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Abstract—Flight control software for unmanned aerial vehicles
(UAVs5) offers numerous configuration parameters. However, their
complexity raises the risk of incorrect configurations, leading
to mission failures or crashes. Although fuzzing is effective
for discovering software vulnerabilities, its application to UAVs
configuration is hindered by the need to obtain physical states
(e.g., position and altitude) from a time-consuming simulator.
Furthermore, machine learning-based acceleration methods often
suffer from limited generalizability due to their reliance on flight
logs as training data. To address these challenges, we propose
UAV ConfigFuzzer, a novel fuzzing tool that accelerates config-
uration testing via setpoint estimation guided fuzzing. In flight
control software, setpoints are the calculated target values that
guide the UAV’s movement based on configurations. UAVCon-
figFuzzer leverages the native setpoint generation module to
generate setpoints, which serve as the estimated UAV’s physical
states to rapidly quantify the severity of UAV’s anomalies. Guided
by this efficient and accurate feedback, UAV ConfigFuzzer steers
the mutation process toward anomaly-inducing configurations
without relying on simulators or extensive flight logs. We evaluate
UAVConfigFuzzer on PX4, a widely used open-source UAV flight
control software, the results demonstrate that the feedback
achieves an average runtime of 27 milliseconds. The estimated
states maintain high fidelity, with a mean position error below
6.92 cm and a velocity error below 0.13 m/s. Leveraging this rapid
feedback, UAVConfigFuzzer detects 14 incorrect configurations.
These issues were validated on real UAV hardware and have been
acknowledged by the community maintainers for remediation.

I. INTRODUCTION

Flight control software serves as the core system that
governs the behavior of unmanned aerial vehicles (UAVs),
determining their flight performance and ensuring safety [1].
In autopilot mode, UAVs follow a predefined flight mission
uploaded by the user, with the flight control software au-
tonomously performing missions such as takeoff and hover-
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ing [2]. To enhance the flexibility of autopilot mode, the flight
control software offers users hundreds of configuration param-
eters, allowing customization of various aspects of autopilot
performance, including cruise speed, yaw alignment, and flight
trajectory smoothing [3]. However, due to the complexity of
the configurations, inexperienced users can easily misconfigure
them, leading to mission failures [4] and even crashes [5].

Fuzzing has become a prevalent testing method for de-
tecting incorrect configurations in UAVs. In UAV fuzzing,
most studies rely on simulator-based feedback [6], [7], [8],
[9], [10], [11], [12] to collect the physical states of UAVs
(e.g., positions and altitudes), to guide subsequent mutations
and detect incorrect configurations. Despite its effectiveness,
simulator-based UAVs fuzzing faces a significant efficiency
bottleneck. For instance, simulating a flight mission usually
takes minutes, resulting in a substantial time cost that severely
limits the efficiency of the fuzzing process. To improve fuzzing
efficiency, Han et al. [11] proposed LGDFuzzer, which em-
ploys a Long Short-Term Memory predictor [13] trained on
historical flight logs to predict the physical states of UAVs.
However, such a data-driven method inherently restricts its
generalizability to new flight missions.

In this paper, we propose UAVConfigFuzzer to enhance the
efficiency of UAVs configuration fuzzing. Instead of relying
on simulators or collecting flight logs, UAVConfigFuzzer
efficiently estimates UAV’s physical states by leveraging set-
points. A setpoint represents the target physical state (e.g.,
position and velocity) generated by the flight control software
to guide the UAV’s movement. Since the controller is designed
to control a UAV to follow these setpoints, any deviation of the
generated setpoints from the user-defined mission implies that
the UAV is in an anomalous state. Based on this insight, we
reuse the native setpoint generation logic to rapidly estimate
UAV’s physical states, effectively bypassing simulation.

To achieve this, we design a tool named setpoint generator,



which accepts the user’s flight mission and configuration
parameters as inputs and outputs the setpoint sequence. We
conduct the setpoint generator by reusing the setpoint genera-
tion module from the flight control software. A key challenge
lies in isolating it due to complex inter-module dependencies.
We address this by leveraging the native build system to
resolve these dependencies, enabling us to directly reuse the
original source code of the setpoint generation logic. Built
upon this novel setpoint-based UAV’s physical state estimation
tool, we propose UAVConfigFuzzer, a configuration fuzzing
tool. UAVConfigFuzzer leverages the setpoint generator to
produce setpoint sequences and quantifies the severity of
three types of UAV’s anomalies (i.e., rapid ascent/descent,
deviation and interruption) by comparing generated setpoints
against the user-defined mission. Guided by this feedback,
UAVConfigFuzzer iteratively mutates configurations toward
anomaly-inducing values to detect incorrect configurations,
which are subsequently verified via a simulator. Finally,
UAVConfigFuzzer refines the valid configuration bounds by
excluding the confirmed incorrect values.

