bool: a command-line option that is either present or
not present. Its setting is a boolean value to decide the
presence.

• choice: a command-line option whose setting is a
element in a finite set of possible choices.

• intnum: a command-line option whose setting is a
number with no fractional part.

• realnum: a command-line option whose setting is a
number with a fractional part.

• string: a command-line option whose setting is an
arbitrary string.

Type bool and choice have finite number of settings, while
intnum, realnum and string have arbitrarily large setting space.

The configuration grammar is expressed using a simple
JSON format; an example is shown in Figure 2. A program
may take input files in different ways. For example FFmpeg
takes an input file with its -i option, specified on line 2. For
programs taking input data from stdin, an input option < will
be specified in the grammar, so that data in input file will be
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Fig. 3: Structure of ConfigFuzz expanded input.

redirected to stdin. For a choice option, the possible settings
are listed in the choices field. For example, lines 4-6 specify
that the choice option -f has the five settings: flv, mpeg,
h264, mp4 and webm. For a numeric option, the range field is
used to specify the range of its valid values. For example, lines
7-8 specify that the valid range of the intnum option -vframes
is 0 to 43200. When the range of a numeric option is not given,
this option is potentially unbounded; instead, we use the range
of int and double types in C as the default range for intnum
and realnum options, respectively. Line 9 specifies a bool
option -vn. For all string options, like -filter on lines 10-
11, the strmax field is used to specify their maximum number
of characters. Line 15 specifies that at most 19 characters are
allowed for all string option settings in FFmpeg.2

When manually inspecting the configuration documenta-
tion, we also identified that there exist two types of interactions
among command-line options: dependence and conflict. Sim-
ilar interactions between the program options were identified
by Mordahl and Wei in other configurable software [18]. We
say option A depends on option B when option A can only
be set if the bool option B is set. We say option A conflicts
with option B when at most one of the two options can be
set in the program’s configuration. For example, lines 13-14
specifies that -vn conflicts with -vframes.

Lastly, we use the maxopts field to enforce a maximum
degree of option combinations that may be generated during
fuzzing. Line 16 specifies that configurations with up to 2
options explicitly set can be generated.

B. Configuration Stub Generation

ConfigFuzz transforms the target program to take an ex-
panded input that contains both its configuration and its data
input. This expanded input, with configuration bytes followed
by data bytes is processed by an automatically generated C-
code stub. The stub decodes the options from the configuration
bytes, and redirects the remaining data bytes to program’s
main input channel. This stub is injected at the beginning of
a program’s main function (see Section III-C).

The configuration data is encoded in the expanded input
as shown in Figure 3. The configuration bytes precede the
data bytes, and these configuration bytes are divided into two
parts: the bytes responsible for encoding which options to turn
on (i.e., option bytes), and the bytes responsible for encoding
which setting to use for an option (i.e., the group of setting
bytes that follows the option bytes).

The number of bytes needed for option bytes is decided
by maxopts specified in the configuration grammar, that is,

2We use strmax=19 as the default value for ConfigFuzz.

1 opt_bytes = read_next_k_bytes(2)
2 setting_bytes_arr[0] = read_next_k_bytes(1)
3 ...
4 data_bytes = read_remaining_bytes()
5 for opt_byte in opt_bytes:
6 opt_id = opt_byte % 4
7 option = options[opt_id]
8 setting_bytes = setting_bytes_arr[opt_id]
9 if opt_id == 0:

10 setting_id = setting_bytes % 5
11 if setting_id == 0:
12 setting = "mp4"
13 else if setting_id == 1:
14 setting = "mpeg"
15 else if setting_id == 2:
16 ...
17 argv = argv + option + setting
18 argc += 2
19 ...
20 fn = dump_bytes_to_file(data_bytes)
21 argv = argv + "-i" + fn
22 argc += 2

Fig. 4: Configuration stub pseudocode generated for FFmpeg.

at most maxopts options are turned on in the generated
configurations. One byte is needed to encode each option
assuming a program does not have more than 256 options.
The rest of the configuration bytes are used for encoding the
setting of each option in the configuration grammar. For the
setting bytes of each option, the number of bytes needed is
decided by the option type and its constraint. Specifically, (1)
a bool option needs 1 byte, (2) a choice option needs ceiling
of (log256[number of choices]) bytes, (3) a numeric option
needs ceiling of (log256[size of range]) bytes, where the size
of range is computed by subtracting the lower bound from the
upper bound, both specified in the configuration grammar, and
(4) a string option needs (strmax+1) bytes, where strmax is
specified in the configuration grammar.

