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Abstract—In this paper, we show E-FuzzEdge, a novel fuzzing
architecture targeted towards improving the throughput of
fuzzing campaigns in contexts where scalability is unavailable.
E-FuzzEdge addresses the inefficiencies of hardware-in-the-loop
fuzzing for microcontrollers by optimizing execution speed. We
evaluated our system against both real-world embedded libraries
and state-of-the-art benchmarks, demonstrating significant per-
formance improvements. A key advantage of the E-FuzzEdge
architecture is its compatibility with other embedded fuzzing
techniques that perform on device testing instead of firmware
emulation. This means that the broader embedded fuzzing
community can integrate E-FuzzEdge into their workflows to
enhance overall testing efficiency.

I. INTRODUCTION

Embedded devices are ubiquitous in safety-critical domains
such as transportation, healthcare, and industrial automation.
While resource constraints demand optimized time and space
efficiency, security remains paramount. The rising number of
cyberattacks on IoT systems underscores the urgent need for
effective vulnerability testing. However, applying traditional
analysis tools to embedded systems is challenging due to
their unique architecture: severe resource limitations, a lack of
filesystems or processes, and often minimal or no operating
systems.

Recent efforts have adapted fuzzing—one of the most effec-
tive vulnerability detection techniques—to embedded systems
through two main approaches: Emulation-based techniques ex-
ecute firmware in virtualized environments, offering scalability
and introspection but relying on accurate peripheral modeling,
which is difficult given proprietary or undocumented hardware.
In-place fuzzing executes tests directly on physical devices, en-
suring realistic interaction with actual peripherals and reducing
false positives; however, it suffers from scalability challenges
and communication overhead. Existing systems like IPEA [1]
and pAFL [2] exemplify hardware-in-the-loop approaches,
using minimalistic instrumentation and ARM debugging ca-
pabilities, respectively.

In this paper, we introduce E-FuzzEdge, an in-place fuzzer
that enhances execution efficiency through architectural op-
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timizations that are orthogonal to existing approaches. Our
key insight is that the communication overhead between the
fuzzing host and the embedded device is the primary bottle-
neck in hardware-in-the-loop fuzzing. E-FuzzEdge addresses
this through two mechanisms: (1) minimizing data transfer by
performing coverage analysis on-device and transmitting only
compact feedback, and (2) enabling parallel fuzzing instances
on the host to eliminate device idle time during feedback
processing.

We implemented a prototype based on AFL++ and evaluated
it against IPEA and pAFL. Our results demonstrate significant
throughput improvements—up to 2x with two parallel pro-
cessors on STM32L0 hardware. Importantly, our architectural
contributions are orthogonal to existing techniques, meaning
they can be integrated into other embedded fuzzers to further
enhance performance while preserving their unique innova-
tions.

II. BACKGROUND
A. Fuzz Testing

Fuzzing is an automated testing technique that generates
test inputs and monitors program execution for unexpected
behaviors [3]]. Modern fuzzers [4] consist of key components:
an executor that runs the target program, observers that collect
coverage data, a feedback system that identifies interesting
inputs, mutators that generate new test cases, and a scheduler
that selects inputs from the corpus.

Fuzzers are classified by input generation (generational
vs. mutational), program knowledge (black-box, white-box,
or grey-box), and execution model. Gray-box fuzzers like
AFL++[5] use lightweight instrumentation for coverage feed-
back, balancing effectiveness and efficiency. AFL++ employs
a forkserver model, spawning a new process per test case for
isolation; however, this incurs overhead. In-process fuzzing
improves speed by sharing address space but risks state
persistence across executions.

B. Fuzzing in Embedded Systems

Embedded devices face unique constraints—Ilimited mem-
ory, processing power, and often no filesystem or operating
system—making traditional fuzzing impractical. Two main ap-
proaches have emerged: Emulation-based fuzzing [6]], [7], [8]
virtualizes firmware for scalable testing but depends on accu-
rate peripheral modeling, which is challenging for proprietary
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hardware. In-place fuzzing (2], [1] tests directly on physical
devices, ensuring realistic peripheral interaction and reducing
false results; however, it suffers from scalability issues due to
resource constraints and communication bottlenecks between
the fuzzer and the device.

III. E-FuzzZEDGE DESIGN

The main focus of our project is designing an efficient
greybox in-place fuzzing architecture for embedded devices,
minimizing execution overhead while maintaining adaptability
across different hardware environments. The core requirements
of our architecture are versatility and efficiency. We can
examine the former along two dimensions: the adaptability of
the communication channel to suit the diverse environments
typical of embedded devices and a decrease in platform re-
quirements, such as processes and filesystems. This adjustment
is necessary for platforms with extremely simplistic or non-
existent operating systems. In terms of efficiency, the main
issue is the additional burden caused by the communication
channel. As this burden is intrinsic to the platform, our method
emphasizes reducing its impact instead of trying to remove it
altogether. We address this overhead by employing two main
strategies: decreasing the volume of data transmitted through
the communication channel and reducing device idle time
through enhanced data transmission and processing.