Evaluation results on the widely used flight control software,
PX4, show that the simulator takes at least 28.47 seconds
to estimate physical states, whereas our setpoint generator
requires only 27 milliseconds. Crucially, this efficiency comes
with high precision, yielding mean position and velocity errors
of less than 6.92 cm and 0.13 m/s, respectively. Consequently,
UAVConfigFuzzer achieves 100% accuracy in detecting three
types of UAV’s anomalies. Guided by this rapid feedback,
UAVConfigFuzzer identified 14 incorrect configurations, in-
cluding five new ones not found by the state-of-the-art fuzzer.
We validate these findings on a real UAV equipped with Pix-
hawk 4 (PX4 v1.15.0) and report them to the community. The
maintainers acknowledged the reported issues, confirming that
they require either firmware patches or explicit documentation.

This paper makes the following contributions:

o We propose a novel physical state estimation method for
fuzzing cyber-physical systems by reusing their native
code, i.e., setpoint generation code from the flight control
system. The outputs of this method serve as an oracle,
enabling rapid and accurate detection of UAV’s physical
anomalies during fuzzing.

« Based on this idea, we implement UAVConfigFuzzer, a
UAVs configuration fuzzing tool that leverages setpoint
estimation as feedback, thereby eliminating the depen-
dency on simulators or flight logs. Evaluation demon-
strates that the setpoint generator estimates UAVs physi-
cal states in just 27 ms with mean errors below 6.92 cm
in position and 0.13 m/s in velocity. Guided by this rapid
and accurate feedback, UAVConfigFuzzer successfully
identifies 14 incorrect configurations.

o We validate the detected incorrect configurations on a real
UAV and report the findings to the community, and the
maintainers have acknowledged them. Furthermore, we
have open-sourced our tool' to facilitate future research.

Thttps://github.com/hapi2test/fuzz

II. BACKGROUND
A. UAV Configuration Parameters

Configuration parameters are an essential component of
flight control software, as they play a key role in ensuring flight
stability and mission success. The UAV configuration param-
eters are typically key-value pairs and can be adjusted via the
command line, configuration files, or the ground control station
interface. However, flight control software often lacks proper
validation for these configurations [14], [15], leading to the
acceptance of invalid values and thereby increasing the risk of
flight failures. For example, assigning excessively large values
to roll and pitch controllers can cause instability in UAVs, po-
tentially resulting in a crash [5]. Furthermore, the configuration
parameters in flight control software exhibit complex correla-
tions [16]. Configuration correlation refers to the dependencies
or interactions between different configuration parameters,
where changing one may affect the behavior or validity of
another. Incorrect configurations can arise when these corre-
lations are not satisfied. For instance, MPC_XY_VEIL_MAX is
a configuration parameter in PX4 that adjusts the maximum
horizontal velocity. If MPC_XY_VEL_MAX is set to a value
lower than MPC_XY_CRUISE, which indicates the default
horizontal velocity during cruise, the UAV flies backward,
performs erratic loops, and is unable to fly stably [4].

B. Trajectory Generator
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Fig. 1. Illustration of UAVs Trajectory Generation.

As shown in Figure 1, the user uploads a sequence of way-
points, collectively referred to as a flight mission. A waypoint
defines a geographical coordinate (typically latitude, longitude,
and altitude) that the UAV is required to reach. Upon receiving
the mission, the flight control software employs a trajectory
generator to construct a path connecting these waypoints,
illustrated by the yellow path in the figure. The trajectory
generator is a module responsible for calculating smooth
motion paths that transition the UAV from its current position
to the target destination. The outputs of this process are
setpoints. Setpoints represent the discrete values sampled from
the generated trajectory at specific timestamps. They serve as
the target states (e.g., position, velocity, acceleration) that the
UAV’s controller strives to track.

The trajectory generator serves as a critical bridge between
high-level planning and low-level controllers. It computes
the flight path based on the flight mission and configuration
parameters (e.g., velocity limits, acceleration constraints). Fun-
damentally, the setpoints output by the trajectory generator



represent the target physical state of the UAVs. Consequently,
the UAV’s physical state can be estimated by analyzing these
setpoints, eliminating the need for simulations. To acquire
these setpoints, we can reuse the trajectory generator module
in flight control software. This approach enables fuzzing of the
configuration parameters and direct observation of their impact
on the UAV’s physical state through the generated setpoints.