Figure 4 shows the pseudocode for part of a configuration
stub generated with the grammar described in Figure 2 for
FFmpeg. Line 1 reads two option bytes from the input (the
first two bytes), as maxopts is set as 2 in our example. Line
2 reads the next byte from the input as the setting bytes of
option_id=0; 1 byte is read because in our example, this
option (-f) is a choice option with 5 choices, and 1 byte is
large enough to encode them. The omitted code at line 3 reads
the setting types for each remaining option. Line 4 reads the
remaining data into data bytes, which is later used as program
input. For each option byte, lines 6 and 7 transform it into an
option. The option id is determined by taking the reminder of
the option byte divided by the total number of options (4 in
our example, as shown on line 6). The option is then looked up
in the options array (which is generated with the rest of the
stub when processing the configuration grammar), per line 7.
Line 8 retrieves the setting bytes per the option id. Lines 9–16
decode the setting of option -f, which is a choice-type option.
First, a setting_id is calculated from the setting bytes, and
then this byte is used to select the actual choice. Other option
types are encoded as follows:
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• For a bool option, its setting is empty (i.e., turning on
the bool option only requires adding the option to the
argument without a setting).

• For a numeric option, we first obtain the
range of the option and then the encoding
is based on the setting bytes and the range.
Specifically, we follow two equations for the
calculation: rsize=range.max-range.min+1 and
setting=range.min+setting_bytes%rsize.

• For a string option, its setting is directly transformed
from the setting bytes with string type cast.

Returning to Figure 4, lines 17 and 18 append the option and
setting strings to argv and increment argc of the program
based on the encoding. These simulate the command-line
arguments given to the main function. We update argc and
argv the same way on all options except bool options. Because
bool options do not have any setting, we only append the
option string to argv and increment argc by 1. Finally, in
lines 20 – 22, we dump the data bytes into an in-memory file,
append argv with the input options (i.e., -i for FFmpeg) and
file name, and increment argc accordingly.

This structure for configuration bytes’ encoding ensures
that each byte can always be legally interpreted as specifying
an option or its setting. As a result, a mutation performed
on the same byte always properly updates the encoded option
or setting, making the coverage feedback of a fuzzer more
efficient. We call this encoding the hash encoding. One limi-
tation of hash encoding is that it may not encode options and
settings with equal probability. For example, we use one option
byte to encode a program with 255 command-line options; one
option (option_id=0) will have a higher probability of being
selected. We may allocate more bytes for selecting an option
or a setting to remediate this problem, but it makes the input
larger which may reduce fuzzing effectiveness.

C. Configuration Stub Injection

The stub injection step of ConfigFuzz takes the source code
of the generated stub, and injects it into the beginning of the
target program’s main function, implemented with a Python
script. The stub modifies main’s parameters argc and argv
to hold the decoded options. ConfigFuzz assumes that a fuzzer
will run the transformed program with the expanded input
and no other command-line options because the command-line
options are written by the injected stub. Therefore, the inputs
of the stub will usually be argc of 2 and argv[1] being the
path to a file storing the expanded input.

The modified parameters are then given to the rest of the
main function, mimicking the situation where command-line
options are stored in argv, and a fuzzer fuzzes the program
along with configurations.

IV. EVALUATION

We conducted preliminary experiments to evaluate Config-
Fuzz, comparing its performance on different settings against
two baseline setups: one fuzzes a default configuration and the
other samples configurations drawn from covering arrays. In
this section, we present the setup and results of the prelimi-
nary experiments. We discuss additional planned evaluation in
Section V.

Program Bool Choice Numeric String
cxxfilt-2.37 7 1 0 0

objdump-2.37 26 7 3 1
xmllint-2.9.12 36 0 1 4

TABLE V: Command-line options of target programs in the
preliminary evaluation.

A. Setup of Preliminary Experiments

1) Target Programs and Fuzzers: ConfigFuzz-transformed
programs are compatible with most existing fuzzers. In the pre-
liminary experiments, we ran experiments using two fuzzers:
AFL-2.57b [2] and AFL++-3.14a [13]. Using more than one
fuzzer, we can check if benefits of ConfigFuzz are observed
in both fuzzers, and/or if the behavior is specific to a fuzzer.

We have run both fuzzers on three particular programs:3
cxxfilt-2.37 [11], objdump-2.37 [21], and xmllint-2.9.12 [25].
The configuration space of these programs is shown in Table V.
We excluded string options from ConfigFuzz’s configuration
grammar to be consistent with the baselines, as explained in
the following subsection.

2) ConfigFuzz Settings and Baselines: We experimented
with two settings of ConfigFuzz. Specifically, we set maxopts
to 1 and 2, i.e., fuzzing configurations with at most 1 and 2
options explicitly set, respectively. We call these two variations
as ConfigFuzz-1 and ConfigFuzz-2.

