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Abstract—Fuzzing firmware on microcontrollers (MCUs) is
hard to scale. Rehosting is an ideal way to achieve this, but
it often loses fidelity and can be slow, while on-device tracing
support is limited. Standard coverage-guided fuzzing relies on
software instrumentation, which is costly for MCUs and gives
only control-flow signals that arrive late for complex checks.

We present Hardfuzz, an on-device fuzzer that uses definition-
use (def-use) chains to guide exploration. Hardfuzz performs
offline static analysis to extract def-use pairs from the binary,
then runs directly on the device and uses the debug unit’s
hardware breakpoints to observe when definitions and their uses
execute. Two small bitmaps in shared memory record (i) which
definitions execute and (ii) which def-use pairs execute, giving
rich feedback than basic-block coverage alone. A lightweight
scheduler prioritises definitions with many uses and adapts to
the few hardware breakpoints available on MCUs.

We evaluate Hardfuzz against another hardware breakpoint-
based solution, GDBFuzz. In emulation, Hardfuzz achieves
higher basic-block coverage in most targets and progresses faster
in the early hours running on emulation. On hardware, it covers
14-40% more basic blocks after 24 hours across three programs
with known faults. These results show that def-use guidance is
practical on MCUs and improves exploration over control-flow-
only feedback.

I. INTRODUCTION

Fuzzing microcontroller (MCU) firmware remains difficult
to scale and automate. MCU firmware is tightly coupled to
board-specific peripherals via memory-mapped /O (MMIO),
DMA, and interrupts [1], hindering direct execution on a
host and complicating high fidelity rehosting [2]. Hardware-
in-the-Loop (HiL) can improve realism by interacting with
real devices [3]-[5], but introduces synchronisation and I/O
bridging overhead that decreases throughput, which is an issue
for feedback-driven fuzzing campaigns.

This exposes a central tension between fidelity and execution
speed. Rehosting can accelerate input throughput but may
diverge from real hardware behaviour when peripheral mod-
els are incomplete or slow to evaluate. On-device execution
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provides ground truth with maximum fidelity, yet incurs per-
test overheads from debug halts, breakpoint churn, and probe
latency. HiL typically sits between these extremes: higher
fidelity than pure emulation but slower than ideal due to cross-
boundary communication.

1 int process_packet (const uint8_t «in,
size_t n) {

if (n < 8) return -1;
uintl6_t len = (uintl6_t) ((in[0] << 8)
| in[1]); /% (D1) =/

4 if (len > n - 4) return -2;

5 const uint8_t =xpayload = in + 4;

6 uint32_t token = crc32_like (payload,
len) ~ O0x5A5A5ALAA; /* (D2) x/
if (((token ~ OxA5A5A5A5A) & 0x3u) !=
0) /% (U1) =/

8 return 0;

9 if ((((token >> 8) + len) % 29u) != Tu
) /* (U2) =/

10 return O,'

B uint8_t buf[128];

12 memcpy (buf, payload, len); /* (U3) */

13 return 1; /% deep path reached */

4|}

Listing 1. Example where def-use guidance provides earlier signals
than basic-block coverage. (D1,D2) are definitions; (U1,U2,U3) are uses.

A second challenge is the quality of feedback. The canonical
feedback signal, control-flow (CF) coverage from software
instrumentation is often impractical on MCUs due to tight
memory and timing budgets [6], [7]. Even when feasible, CF
coverage is coarse: it only reveals where control went (which
blocks/edges executed), not what values were computed. After
a fuzzer learns to reach the blocks containing early checks,
many subsequent mutations still execute the same blocks while
merely changing internal values. Thus CF coverage quickly
saturates: the fuzzer receives no new reward even if it is
making progress toward satisfying deep value constraints. Two
inputs can look identical under CF coverage whether the
computed value is “one off” or far away.

We instead track definition-use (def-use) chains: edges from
where a value is defined (D1/D2) to where that same dy-
namic value is later used (U1-U3) along the executed path.
Observing that a particular use consumed the value from a
particular definition yields a richer, earlier signal than CF



coverage. Intuitively, CF says “did we reach this check?”;
DU also says "which computed value fed this check?”. This
extra resolution produces intermediate milestones: the fuzzer
can be rewarded when the derived token (or len) reaches
progressively deeper uses (Ul — U2 — U3), instead of
waiting until the deepest block is finally executed.