C. UAV Anomalies

A UAV is considered to be in an anomalous state when there
is a significant deviation from its predefined flight mission.
Based on existing classifications of UAV’s anomalies [17],
[18], we design test oracles to detect three common types of
UAV’s anomalies. Rapid Ascent/Descent: UAVs are expected
to maintain smooth and controlled speed changes during
operation, as rapid fluctuations in vertical velocity, can lead
to instability, loss of control, or even crashes. Deviation: A
deviation anomaly occurs when the discrepancy between the
actual flight trajectory and the mission trajectory exceeds a
predefined threshold, potentially preventing the UAV from re-
turning to the intended path. Interruption: In autopilot mode,
UAVs must remain in motion during flight. If a UAV’s position
remains stationary for an extended period, with its movement
distance falling below a predefined threshold, this condition
is classified as an interruption anomaly. Such anomalies can
hinder the UAV’s ability to execute subsequent flight missions.

III. UAVCONFIGFUZZER
A. Overview

Figure 2 illustrates the workflow of UAVConfigFuzzer,
which comprises three modules: Constraint-based Muta-
tion, Feedback Engine, and Validation & Refinement. First,
UAVConfigFuzzer mutates configurations based on extracted
constraints (i.e., bound and correlation) via 1-D and n-D
mutation strategies. The 7-D mutation mutates individual
configuration one by one within the bounds. The n-D mutation
mutates multiple correlated configurations. Subsequently, in
the feedback engine, the setpoint generator takes the mutated
configurations and flight mission as input to estimate setpoints.
Based on these setpoints, UAVConfigFuzzer calculates fitness
scores to detect three types of UAV’s anomalies, i.e., rapid
ascent/descent, deviation, and interruption. A high fitness score
indicates that the configuration is more likely to be incorrect.
Next, the fuzzing loop continues using the configurations with
high fitness scores as seeds for the next round of mutation.
Once the fuzzing loop terminates after a predefined number of
iterations, it outputs a set of candidate incorrect configurations.
Finally, in the validation & refinement module, UAVConfig-
Fuzzer uses a simulator to verify the discovered incorrect
configuration values. Confirmed incorrect values are excluded
from the configuration bounds, and the remaining intervals are
defined as the final valid bounds.

B. Setpoint Generator

We develop a tool named setpoint generator to generate
setpoints based on a flight mission and configuration parame-
ters. To ensure consistency with the flight control software, we

directly reuse the trajectory generator module (i.e., Position-
Smoothing) instead of re-implementing the generation logic.
This method avoids the challenges posed by the flight control
software’s complex dependencies, which often prevent static
extraction or logic rewriting from compiling successfully.
The detailed procedure of the setpoint generator is outlined
in Algorithm 1. First, we leverage the native build system
(CMake) to resolve complex dependencies, enabling us to
link the setpoint generation logic into a standalone executable.
The algorithm accepts a configuration vector C' and a flight
mission Mg, as inputs. The mission is defined as an ordered
sequence of N waypoints in the geodetic coordinate system
(latitude, longitude, altitude). In the initialization phase, the
algorithm transforms M., into the local North-East-Down
(NED) frame, denoted as M (line 2). The Device Under Test
(DUT) is defined as the PositionSmoothing module, which
encapsulates the core trajectory generation algorithms. To
enable fine-grained control over protected internal members,
we implement an intrusive wrapper that inherits from the
DUT, granting the algorithm direct write access to inject
the configuration vector C' (line 3, line 4). During the main
execution loop, the algorithm constructs a My;;pc; (previous,
current, and next waypoints) to capture the local navigation
context. The DUT then generates the setpoint s;y; for the
next time step At (line 10). Crucially, if the generated setpoint
exhibits numerical instability, the process terminates immedi-
ately, returning the partial setpoint sequence. Otherwise, under
the assumption of an ideal environment, the generated setpoint
is directly used as the next UAV state x4 in the subsequent
iteration (line 15). Next, the waypoint switches to the target
index when the UAV enters the acceptance radius Rgccept-
Finally, the complete setpoints sequence S is returned.

Algorithm 1 Setpoint Generator

Require: Configuration vector C'

Require: Flight mission Mgco = {mo, m1,...
Ensure: Setpoints sequence S

1: Initialization:

2: M < MapFunction(Mgeo, Ref = my)

3: DUT < IntrusiveWrapper(PositionSmoothing)
4: DUT.injectConfig(C)

5 ¢ + M[0]
6
7
8
9

’mN}

cidr +— 1

1S« 0

. while ¢t < Tihax and ide < N do

. Wtriplet — {M[’de - 1]7 M[de}v M[de + 1]}
10: st4+1 < DUT.generateSetpoints(zt, Wyyipiet, At)
11: S+ SU{st4+1}
12: if —IsFinite(s¢41) then

13: return S

14: end if

15: Ti41 < St+1

16: if ||x¢41.pos — Midz]|| < Raccept then
17: idx < idx + 1

18: end if

19: t<+t+ At
20: end while
21: return S

Note that the setpoint generator focuses on logic verification
under ideal environmental conditions (i.e., zero wind distur-
bances, no air turbulence, and an obstacle-free space). By
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Fig. 2. Workflow of UAVConfigFuzzer.

eliminating external environmental factors, we ensure that any
detected anomalies are attributed to incorrect configurations
rather than external factors. Furthermore, the setpoint gener-
ator features a flexible architecture. Specifically, the setpoint
generator can be extended to include environmental factors
by adding a disturbance model to the UAVs state update at
line 15, formulated as z;41 < Si41 + ENV, to simulate the
influence of the environment on the UAV’s physical states.