We compared ConfigFuzz-1 and ConfigFuzz-2 with two
baselines. The first baseline (called Baseline-def) fuzzes only
the default configuration of the target program. The second
baseline (called Baseline-cov) fuzzes a sample of configura-
tions generated by two-way covering arrays [19]. Such sample
contains two-way combinations of all option settings [10],
enhancing the likelihood of discovering interactions compared
to just a random sample. We considered two-way interactions
to reduce the configuration space, and because it is commonly
assumed that most faults are caused by the interaction of only
a few features [23]. We used ACTS 3.2, a combinatorial testing
tool from NIST [1], to generate the configuration samples. We
included all settings of bool and choice options. For numeric
options, we took the lower and upper bound of the range,
and randomly sampled 8 numbers in between to generate 10
choices. For string options, considering a randomly sampled
string is mostly likely to yield an invalid setting, we removed
all strings options from the configuration grammar. As a result,
17, 1865, and 24 sample configurations were generated for
cxxfilt, objdump, and xmllint, respectively. To fairly compare
with ConfigFuzz, we modified the fuzzing process to fuzz an
equal amount of time for each sampled configuration (i.e.,
[total time]/[number of configurations]) in sequence, while
retaining the seeds from previous fuzzing progress. We could
have chosen to use seeds afresh, but we thought that retaining
seeds between configurations might lead to more useful results,
and indeed that is what happened, as we will see.

3) Research questions: Our preliminary experiments an-
swer two research questions:

• RQ1: Does ConfigFuzz outperform baselines?

3We plan to include the 3 programs used in section II in future experiments
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(a) AFL-xmllint (b) AFL-cxxfilt (c) AFL-objdump

(d) AFL++-xmllint (e) AFL++-cxxfilt (f) AFL++-objdump

Fig. 5: Line coverage growth plots.

• RQ2: How do ConfigFuzz-1 and ConfigFuzz-2 com-
pare?

For RQ1, we check if ConfigFuzz can result in more code
coverage than fuzzing Basedef-def and Baseline-cov. For RQ2,
we check if ConfigFuzz-2, which can generate configurations
that interact with 2 options, can result in more code coverage
than ConfigFuzz-1 to assess the importance of fuzzing the
interactions among program options.

4) Experimental design: We integrated the use of Config-
Fuzz into FuzzBench [14] to allow reproducible and reusable
experiments. We added ConfigFuzz transformed programs
into FuzzBench benchmarks, and specified the fuzzing tar-
gets to be the executables containing the modified main
functions. FuzzBench originally expected LibFuzzer har-
nesses as entry points (compiled with Clang [8] and the
fsanitize-coverage=trace-pc-guard flag), while Con-
figFuzz is designed to fuzz whole programs with command-
line options. We modified the FuzzBench scripts to enable
running fuzzers on the whole programs following AFL’s tuto-
rial [4]. Specifically, the modified script builds fuzzing targets
using each fuzzer’s own compiler for instrumentation, and the

command to run each fuzzer was also updated accordingly
to ensure the expanded input is correctly passed to target
programs, as discussed in section III-C.

We ran each of ConfigFuzz-1, ConfigFuzz-2, Baseline-def,
and Baseline-cov on each program with 5 trials and 24-hour
timeout. We report the median number of lines covered by
each fuzzer after post-processing code coverage using llvm-
cov [17]. We used two seeds for objdump and xmllint: an
empty file [7], [16], and one valid seed taken from AFL’s
repository [2]. There does not exist a valid seed for cxxfilt
in AFL’s repository; instead, we used the mangled version of
function name f() as the valid seed for cxxfilt. The empty seed
for cxxfilt is the same empty file as the other 2 programs. In
particular, the valid seeds are only valid for Baseline-def and
Baseline-cov. After taking configuration bytes by ConfigFuzz,
the remaining data bytes of a valid seed become invalid for
ConfigFuzz-1 and ConfigFuzz-2. We plan to revisit this setup
in future experiments.

All experiments were conducted on a server with 2 Intel
Xeon Silver 4116 CPUs (each with 24 cores) and 192GB
of RAM running Ubuntu 16.04. The experiment were run in
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parallel per target program at a time, which used 20 cores.

B. Results

Figure 5 shows line coverage growth of each fuzzer
over time. Results of default (Baseline-def), ConfigFuzz-1,
ConfigFuzz-2, and covering arrays (Baseline-cov) are repre-
sented by lines in black, blue, red and green, respectively.

For xmllint, ConfigFuzz outperformed the two baselines.
ConfigFuzz-1 and ConfigFuzz-2 not only achieved higher cov-
erage than Baseline-def and Baseline-cov at a very early stage
of the fuzzing campaign (within 15 minutes), but also grew
faster. This is a strong indication that ConfigFuzz outperforms
the baselines by exploring more command-line options. In ad-
dition, ConfigFuzz-2 covered 9% more lines than ConfigFuzz-
1 in 24 hours (statistically significant through Mann Whitney
U test [6], [16]), which can be attributed to option interactions.
The covering arrays achieved similar coverage as default, but at
a much faster speed. It is possible that the default configuration
reached code by “going deep”, while covering arrays benefit
from “going wide” in terms of covering configurations. We
will perform further investigation to explain this result (see
Section V).