Listing 1 shows a common pattern. A CF-guided fuzzer
can reach the blocks containing checks (U1, U2). Thereafter
it receives no new reward until the deepest block is reached
(U3). It must rely on random mutations to hit exact values. DU
coverage, in contrast, provides an earlier gradient: reaching
U2 yields a new (D2 — U2) event even though the executed
blocks may be unchanged, which marks genuine progress
toward the deep path. This point has also been proved in prior
work [8]-[10].

Thus, we present Hardfuzz which extracts def-use chains
offline from the firmware and uses the debug unit’s hardware
breakpoints to detect, on device, when definitions and their
uses are executed. Two compact bitmaps in shared memory
record (i) definition hits and (ii) def-use hits. A comparator-
aware scheduler prioritises definitions with many uses and sets
uses in proximity-ordered chunks after a def hit, respecting the
few hardware comparators typical of MCUs. In this way, the
def-use chain will reflect the change of the dataflow coverage
and provide feedback for fuzzing campaign.

The contributions of the paper are shown as below:

o On-device, def-use-guided fuzzing. We show that def-use
chains can guide fuzzing on commodity MCUs using only
the debug unit.

« Comparator-aware orchestration. We set definitions first
and then nearby uses in chunks, fitting small hardware
comparator budgets without stalling execution.

II. TECHNICAL BACKGROUND

A. Fuzzing

Embedded software couples firmware tightly to peripherals
and often executes on bare metal or a small RTOS across
diverse architectures. Fuzzing mutating inputs to trigger un-
expected behaviours has a strong track record in conventional
software but remains challenging for firmware because fidelity
(accurate device interaction) and coupling (architectures/pe-
ripherals) complicate harnessing and feedback, there is no
”one-size-fits-all” solution [11].

Core components. Across execution targets (hardware,
emulation, HiL), fuzzers share four steps: (i) seed selection,
(ii) mutation/scheduling, (iii) feedback (coverage/fitness), and
(iv) bug detection/triage. Seeds may come from traces (proto-
cols/files) or from minimal bootstraps with harness prologues
for stateful handshakes [12]-[14]. Corpus growth/minimisation
follows AFL-style practices [7]. Mutations range from byte-
level operators to domain-aware tweaks for sensor/packet
fields and sequence-aware strategies for protocols; schedulers
adapt AFL power schedules while handling timeouts and resets
in long-running, stateful targets [15]—-[21].

Feedback signals. Greybox coverage dominates in emula-
tors (basic-block/edge coverage based on AFL++ QEMU/U-
nicorn) and on devices via coarse signals from debug/trace
hardware [20], [22], [23]. Additional fitness includes memory-
safety events and silent corruption checks, path length/depth,
or execution time [24]-[28]. Coverage is imperfect but prac-
tical surrogate where ground-truth bugs are scarce [29], [30].

To reduce this saturation, recent fuzzing work adds data-
centric feedback that tracks how values propagate, not just
which blocks execute. Such signals (e.g., dependency- or data-
flow-based coverage) can reward partial progress toward deep
checks even when control-flow coverage does not change [8]-
[10], [31].

Bug detection/triage & throughput. Firmware faults man-
ifest as hard-faults, resets, or liveness loss rather than POSIX
crashes; detection uses debug hooks, heartbeats, watchpoints,
and sanitisers in emulation [32]-[38]. Emulators exploit par-
allelism and snapshot/restore; on device, watchdog loops re-
duce reflashing [22], [39], [40]. Methodologically, evaluations
should emphasise diverse targets and bug-centric metrics, not
coverage alone [20], [29]. Surveys underline that balancing
fidelity, feedback quality, and speed is the central design
tension [2], [41].

B. Hardware fuzzing

We categorise hardware fuzzing by where execution occurs
and how device interactions are realised: (1) on-device execu-
tion, (2) full/partial re-hosting in software.

a) On-device (real hardware): Firmware runs on the tar-
get MCU/SoC; inputs are injected via UART/USB/network/G-
PIO, and feedback is harvested through SWD/JTAG/CoreSight
or trace units when available. Breakpoint-oriented approaches
(LAFL, GDBFuzz) provide coarse coverage without binary
instrumentation [20], [42]. Instruction-trace (Intel PT/ARM
ETM) yields high-fidelity off-chip coverage at low pertur-
bation when available [6], [43], [44]. Where debug/trace is
locked down, side-channel signals (power/EM, timing) ap-
proximate path distinctions [45], [46]. Classical black-box
interface fuzzing remains pragmatic for many IoT services,
with stateful greybox variants improving effectiveness [47]-
[50]. It can achieve perfect peripheral/timing fidelity and
realistic concurrency. But the fuzzing will be limited with
slower iteration, limited breakpoint/trace capacity, and scaling
complexity (e.g., device pools, resets).