A. Architectural Model

We devised our architecture to satisfy the mentioned re-
quirements, particularly the one related to overhead, since
versatility pertains to the implementation and not the model.
Our system remains consistent with standard forkserver-based
fuzzing designs, but we decouple input processing,mutation,
and scheduling from test case execution and feedback collec-
tion. Figure [T]shows the three elements upon which our system
is built: multiple input processors, an input proxy, and a single
input executor

a) Input Processor: Multiple processors run on a desktop
device, leveraging superior computing resources and filesys-
tem access to enhance usability and accelerate operations that
do not require direct interaction with the embedded hardware.
They are tasked with all operations related to processing test
cases, such as scheduling and mutation, based on coverage
feedback. The choice to use multiple input processors stems
from the idea of maximizing the utilization of the device.
As previously mentioned, sending and retrieving data on the

communication channel is a slow process; the use of a one-
to-many architecture ensures that the single executor does not
remain idle while a processor is retrieving and analyzing the
data but rather runs the inputs provided by the other executors,
thus maximizing throughput.

b) Input proxy: A lightweight middleware sits between
processors and devices. It exposes a stable host-facing in-
terface and adapts to the device link (TCP or UART). For
UART, it handles practical details like DMA cyclic reception
and padding, so half/full-buffer interrupts fire predictably. The
choice of a proxy comes with the benefit of easing the process
of changing the communication protocol between the desktop
system and the embedded device, which is particularly relevant
in a highly heterogeneous context regarding communication
protocols.

c) Input Executor: The executor runs in-process with
the target firmware and a small harness without relying
on processes or fork(), which may not be available when
fuzzing bare-metal. The harness is tasked with initializing
the necessary peripherals for testing the firmware, retrieving
inputs from the proxy, and feeding them to the program
when needed. The execution of test cases follows the standard
fuzzing loop of execution and feedback analysis; however, it is
a persistent process, meaning that the system is not rebooted
after each test case. While this approach can create issues due
to separate tests coinciding in the stimulation of a bug. We
argue that this issue can be mitigated by careful harness design,
and the benefit in terms of executions per second makes
adopting the persistent approach worth it. The executor is also
tasked with processing coverage data related to the executed
test; this allows us to minimize the data transmitted over
the communication channel in the form of a flag indicating
whether new bits were found and a checksum, rather than
performing a full-bitmap transmission that would significantly
hinder fuzzing performance.

B. Communication Protocol

The protocol mirrors the classic fuzzing loop of scheduling,
mutating, executing, and evaluating, but it is engineered to
minimize bytes in flight and device idle time. During ini-
tialization, processors establish TCP sessions with the proxy,
which opens or attaches to the device link, and the executor
configures its peripherals and allocates the coverage structures
it will maintain during the campaign. Any static configuration
that affects message formats, such as the effective map size or
maximum payload, is broadcast from the proxy to processors
so that formatting remains consistent.

In a steady state, each processor prepares a test case and
submits it to the proxy; the proxy forwards the frame to the
device; the executor runs the harnessed target to completion or
timeout, computes coverage locally, and performs on-device
triage against the cumulative map. It then sends a compact
feedback record composed of a fault code, when applicable, a
boolean flag indicating whether new bits were observed, and,
if enabled, a short checksum. The proxy routes this record
back to the originating processor, which decides whether to



retain or discard the input and immediately schedules the next
one. Because only minimal feedback travels on the hot path,
steady-state traffic remains small and predictable.

Transport specifics are handled transparently by the proxy.
Over UART, the executor configures DMA in cyclic mode
and relies on half- and full-buffer interrupts to delimit frames,
while the proxy pads headers and bodies so those interrupts
fire deterministically.

IV. IMPLEMENTATION

In order to test our model, we developed a prototype
based on AFL++ [5)]. Although AFL++ already provides a
proxy system, we developed the remote fuzzing system from
scratch because this system allows only a one-to-one fuzzing
architecture and requires the fuzzer to send back the entire
coverage map, significantly slowing down the entire process.
Additionally, we modified the fork server to allow remote
communication with the embedded device and adapted the
feedback collection mechanism to process the input without
the need for the coverage map since the task of analyzing
the input is performed by the input executor. Moreover, we
modified the compiler runtime to accomplish two objectives:
first, we reduced the data needed for the fuzzing campaign to
meet the strict space requirements present within the embed-
ded context; second, we added the infrastructure necessary to
initialize the peripherals required for communicating with the
proxy and retrieving input data from it. Lastly, we developed
the proxy system to mediate between the afl instances and
the embedded system. In total, we contributed 6534 lines of
C/C++ code.