C. Setpoint Estimation Guided Fuzzing

This section describes the three core components of the
fuzzing loop, including constraint extraction to define the
mutation scope, 1-D and n-D mutations to generate config-
urations, and fitness evaluation to guide the search toward
potential anomalies.

1) Configuration Constraint Extraction: To mitigate the
vast search space in configuration fuzzing, UAVConfigFuzzer
performs static analysis to extract configuration constraints,
namely bounds and correlations. By utilizing these constraints
to define the mutation scope, UAVConfigFuzzer effectively
filters out-of-bound values and incompatible combinations.

UAVConfigFuzzer begins by identifying configuration read
sites and mapping configuration names from the user guide to
their corresponding data structures in the code. To accurately
model data propagation, UAVConfigFuzzer applies Andersen’s
analysis [19] to resolve pointer aliases, ensuring that all aliased
variables are included in the configuration variable set. Sub-
sequently, a Mod-Ref analysis is performed to pinpoint where
these variables are modified or referenced. Based on these
analyses, UAVConfigFuzzer constructs a value-flow graph that
captures the flow and dependencies of the configurations.

With the value-flow graph constructed, UAVConfigFuzzer
traverses the graph to identify two constraint types, i.e.,
bounds and correlations. The bounds are the minimum and
maximum values of a configuration parameter, and the cor-
relations represent the constraints between two configuration
parameters. Bounds are identified by detecting calls to spe-
cific boundary functions. UAVConfigFuzzer looks for patterns
like (boundCons) = (boundFunc) ({paramRef), (argl),...),
where boundFunc represents the functions that limit the values
of a configuration variable within a range, such as min(),
max(), and interpolate(). Correlations between configurations
are typically found in conditional statements that use com-
parison operators. UAVConfigFuzzer searches for patterns
like {corrCons) (compOper) ({paramRef), (arg)), where
compOper represents comparison operators such as < and >,
and arg can be a configuration parameter or a constant.

This entire static analysis process is performed only once
before the fuzzing begins and outputs the bounds and corre-
lations of each configuration parameter.

2) Mutation Strategy: 1-D mutation focuses on identifying
the safe bound for each individual configuration parameter.
UAVConfigFuzzer mutates one target configuration at a time
while maintaining others at their default values. UAVCon-
figFuzzer initializes N configuration sets, each composed of
the target configuration and others with default values, by
randomly sampling values within the bounds extracted in
Section III-C1. Subsequently, UAVConfigFuzzer employs the
fitness function to calculate scores for each configuration set.
After the calculation, the configuration sets with the top K
fitness scores are selected as seeds for the next mutation.
UAVConfigFuzzer performs a localized search by generating
N new target values within a mutation range of +50% around
these seeds. This process iterates until a predefined number
of mutations is reached. Finally, high-fitness configurations
identified during fuzzing are considered candidates for unsafe
values, which are verified via a simulator. Verified unsafe
values are then excluded from the initial bound, and the
remaining intervals are marked as the single-safe bound.

n-D mutation aims to detect anomalies arising from the cor-
relations between configurations. Since directly exploring all
combinations leads to a combinatorial explosion, UAVConfig-
Fuzzer leverages the correlation constraints identified in Sec-
tion III-C1 to prune the search space. Specifically, UAVConfig-
Fuzzer mutates the target configuration by randomly sampling
N values within its refined single-safe bounds, while simulta-
neously assigning critical values (i.e., maximum, minimum,
and default) to the correlated configurations. This strategy
generates 3V configuration sets per iteration. Similar to the 1-
D process, UAVConfigFuzzer calculates fitness scores, ranks,
and mutates these sets iteratively. Finally, the unsafe values
discovered during this phase are verified by the simulator.
These validated unsafe values are subtracted from the single-
safe bounds to derive final valid bounds for each configuration.