b) Re-hosting (software emulation): Firmware executes
under QEMU/Unicorn built-in introspection and fast reset/s-
napshot, but requires sufficient peripheral realism to avoid
dead-ends or false conclusions [51]-[55]. Automated pe-
ripheral modeling spans MMIO classification with fuzzer-
supplied data (P2IM), HAL call shims (HALucinator), and
static-analysis-guided models (Fuzzware), significantly im-
proving reachability over naive stubbing [56]-[60]. Hybrid
HIT proxying (Avatar/Avatar?) forwards selected MMIO to
real hardware, combining emulator speed and coverage with
high-fidelity I/O [5], [61]-[65]. Solver-assisted systems (Jetset,



pEmu) compute peripheral inputs to reach goals, reducing
blind exploration [66], [67].

III. HARDFUZZ OVERVIEW

We propose an offline static analysis stage with an online
fuzzing loop to systematically cover def-use chains on an
embedded device. Figure 1 illustrates the overall architecture
of Hardfuzz, which can be divided into three main phases: (1)
Static Analysis & setup, (2) Def-use-guided fuzz loop, and (3)
Coverage-driven input generation.
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Fig. 1. Hardfuzz Overview

1) Static Analysis & Setup: Before fuzzing, we analyse the
target program’s binary to extract all def-use chains from
reaching definition analysis. This yields a set of definition
addresses each paired with one or more use addresses.
The Hardfuzz runner loads this information and initialises
its components: the GDB controller, serial connection,
metrics logger, and input generator. The GDB controller
attaches to the device or emulator and performs an initial
reset/halt. The serial connection thread is started to handle
input/output with the target. The input generator is seeded
either with user-provided seed inputs or a default seed;
it maintains the corpus of interesting inputs discovered.
At this stage, Hardfuzz also precomputes some helper
structures from the def-use list, such as a mapping of
each def address to the basic block containing it (and
likewise for uses). It also computes a weighting for each
def (for fuzzing schedule) based on the number of uses
it has.

2) Def-Use-Guided Fuzz Loop: Hardfuzz then enters the
main fuzzing loop, which runs infinite rounds of test
generation and execution. In each round, an input is
selected and mutated, then used to execute a series of
def-use chain trials. Unlike a pure coverage fuzzer that
would run one input and simply note which new blocks
were hit, Hardfuzz actively guides each input run towards
a specific def-use target. It works as follows: it selects a
subset of def addresses (up to the hardware breakpoint
limit, e.g. 6) that have not yet been fully covered, and
sets hardware breakpoints at those definition addresses
(marked as Def-BPs). Then it releases the target to run the
test input from the beginning. If none of those definitions
execute (no breakpoint hit), the input did not trigger
those targets; Hardfuzz will then try a different set of

def addresses (or a new input in the next round). If
one of the def breakpoints hits, the execution stops at
that definition point. At this moment, Hardfuzz identifies
which def was hit and retrieves its list of corresponding
use addresses. It then immediately sets a second set of
breakpoints for those uses (marking them Use-BPs) and
resumes execution. The original def breakpoint, being
temporary, is auto-removed upon hit to free a slot. Now
the target continues running the same input, but with
breakpoints set at the uses of the just-hit definition. If
any of those uses executes, the program will halt again at
the use site (indicating the def-use chain was successfully
realised at runtime). Hardfuzz logs this as a def-use pair
covered and removes the use breakpoint. It allows the
program to continue, potentially catching multiple uses in
one execution if the input triggers more than one use of
the definition’s value. Once the program completes (or a
timeout/crash occurs), Hardfuzz cleans up any remaining
breakpoints and resets the target if needed before the next
round.