V. EVALUATION

We evaluate E-FuzzEdge in two settings: a desktop-only
setup where input processors and the executor communi-
cate over TCP, and a hardware-in-the-loop setup using an
STM32L053R8 board with a desktop host (Intel i7-9750H,
16 GB RAM). In the embedded setup, host—device commu-
nication uses UART. For each firmware, we ran seven 4-hour
fuzzing campaigns for n € {1,2,3,4} parallel input proces-
sors, reporting executions per second (exec/s) aggregated over
each campaign.

A. Dataset

We used xpdf for desktop evaluation. For embedded
testing, we used 10 open-source firmwares: two from the
OAT dataset [9] and eight from Arduino Projects [10] and
Raspberry Pi Pico Examples [[11]]. Each firmware was modified
to replace main with a simple in-process harness (standard
fuzzing practice), and input functions (fgetc, scanf) were
redirected to read from proxy-provided test cases rather than
stdin or UART.

B. Results

a) Desktop Setting: To evaluate our host-side concur-
rency model under optimal conditions, we tested the pro-
tocol over TCP with a single forkserver-backed executor.

TABLE I
NUMBER OF EXECUTIONS PER SECOND FOR EACH FIRMWARE.

Firmware name | 1 Instance | 2 Instances | 3 Instances | 4 Instances

discokeyboard 14.36 (1.00x) | 21.17 (1.47x) | 10.03 (0.70x) | 10.42 (0.73x)
huemotion 14.31 (1.00x) | 21.68 (1.52x) | 10.03 (0.70x) | 10.08 (0.70x)
ledmatrixpainter | 18.59 (1.00x) | 23.71 (1.28x) | 23.93 (1.29x) | 12.01 (0.65x)
miniigstats 7.41 (1.00x) 4.64 (0.63x) 4.67 (0.63x) 4.60 (0.62x)
modbus 16.79 (1.00x) | 25.76 (1.53x) | 26.07 (1.55x) | 27.89 (1.66x)
musiccontroller 0.94 (1.00x) 0.94 (1.00x) 0.95 (1.01x) 0.94 (1.00x)
pixelpainter 2.62 (1.00x) 2.62 (1.00x) 2.61 (1.00x) 2.61 (1.00x)
rflock 15.89 (1.00x) | 23.94 (1.51x) | 21.94 (1.38x) | 20.00 (1.26x)
thermostat 16.62 (1.00x) | 32.96 (1.98x) | 33.32 (2.00x) | 24.70 (1.49x)
xml 3.22 (1.00x) 4.17 (1.30x) -

Total I 1.00x I 1.27x I 1.06x I 0.95x

Baseline throughput with one processor is 20.24 exec/s.
Multiple processors yield speedups of 2.09x, 2.10x, 3.20x,
5.11x, and 6.81x for {2,3,4,6,8} processors, reaching
{42.28,42.44,64.69,103.45,137.96} exec/s. Scaling becomes
sub-linear as available cores saturate.

This stress test isolates the effect of low-latency transport
and host-side concurrency from device constraints, approxi-
mating performance on high-end boards with fast links. While
typical desktop fuzzers achieve thousands of exec/s without
our proxy architecture, this experiment demonstrates two key
insights: (1) when the link is fast, parallel processors directly
increase throughput until the CPU becomes the bottleneck,
and (2) the saturation point depends on per-input computation
versus execution overhead. This mirrors our embedded results,
where saturation occurs earlier due to slower links and device
constraints.

b) Embedded Setting: Table [I| reports executions per
second (exec/s) by firmware and the number of parallel pro-
cessors. Values in parentheses show speedups relative to one
processor; the Total” row shows the geometric mean speedup
across the firmware. The key result is that adding a second
processor consistently improves throughput, with a geometric-
mean speedup of 1.27x. A third processor yields 1.06x, and
a fourth 0.95x, indicating diminishing returns beyond two.
Specifically, 7/10 firmware improvements were observed with
two processors (gains 1.3-2.0x), 2/10 remained unchanged,
and 1/10 regressed. This reflects the intended design: a second
processor keeps the executor busy while the first processes
feedback, but additional processors mainly add overhead once
the device and link saturate.