3) Fitness Calculation: The fitness calculation process
compares the estimated setpoints from the setpoint generator
against the user-defined flight mission to quantify the severity
of three types of UAV’s anomalies via specific fitness scores.
A higher fitness score indicates a greater likelihood that the
UAV is experiencing an anomaly. Following the classification
of UAV’s anomalies in Section II-C, we develop three methods
to calculate their fitness scores. Rapid Ascent/Descent: This
anomaly is characterized by abrupt changes in vertical veloc-



ity, corresponding to excessive acceleration along the Z-axis.
The fitness score is defined as the maximum absolute Z-axis
acceleration observed in the setpoint sequence. Deviation: This
anomaly manifests when the generated setpoints significantly
diverge from the user-defined flight path. UAVConfigFuzzer
models the flight mission as line segments connecting consec-
utive waypoints. It then calculates the perpendicular distance
from each setpoint to the corresponding mission segment. The
fitness score is defined as the maximum deviation distance ob-
served across the entire setpoint sequence. Inferruption: This
anomaly captures scenarios where the UAV gets stuck (i.e.,
velocity drops to near zero) or fail to complete its mission.
The fitness function first verifies whether the setpoint sequence
is complete. If the sequence is incomplete, the mission is
considered interrupted, and the fitness score is assigned an
infinite value. Otherwise, the fitness score is defined as the
inverse of the minimum 3D total velocity V, , . N e}

in the setpoint sequence.

IV. PRELIMINARY EVALUATION

This section presents the preliminary evaluation of
UAVConfigFuzzer and addresses three research questions.

o RQ1: Efficiency. How does the setpoint generator en-
hance the efficiency of feedback?

e RQ2: Accuracy. How accurate are the components of
UAVConfigFuzzer, specifically in estimating setpoints
and extracting configuration constraints?

« RQ3: Effectiveness. How effective is UAVConfigFuzzer
in detecting incorrect configurations and valid bounds?

A. Implementation

We conduct our experiments using Gazebo [20] as the
simulator and QGroundControl [21] as the ground control
station, with PX4 1.15.0 [22] as the target flight control
software. All experiments are performed on a machine with
an Intel Core i7-14700KF CPU and 32GB memory running
Ubuntu 20.04. We further validate the detected anomalies on a
real AMOVLab P450 quadcopter [23] equipped with Pixhawk
4 [24] and PX4 1.15.0, and provide three demonstration
videos [25], [26], [27]. In the implementation, the setpoint
output is restricted to the three-dimensional position (x, v, 2)
and velocity (vg, vy, v,), which suffice for anomaly detection.
The hyperparameter settings in fuzzing module were guided
by common practices [11], [28] and informed by preliminary
experiments. The minimum mutation step size was determined
by the increment specified in the user guide. Furthermore, the
number of random values (/V) was set to 100, the number of
selections (K') was set to 5, and the number of iterations was
fixed at 200.

B. RQI: Efficiency

To evaluate the time efficiency of the setpoint generator,
we benchmarked its runtime against Gazebo on 50 flight
missions with 10 randomly distributed waypoints each. Both
systems executed the missions under default configurations,

and Gazebo was optimized using headless mode and the
maximum PX4_SIM_SPEED_FACTOR (a configuration con-
trolling the simulation speed relative to real-time) to minimize
simulation time, after which we measured the average runtime.
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Fig. 3. The Average Runtime of Gazebo and the Setpoint Generator.

As illustrated in Figure 3, the runtime of the simulator
decreases as the PX4_SIM_SPEED_FACTOR increases. The
runtime plateaus at an average of 28.47 seconds once the
speed factor exceeds 20. In contrast, the setpoint generator
consistently achieves an average runtime of 27 milliseconds,
yielding a speedup of more than 1,000x over simulation-
based execution. This efficiency stems from the architectural
design of the setpoint generator, which bypasses the compu-
tational overhead of full physics simulation. As detailed in
Section III-B, rather than performing a step-by-step physics
simulation, the setpoint generator directly leverages the trajec-
tory generation algorithm embedded within the flight control
software. This allows it to compute the UAV’s physical states
rapidly, achieving millisecond-level estimation.

C. RQ2: Accuracy

1) The Setpoint Generator: To validate the fidelity of the
setpoint generator, we benchmarked the setpoints it produces
against those generated by the native flight control software.
We employed a ten waypoint flight mission executed in the
PX4 with default configurations. The setpoints generated by
the flight control software, serving as the ground truth, were
extracted from the flight logs. We then processed the same
mission and configurations using the setpoint generator and
compared the estimated setpoints against the ground truth.

As illustrated in Figure 4, the setpoints generated by the set-
point generator align closely with the ground truth. While the
overall trends are consistent, minor deviations are observed.
Specifically, the ground truth data exhibits slight fluctuations.
These deviations are attributable to the physical simulation,
where the control layer corrects for disturbances, causing the
UAVs to react with a slight delay and constantly adjust their
states. In contrast, the setpoint generator operates under an
ideal feedback assumption. By eliminating the control layer,
the setpoint generator produces noise-free setpoints.