3) Coverage-Driven Input Generation: After each test exe-
cution, Hardfuzz updates its coverage bitmap to reflect
any newly covered def or def-use pair. It uses two 64kB
bitmaps in shared memory: one for def coverage (indexed
by def address bits) and one for def-use coverage (indexed
by a hash of def and use addresses). Any time a definition
is hit, or a def-use pair is triggered, the corresponding bits
are set. At the end of a round, Hardfuzz checks if any new
bits were set compared to the global coverage map. If new
coverage was found, the input that achieved it is saved to
the corpus and considered for fuzzing again in the future.
The fuzzer then chooses a new baseline input for muta-
tion. It can choose the latest high-value input or cycle
through the corpus to keep diversity. Hardfuzz employs
a mutation engine based on libFuzzer’s mutator [68]:
by linking against the LLVM libFuzzer mutation library,
it can generate mutated variants of an input efficiently.
In each round, one or more new candidate inputs are
produced this way. If a round produced no new coverage
(no def-use hit and no new def hit), Hardfuzz can retry
with a different def target or eventually switch to a fresh
mutated input. This coverage-driven strategy ensures that
Hardfuzz concentrates on inputs that expand the def-use
coverage.

IV. DEF-USE CHAIN ANALYSIS AND SELECTION

We extract definition-use (def-use) chains from MCU’s
firmware binaries to guide test generation and breakpoint
placement. A definition site (def) is an instruction that writes
a program value (a register or a memory location). A use site
(use) is an instruction that reads that value. A def-use chain
is a directed line from a def instruction to a use instruction
along some feasible path in the data dependence graph (DDG).
We use these chains to (i) measure dataflow coverage and (ii)
prioritise fuzzing inputs that reach definitions with many uses.



Algorithm 1: Def-Use Chain Extraction (per function)

Input: Function F, Data Dependence Graph G
Output: Set & of pairs (def_addr, use_addr)

E+— o
RD < REACHINGDEFINITIONS (F)
foreach d € RD.all_definitions do
nq < NODE(G, d.ins_addr)
if ng = L then continue
foreach u € GETUSES(RD, d) do

Ny, < NODE(G, u.ins_addr)

if n, = 1 then continue

if REACHABLE(G, ng4, n,,) then

L & « EU{(d.ins_addr, u.ins_addr)}

return £

Our analysis runs in three phases. First, we load the
target ELF with angr and build a context-sensitive data
dependence graph (DDG). For each discovered function, we
run ReachingDefinitions based on angr’s intermediate
representation (VEX IR) to compute the set of definitions that
may reach each program point. For each definition we found,
we enumerate its uses with instruction address and check for
reachability in the DDG and CFG. If there exists a path from
the def to the use, we add an edge Ag — Gy to the def-

~——

. address of def and use .
use graph. The graph also contains chains that cross function

boundaries (e.g., def in caller, use in callee). The details are
shown in Algorithm 1.

V. BREAKPOINT STRATEGY

After extracting the def-use chains, we prioritise definitions
to guide the fuzzer’s exploration. The goal is to focus on
definitions that influence many uses, as they are more likely to
lead to diverse program behaviours and potential vulnerabili-
ties. We also consider the history of selections to avoid over-
focusing on a few definitions. We assign each definition a base
weight equal to the minimum number of distinct uses it has, so
definitions with many uses are considered more “interesting”
by default. During fuzzing process, we adjust weights based
on how often a def has been tried locally in the current round
and globally across all rounds. Intuitively, if a particular def
has already been hit several times (globally) or if we have
attempted it repeatedly in the current round, its probability is
reduced to avoid too much repetition. The exact formula is
described below.

For a definition address a4 with use set U (aq), the scheduler
samples with

1 1
L+0aa) (14 g(ag))"””

local penalty

w(ag) = max(l, \U(ad)\)
—_————

base weight
global penalty

where £(aq) is the local count of selections of ag in the
current generator and g(aq) is the global hit/selection count

accumulated across rounds. Definitions are drawn by roulette-
wheel sampling proportional to w(ag).

Once a def a4 triggers, we order its uses by address
proximity and enable up to K hardware breakpoints (with
K =6 on ARM Cortex-M3):

ordery (aq) = argsort |a, —

aueU(ad)
S(aq) = first K elements of ordery(aq).  (2)

aal, ()

The intuition is that uses close to the def are more likely to
be executed soon after the def, increasing the chance of hitting
a use in the same run. If a def has more than K uses, we
will not be able to cover them all in one execution. However,
since we sample defs multiple times across rounds, we will
eventually cover all uses over time. Once one breakpoint hits,
we will consider the basic block containing it as covered and
remove the breakpoint to free a slot for the next use breakpoint.
In this way, we can potentially catch multiple defs in one
execution if the input triggers one basic block.