Results of cxxfilt, however, did not show ConfigFuzz
always outperformed the baseline setups, with both fuzzers
having covering arrays as the best approach. The difference
between ConfigFuzz-1 and ConfigFuzz-2 was not statistically
significant, but both of them performed better than Baseline-
def. A possible explanation is that fuzzers benefit more in
“going wider” by exploring different configurations than going
deeper into execution paths within a configuration, on cxxfilt.

Covering arrays experiments for objdump were not com-
pleted as the time of submission. Coverage of the default
configuration was similar between AFL and AFL++, but
ConfigFuzz-1 and ConfigFuzz-2 performed much better in
AFL; we have yet to ascertain the reason for this. Another
observation is that ConfigFuzz-1 performed slightly better
than ConfigFuzz-2. However, the difference is not statistically
significant. A possible reason is that option interactions may
not be very significant in objdump, and potentially resulted in
fewer options covered in ConfigFuzz-2.

In summary, we observed mixed answers to our research
questions. During analysis of the experiment results, we raised
the hypotheses that there are 3 major parts in code coverage
during option fuzzing: exploring more options, exploring op-
tion combinations, and exploring more inputs with a given
option. Performance of ConfigFuzz is decided by the charac-
teristics of these three parts in a program. Further analysis is
needed to test the hypotheses and find the best application of
fuzzing configurations with ConfigFuzz.

C. Threats to Validity

A potential threat to validity is that we measure code
coverage instead of ground-truth bugs when comparing the
fuzzers, which may not accurately measure the effectiveness of
fuzzers [16]. To our knowledge, there do not exist any ground-
truth benchmarks that are suitable for evaluating fuzzers that
consider program configurations. It is future work to develop
such benchmarks to allow fair comparison between fuzzers

on programs with configurations. If any approaches in our
evaluations discover crashes in the target programs, we will
perform deduplication and report the bugs found.

V. PLANNED ADDITIONAL STUDY AND EVALUATION

We plan to expand the preliminary study (Section II) and
evaluation (Section IV).

First, the same set of programs will be used for the
study and evaluation, including FFmpeg, nm, cxxfilt, objdump,
and xmllint. We will also search for more programs suitable
for our evaluation: common fuzzing targets built with well-
documented command-line options. Specifically, we expect a
well-documented program to come with detailed explanation
of each option in order for us to decide its type and constraints.

Second, we will perform deeper investigation of the exper-
imental results to understand the behavior of ConfigFuzz and
of covering-array based fuzzing. We will summarize which
configurations are fuzzed overtime, and how they contribute
to the overall performance. Specifically, we will develop mul-
tiple visualizations that show the sequence of changes to the
command-line options that take place during a fuzzing run. It
would be interesting to see how often they flip back and forth
and which ones contributed the most to the code coverage.
We will also examine how sharing seeds between sequenced
covering array-based configurations aids its performance.

Third, we will experiment with other variants of Config-
Fuzz, especially ConfigFuzz with larger maxopts. We will
set maxopts to the number of options of each program to
allow fuzzing all possible configurations to further evaluate
the interactions among program options. We will also enable
string options to be fuzzed by ConfigFuzz in a separate ex-
periment. Finally, we may examine how covering array-based
configuration sampling could be integrated into ConfigFuzz.

Fourth, we will use more fuzzers (those that are built
in FuzzBench and suitable for fuzzing whole programs) to
evaluate ConfigFuzz.

VI. CONCLUSIONS

In this paper, we present ConfigFuzz, an approach that
enables fuzzing program options and program input at the
same time. A key idea of ConfigFuzz is to transform the
target to take an expanded input that encodes the program
options, so existing fuzzers’ mutation operators can be reused
to fuzz program configurations. The options are specified
by a grammar, and code is generated and injected into the
target to decode them from the expanded input; the option
encoding is designed to ensure that mutations are effective.
ConfigFuzz’s design was motivated by an empirical study that
showed different configurations can have differing levels of
impact on fuzzing code coverage. We integrated ConfigFuzz
into FuzzBench in order to evaluate it. Preliminary experiments
on three programs show that ConfigFuzz nearly always outper-
forms the baseline of fuzzing the default configuration, while
fuzzing a sequence of configurations sampled using covering
array improves on ConfigFuzz in cxxfilt. We proposed to
perform deeper investigation of the experimental results using
data visualization.
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