To evaluate the generalizability of the setpoint generator
across diverse flight scenarios, we conducted a statistical eval-
uation comprising 100 randomized test cases. Each test case
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consists of a randomly generated mission with ten waypoints
and a configuration set. To ensure comprehensive coverage
of the configuration space, we employed a sampling strategy
for configuration generation, i.e., 50% of configurations were
assigned default values, 10% were set to the minimum bound,
10% to the maximum bound, and the remaining 30% were
randomly sampled within the valid range. The ground truth
was established using the same methodology as the fidelity
validation. We quantified the discrepancy between the set-
points generated by the setpoint generator and the ground truth
using two metrics, i.e., the Mean Absolute Error (MAE) and
Standard Deviation (Std).

TABLE I
COMPARISON OF MEAN ABSOLUTE ERROR AND STANDARD DEVIATION
BETWEEN THE SETPOINT GENERATOR AND GROUND TRUTH.

Position Error (cm)  Velocity Error (m/s)

Metrics

X Y Z X Y Z
MAE 692 547 585 0.13 0.07 0.10
Std 502 532 399 022 031 0.18

As shown in Table I, the discrepancy of setpoints between
the setpoint generator and the ground truth is negligible.
In terms of position, the largest MAE occurs on the X-
axis, with a value of only 6.92 cm. Regarding velocity, the
MAESs remain below 0.13 m/s across all axes. Furthermore,
the low standard deviations demonstrate the robustness of
the setpoint generator, ensuring consistent performance across
diverse missions and configurations.

2) Configuration Constraint Extraction: To evaluate the
accuracy of the configuration constraint extraction module, we
addressed the absence of a ground truth by implementing a
two-step verification process. First, we established a ground
truth through manual inspection of the source code. To ensure
accuracy, this manual cross-validation was performed inde-
pendently by two authors. Second, we compared the extracted
constraints against the official user guide to assess alignment
with the documentation.

As detailed in Table II, the constraint extraction module
successfully identified a total of 19 configuration bounds and
16 correlation pairs. Manual verification against the source

TABLE II
EVALUATION OF EXTRACTED CONSTRAINTS AGAINST SOURCE CODE
AND USER GUIDE.

Manual User Guide
Entire Min Max
Bound 19/19 M 2/191 6/19 1 6/19 |
Manual User Guide
Correlation  16/16 I 6/16 H

code confirmed that our method achieved 100% extraction
accuracy. A comparison between the user guide and the im-
plementation revealed significant discrepancies. Specifically,
only 6 lower and 6 upper bounds in the user guide are
consistent with the source code. For correlations, the user
guide lists only 6 pairs. The high accuracy against the source
code demonstrates the effectiveness and reliability of the static
analysis method in extracting configuration constraints, which
provides an accurate mutation scope for fuzzing. However, the
discrepancy between our results and the user guide reveals a
critical gap between implementation and documentation. For
instance, the configuration MPC_ACC_HOR is constrained to
[1.0, 15.0] in the code, but the guide suggests [2.0, 15.0].
Similarly, MPC_Z_VEL_MAX_UP is coded as [0, +oc0) but
documented as [0.5, 0.8]. These differences arise because
the user guide often provides recommended values based
on flight experience, not the actual hard-coded constraints
enforced by the source code [29]. Furthermore, the user guide
is incomplete, omitting 62.5% of the correlations identified in
the source code, such as the constraint that MPC_XY_ CRUISE
must be smaller than MPC_XY_VEL_MAX. This inconsistency
between implementation and documentation can mislead de-
velopers and users, leading to misconfigurations.

D. RQ3: Effectiveness

To assess the anomaly identification capability of fitness
calculation, we employed a dataset of 50 test cases, each con-
sisting of a fixed flight mission and randomized configurations.
Ground truth was established via Gazebo, where we observed
14 anomalous instances and 36 nominal flights. Specifically,
the anomalies included 5 cases of rapid ascent/descent, 4
deviation, and 5 interruption. We then processed the same
inputs into the fitness calculation process to compute the
fitness scores for each configuration set. The results revealed
that the fitness scores for anomalous configuration parame-
ters were consistently higher than those for nominal flights.
When validated against the ground truth, the fitness function
successfully identified all 14 anomalies. This result confirms
that the fitness calculation process serves as a reliable module
for identifying UAV’s anomalies to guide the mutation toward
anomaly-inducing configurations.

To evaluate the effectiveness of UAVConfigFuzzer in detect-
ing incorrect configurations, we compared its ability against
RVFuzzer [6], a state-of-the-art fuzzer that relies on a binary

search method and simulator-based validation.
As shown in Table III, UAVConfigFuzzer successfully de-

tects a total of 14 incorrect configurations. Crucially, five of



TABLE III
INCORRECT CONFIGURATIONS IDENTIFIED BY UAVCONFIGFUZZER.