In each fuzzing round, hardfuzz draws up to K definition tar-
gets from this weighted generator (with K set to the hardware
breakpoint limit) to form a batch. The reason for batching is
efficiency: setting breakpoints is slow, and it is wasteful to run
on input per breakpoint if we can enable multiple breakpoints
at once. Batching also allows one input to potentially cover
multiple defs if they happen to be hit in the same execution.
The batch is constructed, and all breakpoints for that batch are
inserted before running the test input. If none of breakpoints
in the batch are hit by the time the input finishes, it implies the
input does not execute any of those defs. In that case, Hardfuzz
will fetch the next batch of defs (if any remain untried for this
input) and rerun the same input on a fresh instance of the pro-
gram. This approach gives each input multiple opportunities
to demonstrate coverage on different def targets. If an input
completely fails to hit any new def after exhausting all batches,
Hardfuzz will conclude that the input is “stuck” coverage-
wise and move to the next input. In our implementation,
we set a limit (e.g., NO_TRIGGER_THRESHOLD=8) on
consecutive attempts with no new hits before abandoning an
input to avoid infinite loops.

The workflow of the breakpoint strategy is summarised in
Algorithm 2. Managing the limited hardware breakpoints is a
core part of Hardfuzz’s design. We implement a lightweight
GDB controller that communicates with the target device via
GDB’s machine interface (MI). The controller provides prim-
itives to set and remove breakpoints, continue execution, wait
for stops, and handle crashes or timeouts. These primitives
are used in the breakpoint strategy to orchestrate the def-use
guided execution.

When a def breakpoint triggers, the GDB stop reason comes
as “breakpoint-hit” with an associated breakpoint number. We
determine whether this was one of our def breakpoints by
looking it up in the batch mapping. If so, we record the hit
and prepare to switch to use breakpoints. Notably, on the
Arm Cortex-M: when a breakpoint hits at an instruction in
flash, the processor actually replaces that instruction with a



Algorithm 2: Hardware Breakpoint
(Def—Use under comparator budget K)

Strategy

Input: Test input x; batch DefsBatch C D; use map
U(-); HW breakpoint limit K
Output: HitDef € DU {None}
HitPairs C {(d,u)}
foreach d € DefsBatch (up to K) do
L SETHWBP(d, temporary = True)

CONTINUEANDFEED(z)
(reason,payload) - WAITSTOP()
if reason is "breakpoint hit” and payload is a def
BP then
| HitDef « d*
else if reason € {"timed out”, ’crashed”, "exited’”}
then
RESTARTIFCRASHEDORTIMEDOUT()
L return (HitDef,HitPairs)

HALTTHENDELETEALL()
if HitDef = None then
| return (HitDef,HitPairs)

UsesSorted « uses in U(d*) sorted by |u — d*|
(ascending)

while untried uses remain do
take next chunk UChunk of < K addresses from

UsesSorted
HALTTHENDELETEALL()
foreach u € UChunk do

L SETHWBP(u, temporary = False)

CONTINUEANDFEED(z)
(reason,payload) <+ WAITSTOP()
if reason is ‘breakpoint hit” and payload is a
use BP then
let u* be the hit use
HitPairs < HitPairs U {(d*,u*)}
REMOVEBP(u*)
continue
else if
reason € {"timed out”,”
then
L RESTARTIFCRASHEDORTIMEDOUT(); break

crashed”, "exited”}

else
L continue

HALTTHENDELETEALL()
return (HitDef,HitPairs)

BKPT instruction internally. If we immediately removed the
breakpoint and continued, we risk re-executing the BKPT
instead of the original instruction. To avoid this, Hardfuzz
performs a single-step operation to execute the instruction and
move past it before inserting new breakpoints. This ensures
the def instruction completes and the PC advances, preventing
any “flash breakpoint deadlock” where the same breakpoint

B GDB stop event
¢ | (breakpoint hit/ timeout

: J idx_pair(d,u) = (d®u)
Q &OXFFFF

use triggered (d, u) Hidx_def(d) =d& OxFFFF)
/

def triggered (d)

Shared Memory Shargd Memory
| m»
u O
L H «
| |
. / \ J/ \\ / \\ /

T I I I
trace_bits_defs trace_bits_pairs trace_bits_defs trace_bits_pairs

Fig. 2. Two-bitmaps in shared memory and update flow. Darkness indicates
the time for the triggers to activate. bitmaps flip from 0zFF to 0200 on first
observation and gate corpus updates.

would re-trigger or corrupt execution. Our BreakpointManager
handles this: upon detecting a def breakpoint number, it
executes one instruction step, then clears all existing use
breakpoints from any previous def, and finally removes the def
breakpoint itself to free the slot. After that, Hardfuzz proceeds
to install the use breakpoints for the triggered def.