Saturation is target-specific: optimal performance occurs at
n = 2 for 4/10 firmwares (discokeyboard, huemotion,
rflock, xml), at n = 3 for 3/10 (ledmatrixpainter,
thermostat, musiccontroller), atn = 4 for modbus,
and at n = 1 for miniigstats and pixelpainter
(which have fixed delays). When channel overhead dominates,
additional processors create contention; when targets require
higher per-input computation (e.g., modbus protocol parsing),
extra processors provide near-linear gains. For UART links and
STM32L.0-class boards, two processors are a strong default.

VI. DISCUSSION

Our evaluation has demonstrated the effectiveness of our
parallel architecture; however, it has also highlighted several



key limitations and avenues for future work.

a) Evaluation scope: As shown in the previous section,
E-FuzzEdge improves fuzzing throughput when multiple input
processors handle test cases in parallel. Our evaluation, how-
ever, is limited to a single MCU family (STM32L0) and two
channels (TCP on desktop, UART on the device). While we do
not expect an inversion of the observed trend, more powerful
boards and faster links will likely shift the saturation point
beyond two processors. Replicating on additional MCUs and
transports (e.g., USB CDC/SP]) is future work.

b) Memory overhead: Our prototype maintains one tem-
porary coverage map per execution and one cumulative map
per input-processor instance on the device. On memory-
constrained boards with large targets, these allocations may be
prohibitive. A straightforward extension is to use a single cu-
mulative map shared across processors, reducing redundancy;
this requires careful evaluation to rule out contention and other
side effects.

c) Number of input processors: The current level of
parallelism is fixed at the beginning of the campaign. Results
indicate that the optimal number of processors depends on
both firmware and target hardware. On the STM32L053RS,
two processors are typically the best choices. We plan to
improve in this area by enabling runtime negotiation of the
number of input executors; this approach can dynamically
increase or reduce the number of input processors to keep
the board saturated while minimizing the overhead caused
by the communication channel in order to optimize system
throughput.

d) Crash Handling: Currently, we rely on timeouts to
detect crashes. While this is a common and practical approach,
it cannot distinguish a true crash from a simple timeout due to
a delay in the target firmware’s execution. This limitation can
be addressed by implementing custom error handlers within
the firmware to signal the host when a crash occurs. Fur-
thermore, our architecture’s high throughput, while beneficial,
also exacerbates a core problem of in-place fuzzing: the need
for frequent device resets upon crash detection. An increased
crash discovery rate, while a sign of a successful fuzzing
campaign, can lead to more frequent reboots, which, in turn,
can significantly impact overall performance and limit the
practical benefits of our architecture.

VII. RELATED WORK

Embedded fuzzing techniques fall into two categories:
emulation-based and hardware-in-the-loop approaches.

Emulation-Based Approaches: These techniques execute
firmware in simulated environments without physical hard-
ware, enabling scalable testing. DICE [12], Fuzzware [6],
P2IM [7], and Laelaps [[13]] use symbolic execution, peripheral
abstraction, and model learning to approximate hardware pe-
ripheral behavior. Rehosting approaches like HALucinator [3]]
intercept hardware abstraction layer (HAL) calls with simu-
lated responses, while Pretender [14] models Memory-Mapped
/O (MMIO) peripherals by learning from actual hardware
behavior. Despite enabling scalability and deep introspection,

emulation-based approaches face challenges with peripheral
modeling accuracy, particularly for proprietary or undocu-
mented hardware, which may lead to discrepancies in actual
firmware behavior.

Hardware-in-the-Loop Approaches: These techniques ex-
ecute firmware directly on target devices for more accu-
rate testing. IPEAFuzz [1] uses lightweight instrumentation
for efficient data exchange and feedback collection, while
uAFL [2]] employs ARM-specific debugging mechanisms
(hardware breakpoints and trace features) for instrumentation-
free fuzzing. HIL approaches provide high-fidelity testing
with actual hardware but suffer from scalability limitations
and hardware dependencies, constraining execution speed and
reproducibility compared to emulation.

Our work addresses HIL scalability challenges through
architectural optimizations that are orthogonal to existing tech-
niques. By minimizing communication overhead and enabling
host-side parallelism, E-FuzzEdge improves throughput while
maintaining the fidelity advantages of hardware-in-the-loop
testing.

VIII. CONCLUSION

In this work, we presented E-FuzzEdge, an in-place fuzzer
for embedded systems. We showed that parallelizing fuzzing
instances, even with a single on-device executor, significantly
improves throughput. This result is orthogonal to existing
approaches and can directly benefit in-place embedded fuzzers
such as IPEA Fuzz [1] and ©AFL [2]. Finally, we implemented
and released an AFL++-based prototype, bridging the gap
between state-of-the-art desktop greybox fuzzing and current
embedded fuzzing tools.
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