Configuration RVFuzzer UAV ConfigFuzzer
R. D. I. R. D I
MPC_TILTMAX_AIR v o/ v v
MPC_ACC_DOWN_MAX v
MPC_XY_VEL_ALL o/ v
MPC_XY_CRUISE v v
MPC_XY_VEL_MAX v 7/ v v
MPC_Z_VEL_ALL v /
MPC_Z_V_AUTO_UP 4
MPC_Z_VEL_MAX_UP v v v v / v
MPC_Z_V_AUTO_DN v
MPC_Z_VEL_MAX_DN v v v / v
MPC_TKO_SPEED v v
MPC_LAND_SPEED v v
MPC_TILTMAX_LND v v
MPC_YAWRAUTO_MAX v/ v 7/ 4

# R. shorts for "Rapid ascent/descent’, D. shorts for *Deviation’, I. shorts
for ’Interruption’. v indicates newly identified compare to RVFuzzer.

these are newly discovered misconfigurations that RVFuzzer
failed to detect. As detailed in Section III-C2, UAVConfig-
Fuzzer employs a random sampling strategy for initialization,
enabling a global search across the entire configuration space.
This is critical for identifying misconfigurations with discon-
tinuous bounds. For example, UAVConfigFuzzer identifies two
such cases, i.e., MPC_XY_VEL_ALL and MPC_Z_VEL_ALL.
The user guide for MPC_XY_VEL_ALL specifies a valid range
of [-20, 20], but UAVConfigFuzzer discovers that setting
the value to precisely O triggers an interruption anomaly. In
contrast, RVFuzzer failed to detect these two incorrect configu-
rations because it applies a binary search strategy that assumes
the valid configuration bound is continuous. Furthermore,
UAVConfigFuzzer performs mutations based on configuration
bounds extracted directly from the source code, whereas
RVFuzzer relies on the bounds specified in the user guide. As
our evaluation reveals that the user guide is often incomplete,
which limits RVFuzzer’s search space. By leveraging the
source code as the ground truth, UAVConfigFuzzer explores
a broader and more realistic configuration space, enabling
the discovery of incorrect configurations that documentation-
dependent methods fail to detect.

1) Ablation study of Mutation Strategy: To evaluate the ef-
fectiveness of the proposed mutation strategies, we conducted
an ablation study to quantify their contributions. We used
the same feedback engine module and the same number of
mutation iterations for all mutation strategies. Specifically, we
benchmarked our proposed I1-D and n-D mutations against
the genetic algorithm (used in LGDFuzzer [11]) and binary
search (used in RVFuzzer [6]). The genetic algorithm operates
on a set of configurations, and before crossover and selection,
it mutates all configuration values simultaneously. The binary
search strategy, instead of random mutation, systematically
generates the next candidate value by calculating the midpoint
of the current search interval, iteratively narrowing the range.
Through this comparative analysis, we were able to quantify

the capability of mutation strategies in generating valid con-
figuration bounds.

As shown in Figure 5, the effectiveness of the four muta-
tion strategies in generating valid bounds varies significantly.
Compared to the baseline 7-D mutation, the n-D strategy
identifies more invalid values, resulting in narrower valid
bounds for 26.3% of the configurations. The genetic algo-
rithm produces even narrower valid bounds for 8§9.5% of the
configurations. Notably, both the binary search and genetic
algorithm strategies fail to detect two discontinuous valid
bounds that were correctly identified by the 7-D mutation.
The performance of the n-D strategy stems from its ability
to capture configuration correlations, allowing it to derive
more precise bounds. For instance, it correctly identifies
that the upper bound of MPC_JERK_AUTO is constrained
by MPC_JERK_MAX, thereby explicitly flagging incompat-
ible values as invalid. A critical limitation of the genetic
algorithm is its coarse-grained mutation strategy. Since the
algorithm randomly mutates multiple configurations, it lacks
the granularity to pinpoint the root cause of misconfiguration.
Consequently, a single invalid configuration value can cause
an entire configuration set to be rejected. This erroneously
penalizes correct configurations, leading to overly conservative
bounds. As for the binary search, it relies on the assumption
that the valid range of configuration parameters is continuous.
This assumption caused it to miss the discontinuous valid
intervals of MPC_XY_VEL_ALL and MPC_Z7_ VEL_ALL.