After each batch (or after a def-use sequence completes),
Hardfuzz issues a blanket -break-delete command to
clear any leftover breakpoints before moving on. This is
important to prevent stray breakpoints from persisting into
the next input’s execution, which could cause false coverage
signals or unintended halts. We found that after heavy churn
of breakpoints, it was sometimes necessary to stabilise the
GDB connection. In extreme cases (e.g., if the target becomes
unresponsive or GDB misbehaves), Hardfuzz will restart the
GDB session by killing the old GDB and launching a new
one, then re-attaching to the target. This “GDB rejuvenation”
is triggered after certain timeouts or errors to maintain a robust
fuzzing run.

A. Coverage Guidance

Hardfuzz needs a light-weight signal that can run on the
device, without binary rewriting, and that still shows progress
on data flow. We therefore record two events: (i) a definition
is executed; and (ii) a definition-use pair is executed. We turn
these events into coverage using two compact bitmaps stored
in one shared-memory block (see Figure 2).

We  allocate a  single  shared-memory  region
of size 2M bytes and split it into two non-
overlapping slices: trace_bits_defs[0:M—1] and

trace_bits_pairs[M:2M—1]. In our implementation,
M = 65,536. Each slice is a byte array used as a bitmap (0
or 1 per slot). This design lets the fuzzer and the coverage
code communicate without copying and keeps the memory
footprint fixed.



We map events to indices as follows: Definition coverage,
when a def at address d executes, idx_def(d) = d &
OxXFFFF, and we set trace_bits_defs[idx_def(d)] «
1. Def-use coverage, when a use at address u exe-
cutes after the matching def at d in the same input run,
idx_pair(d,u) = (d ® u) & OxFFFF, and we set
trace_bits_pairs[idx_pair(d,u)] + 1.

The XOR gives a constant-time hash from a pair of ad-
dresses to one slot. Collisions can happen but are rare at
this scale; they may reduce granularity but do not break the
guidance.

The figure illustrates three states of the shared-memory
block: (i) Initial, where both bitmaps reflect the cur-
rent round and no new hits have been recorded; (ii)
Def hit, where one entry in trace_bits_defs[0:M—1]
flips to 1; and (iii) Def-use hit, where one entry in
trace_bits_pairs[M:2M—1] flips to 1.

Placing both slices inside one box with labels [0, M) and
[M,2M) emphasises that they share memory yet remain
disjoint.

If the execution passes through a basic block without stop-
ping inside it, we conservatively mark: (i) every def located
in that block as covered; and (ii) every (d,u) pair whose use
lies in that block as covered. We do this using a precomputed
lookup from each block to its defs and to the (d,u) pairs
whose w is in that block. This avoids setting a breakpoint at
every use site while still rewarding progress once the block
executes.

To decide if an input should be kept, we maintain two
bit arrays in process memory, fresh_defs[0..M—1] and
fresh_pairs[0..M—1], initialized to 0xFF. After running
an input we scan the two shared bitmaps. For each index k:

e Iftrace_bits_defs[k] != Oand fresh_defs[k]
== 0OxFF, then set fresh_defs[k] = 0x00.
e Iftrace_bits_pairs[k]

== 0OXxFF, then set fresh_pairs[k] = 0x00.

If at least one byte flips from OxzFF to 0200, the input
exposed new coverage. We then add the input to the corpus
and optionally pick it (or a mutated child) as the next baseline.
The shared bitmaps are cleared for the next input, while the
virgin arrays keep the lifetime view of what has already been
discovered.

Basic-block coverage rewards only new control flow. Our
two-bitmap scheme adds a data-flow signal. The def bitmap
rewards reaching a definition; the pair bitmap rewards reaching
a use of that definition. These intermediate signals give the
fuzzer a gradient toward the deep path even when no new
basic block is covered.

VI. EVALUATION

A. Experimental Setup

We evaluated Hardfuzz against GDBFuzz on two platforms:
(1) an emulated environment using QEMU, and (2) a real
hardware setup using an Arduino Due board (SAM3XSE
MCU) connected via a J-Link debug probe connecting with

!= 0and fresh_pairs[k]

host machine (x86-64 ubuntu 24.04 LTS). The fuzzing cam-
paigns were run for a fixed time budget on each platform.
For GDBFuzz, which does not natively track def-use chains,
we consider only basic block coverage for comparison. All
experiments used the same initial seed corpus and were
allocated identical time for fairness.

B. QEMU-Based Emulation Results

In the QEMU emulation, both fuzzers can execute inputs
relatively quickly (no physical device latency). In this way, we
could compare the two different breakpoint assignment strate-
gies (Hardfuzz’s def-use guided vs. GDBFuzz’s Dominator-
based) under the same conditions. We ran each fuzzer for
24 hours in this environment for three repetitions. The target
programs we choose are from Google Fuzzbench [69], a well-
known benchmark suite for fuzzing research. We selected 16
targets that are compatible with QEMU and also been tested
in original GDBFuzz [20]. The results are shown in Figure 3.

According to figure 3, Hardfuzz outperforms GDBFuzz,
achieving higher basic block coverage in 16 targets. This
indicates that def-use chain guidance effectively directs the
fuzzer towards more diverse and deeper code paths compared
to the dominator-based strategy used by GDBFuzz. The results
suggest that focusing on data flow relationships (def-use
chains) provides a more informative signal for exploration
than solely relying on control flow structures (dominators).
In three cases, like freetype2, sqlite and lcms, GDBFuzz
performs comparably or slightly better, which may be due to
specific program structures where dominator-based selection
happens to align well with critical paths. However, the overall
trend favours Hardfuzz’s approach, highlighting the benefits
of incorporating data flow analysis into the fuzzing process.
The gradients of the curves in the first few hours also suggest
that Hardfuzz could discover new coverage faster initially,
likely due to the richer feedback from def-use hits. This
demonstrates that Hardfuzz’s targeted approach succeeded in
driving execution along rare data-flow paths that mere control-
flow coverage did not prioritise.

The unique basic block results in bar Figure 4 further re-
inforce Hardfuzz’s advantage. Over the 24-hour period, Hard-
fuzz consistently discovers more unique blocks than GDB-
Fuzz, indicating that its def-use chain guidance effectively
drives exploration into new areas of the codebase. The GDB-
Fuzz can achieve similar results in only two targets (freetype2
and sqlite). This suggests that while dominator-based selection
can be effective in certain scenarios, it generally lacks the
nuanced direction provided by def-use analysis. The ability
to target specific data-flow interactions allows Hardfuzz to
uncover paths that may be overlooked when focusing solely on
control-flow structures. The results highlight the importance of
considering both control and data flow in fuzzing strategies to
maximise coverage and discovery potential.

C. On-Device Hardware Results

We evaluated Hardfuzz on a real device: an Arduino Due
(SAM3XSE) connected through a J-Link. Running on physical
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Fig. 4. Unique basic block coverage over time on QEMU. Hardfuzz
consistently discovers more unique blocks than GDBFuzz, demonstrating its
superior exploration capabilities.

hardware adds latency from the debug link and the lower clock
speed of the MCU, but it gives us ground-truth signals (hard-
ware faults and precise stop points). We ran both Hardfuzz
and GDBFuzz for 24 hours with three repetitions on this setup.
The firmware targets are the same types used in our GDBFuzz
experiments, and each contains a small, known bug so we can

measure detection and deduplication. The three targets are:
1) buggycode (stack overflow). A minimal UART harness
that looks for the four-byte gate "bug! " and then copies
the received payload into a fixed 20-byte stack buffer
without bounds checks. Any input longer than 20 bytes
triggers a deterministic overflow.
HTTP server (state-machine bug). A small ESP-IDF!
HTTP service with an endpoint that mixes fixed-length
responses with chunked sends in the same request. This
violates the server’s send path and produces a repro-
ducible failure under load, modelling common handler
mistakes in embedded web servers.
JSON parser (length-triggered hang). A serial JSON
parser built with ArduinoJson that reads a 32-bit length
prefix. If the length exceeds the configured buffer size,
the firmware enters a persistent wait state. This gives us
a clean timeout class distinct from crashes.

2)

3)

Table I summarises basic-block coverage on hardware after
a 24-hour campaign. Across all three targets, Hardfuzz covers
more blocks than GDBFuzz. These gains support our main
claim: def-use guidance steers the fuzzer toward deeper and
more diverse code paths than a dominator-based strategy. In

Uhttps://github.com/espressif/esp-idf/tree/master
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TABLE I
BASIC BLOCK COVERAGE ON HARDWARE AFTER 24 HOURS

Basic Blocks Covered

Target

GDBFuzz Hardfuzz
buggycode 62/249 88/249
HTTP server 373/1504 524/1504
JSON parser 664/1071 758/1071

short, data-flow signals provide more informative guidance
than control-flow structure alone, and the best results come
from considering both.