E. Case Study

To demonstrate UAVConfigFuzzer’s capability in detecting
incorrect configurations, we present a case study involving
two configurations, i.e., MPC_XY_VEL_ALL is the overall
limit for horizontal velocity, and MPC_XY_VEL_MAX is the
maximum horizontal velocity. According to the official user
guide, MPC_XY_VEL_ALL has a valid range of [—20,20].
UAVConfigFuzzer reveals that setting MPC_XY_VEL_ALL to
0 causes the UAV to become stuck, while nearby values lead
to normal operation, indicating a singular value that should be
excluded from the valid bound. The root cause is shown in
Figure 6. When MPC_XY_VEL_ALL is set to 0, it overrides
MPC_XY_VEL_MAX and constrains the maximum horizontal
velocity to zero via the setVelocityLimits () function.
Using the 7-D mutation strategy, UAV ConfigFuzzer correctly
identifies this discontinuity and refines the valid range of
MPC_XY_VEL_ALL to [—20,—1] U [1, 20].

V. FUTURE EVALUATION PLAN

In the second stage of this work, we plan to conduct two
additional evaluations. First, we will add an ablation study
on the mutation strategy by introducing a random mutation
baseline to isolate the contribution of the proposed 7-D and
n-D mutations. We will sample configuration values using
random mutation within the extracted bounds and evaluate
them using the same fitness function and feedback engine
under the same mutation budget. We will compare the quality
of the derived valid configuration bounds produced by random
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1 if (_param_mpc_xy_vel_all.get() >= 0.f) {

2 float xy_vel = _param_mpc_xy_vel_all.get();

3 num_changed +=_param_mpc_xy_vel_max.commit_no_notification(xy_vel);
4}

5 ..

6 _control.setVelocityLimits(_param_mpc_xy_vel_max.get(), ...);

Fig. 6. Code snippet illustrating the correlations between MPC_XY_VEL_ALL
and MPC_XY_VEL_MAX

mutation with those produced by our proposed mutation strate-
gies. Second, we will conduct an in-depth case study on the
anomaly cases reported by UAVConfigFuzzer, including both
single-parameter misconfigurations and anomalies induced by
configuration correlations. For each case, we will analyze
the root causes and report the findings to the community,
providing actionable insights for both UAV users and flight
control software developers.

VI. RELATED WORKS

Incorrect configurations frequently lead to errors in robotic
vehicles [30], [31], which has made fuzzing an important
testing technique for detecting such issues [32], [33], [34],
[35], [36], [11], [18], [37]. In the initial phase, accurately
defining the mutation scope is critical. While PGFuzz [7] de-
rives policies from user guides, our evaluation (Section IV-C)
reveals that inconsistencies between implementation and doc-
umentation result in an incomplete mutation space. UAVCon-
figFuzzer addresses this by extracting constraints directly
from the source code, achieving superior accuracy. Regarding
the mutation strategy, tools like ConfVE [37] and Routh-
Search [12] introduce optimization algorithms (e.g., genetic
algorithms or stability criteria) to improve efficiency. However,
they overlook configuration correlations, which leads to blind
mutations and an exponential search space filled with invalid
combinations. In contrast, UAVConfigFuzzer leverages these
correlations to prune the search space, effectively reducing
the complexity to linear O(n). Finally, regarding the feedback
loop, unlike existing methods limited by time-consuming sim-
ulations [8], [6], [38] or training data dependence [11], [39],
UAVConfigFuzzer utilizes native setpoint logic to estimate
UAV’s physical states, thereby providing rapid and data-free

feedback. This significantly improves efficiency and enhances
generalizability.

VII. CONCLUSION

This paper addresses the critical challenge of inefficient
feedback mechanisms that hinder UAVs configuration fuzzing.
To overcome simulation efficiency bottlenecks and the data
dependency of machine learning-based predictors, we propose
a method to rapidly estimate UAV’s physical states by reusing
the native setpoint generation logic from the flight control
software. This method leverages setpoints to quantify the
severity of UAV’s anomalies without relying on simulators or
extensive training data. We implemented this method by de-
veloping a fuzzing tool named UAVConfigFuzzer. Guided by
the setpoint estimation feedback, UAVConfigFuzzer iteratively
mutates configurations toward anomaly-inducing values. Our
evaluation demonstrates that the setpoint generation process
achieves an average runtime of 27 ms while maintaining high
fidelity in estimating UAV’s physical states, with a mean
position error below 6.92 cm and a velocity error below
0.13 m/s. Finally, UAVConfigFuzzer successfully detects 14
incorrect configurations, which are validated on real UAV
hardware and reported to the community.

VIII. REVISION REQUIREMENTS

In the revision of the registered report, we plan to provide
more fine-grained explanations of the scope of incorrect con-
figurations targeted in this paper by refining the descriptions
in the Introduction and Background sections. Then, we will
further clarify the generalizability of UAVConfigFuzzer by
adding a dedicated discussion on the applicability and limi-
tations of the proposed method.
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