Figure 5 shows coverage over time on hardware. Hardfuzz
discovers new blocks faster in the early hours and maintains a
lead throughout the run. This pattern matches the extra signals
from def-use hits, even when a branch is not taken, observing a
use of a value defined earlier helps retain and mutate promising
seeds. For example, when a value had to be non-zero and
also satisfy a range check before a sensitive operation, def-use
guidance pushed mutations toward that combination earlier;
GDBFuzz reached it later by chance.
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Fig. 5. Coverage changes over time on hardware.

Notably, Hardfuzz’s higher coverage does not come from
extra online analysis. We extract def-use chains with angr
offline before fuzzing, so this step adds no runtime cost.
By contrast, GDBFuzz updates control-flow information dur-
ing fuzzing when it finds new coverage, which adds some
overhead. Both systems rely on GDB stop reasons for crash
detection; halts, breakpoint churn, and occasional re-attach
process also cost time on real hardware. Despite these costs,
Hardfuzz’s richer signals yield better exploration and explain
the observed coverage gains.

VII. LIMITATIONS AND FUTURE DIRECTION

Hardfuzz improves fidelity and feedback on MCUs, but it
does not replace emulation or rehosting. These approaches
are complementary. Emulation scales and is easy to automate
across many targets. On-device fuzzing gives ground truth
behaviour but pays for I/O latency and debug overheads and
is tied to specific boards.

Cortex-M parts expose only a small number of hardware
comparators. Setting and reseting breakpoints through GDB
adds latency, and some devices lack trace mechanisms entirely.
This limits the number of def/use pairs we can watch at
once and execution throughput. We plan to combine flash
breakpoints with watchpoints, use RAM software breakpoints,
amortise re-programming with persistent execution loops on

the target, and opportunistically use trace (ETM/ITM/ETB) or
RTT mailboxes when available to cut halt/resume cycles [70].

Semihosting, SWD/JTAG, and serial handshakes add delay.
Our current design halts to set breakpoints and to step past
breakpoints, which reduces cycles per second. Future work
could design a persistent harness that processes many testcases
per boot, a small on-target control loop to set next breakpoints
via a memory-mapped index table without global halt.

We build def-use chains from binaries. Optimised builds,
inlining and register allocation can obfuscate the mapping
from IR to concrete addresses and drop some uses. Stripped
binaries reduce function recovery quality. The future work
includes: (1) fall back to dynamic analysis; (2) add lightweight
dynamic taint or value-flow sampler to validate and refine
static pairs; (3) consume optional symbols or minimal debug
info when present; and (4) model common library idioms to
cut false pairs.

As shown in Figure 3 and Figure 4, the code coverage
growth eventually slows down and plateaus. This happens
because both fuzzers use libfuzzer’s mutation strategy, which
relies on a random combination of simple changes like bit
flips, byte flips, and arithmetic operations. While this method
is effective for exploring a broad range of inputs initially,
it often struggles to generate the specific inputs needed to
bypass complex checks and reach deep program states. As a
result, the fuzzer reaches a point of saturation, after which
finding new code paths becomes rare, and coverage growth is
negligible. Therefore, instead of running the fuzzer for a fixed,
long duration like 24 hours, it is more practical to analyse this
saturation point to determine an efficient time budget for the
fuzzing campaign [71], [72].

On hardware we used three focused targets with known
faults; in emulation we used a larger corpus. This is useful
for controlled comparisons, but broader external validity needs
more firmware, more boards, and blind bugs. Future work
includes scaling to community firmware, report time-to-first-
crash and deduped bug counts.

VIII. CONCLUSION

This paper proposes Hardfuzz, an on-device dataflow-
guided fuzzer for embedded systems. Hardfuzz uses hardware
breakpoints to monitor def-use chains, providing precise and
efficient feedback to guide the fuzzing process. The evaluation
results show that Hardfuzz outperforms the state-of-the-art
GDBFuzz in both emulated and real hardware environments,
achieving higher code coverage and discovering more unique
basic blocks. This demonstrates the effectiveness of def-
use chain guidance in improving the exploration capabilities
of fuzzers for embedded systems. Hardfuzz is available at
https://github.com/MaksimFeng/Hardfuzz.
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