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processes, adversaries can determine “attack-concept” opera-
tions to cause devastating physical disruptions without raising
alarms [17]. For the attack on a Ukrainian power plant that
caused a blackout affecting 225,000 residents [31], [32], se-
curity analysis directly indicates that “the strongest capability
of the attackers was ... to perform reconnaissance operations
required to learn the environment.” Reconnaissance allows
adversaries to design attack strategies that cause physical
damage (e.g., compromising measurement data or maliciously
turning off circuit breakers).

To disrupt reconnaissance in a general-purpose comput-
ing environment, current moving target defense (MTD) tech-
niques [10], [12], [56] rely on mimicking and simulation
of system behaviors and thus, can be easily identified [25].
To overcome these drawbacks, we proposed in our recent
work the design of physical function virtualization (PFV) to
build lightweight virtual nodes that follow the actual imple-
mentation of network stacks, physical state variations, and
system invariants of real physical devices in power grids. PFV
leverages a network control application based on software-
defined networking (SDN) to “hook” network interactions
with real devices and use them as network flows of virtual
nodes. Based on PFV, we presented DefRec, a specific defense
mechanism to significantly increase the reconnaissance effort
required to infer the knowledge of power grids’ cyber-physical
infrastructures without affecting legitimate applications that
already know the actual power grid configurations (e.g., the
identities of real physical devices). DefRec specifies and imple-
ments two security policies to: (i) obfuscate communications
by adding random interactions with virtual nodes, introducing
significant overhead for adversaries to identify real devices;
and (ii) mix decoy data (from virtual nodes) with real data
(from physical devices), based on which adversaries would
design ineffective and easy-to-detect attacks (e.g., activities
that access virtual nodes).

To the best of our knowledge, PFV is the first design to
build virtual nodes following the actual implementation of
network stacks, system invariants, and physical state varia-
tions of real physical devices and DefRec is the first anti-
reconnaissance approach targeting on power grids’ cyber-
physical infrastructures. Evaluating the effectiveness and ef-
ficiency of PFV, DefRec, and other security mechanisms for
power grids raises new implementation requirements.

• Close to Realistic Environments. Even though there are

Abstract—Background. In recent work, we proposed an anti-
reconnaissance approach, known as DefRec, to disrupt and mis-
lead adversaries’ attacks causing physical damage in industrial 
control systems (ICS) like smart power grids. We propose this 
approach on top of an original physical function virtualization 
(PFV) that “hooks” network interactions with real physical 
devices and builds lightweight virtual nodes that follow the actual 
implementation of network stacks, system invariants, and physical 
state variations in the real devices.

Aim. To evaluate the efficacy and efficiency of DefRec and 
PFV, we have developed a cyber-physical testbed, including real 
physical devices, hardware switches, and power-system simu-
lations. In this paper, we present additional details on our 
explorations of various implementation and experiments leading 
to the current setups, which are scalable, repeatable, and able to 
resemble realistic environments.

Method. After briefly presenting the design principle of 
PFV and DefRec, we present three implementation options of 
communications networks, four implementation aspects of power-
system simulations, and intelligent electronic devices (IED) from 
three different vendors. We compare the pros and cons of 
different options and discuss their impacts on experiments in 
terms of scalability, repeatability, and efficacy to resemble realistic 
environments.

Result. We present results regarding different implementa-
tions of communications networks, network traffic controllers 
based on software-defined networking, and real IED devices. 
Based on these results, we provide discussions that may help 
other researchers to select appropriate experimental methods.

Discussion. In the current implementation, the testbed still 
lacks dynamic coupling between cyber and physical infras-
tructures, making it challenging to reflect transient behavior 
occurring in real power grids. We will leave such implementation 
in future development.

I. INTRODUCTION

Reconnaissance is crucial to an adversary’s preparation 
for an attack on industrial control systems like smart power 
grids (ICS) [57]. By obtaining in-depth knowledge of physical
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few research works performing small-scale evaluations in
a real environment, such as an in-use communications
network or a utility power grid, we believe that a labo-
ratory implementation close to a realistic environment is
necessary, for better repeatability and portability.

• Reasonable Scalability. We need an implementation that
allows us to evaluate the scalability of the proposed work,
e.g., regarding the number of network nodes or physical
devices.

• Integration of both cyber and physical infrastructures.
The implementation should reflect the domain-specific
characteristics found in industrial control environments,
e.g., proprietary system specifications, network stacks, and
communication requirements.

To satisfy these requirements, we use this paper to discuss
the implementation to evaluate the efficacy and efficiency of
PFV and DefRec and discuss its potential usage in other
related security research. In this paper, we present not only
the ultimate implementation included in our published work,
but also alternative options leading to the implementation,
providing both negative and positive experiences for future
research.

Even though we present the design of security evaluation
in the context of power grids, the implementation can be
extended to other ICSs. By adding parsers and encoders of
protocols used in different ICS networks and profiling char-
acteristics reflecting system invariants in those environments,
PFV can monitor and manipulate network interactions with
real devices without any proprietary instrumentation. Based on
those adjustments in PFV, the first security policy in DefRec
that randomizes communications with virtual nodes is also
extensible. The second security policy relies on the control
theoretical model of power grids. By using the model of
physical processes in other ICSs, we can also implement the
security policy for different utility environments.

The main contributions of the paper are:

• Network Communication. We discuss three different
implementations that we have explored, including net-
work emulation, cloud environments, and using hardware
switches. We use the results in these environments to
discuss their pros and cons.

• Power Grid Simulation. Despite using the state-of-the-
art power-system simulation, we discuss alternative imple-
mentation options from other research literature.

• SDN Implementation. After discussing a few open-source
SDN controllers, we present evaluations related to the
unique features that ONOS (the tool that we choose in
our experiments) possess.

II. BACKGROUND

In this section, we first present background information on
power grids. Then we describe our design principles based on
the threat model considered in this work.

A. Power Grid Basics

A power grid is an ICS, in which generators supply power
to load demands over a wide geographical area. The generators
and load demands are connected by transmission lines in a

complex topology, often referred to as a transmission network.
In the graphical representation of a transmission network (e.g.,
in Figure 2), we use a bus to represent a substation, where
generators or load demands are deployed. In each bus and
transmission line, we can have physical measurement data,
including voltage, current, power consumption, and generation.

In Figure 1, we show a hierarchical communications net-
work used by power grids. A control center uses an IP-
based control network to retrieve data from substation devices
periodically; this process is also known as data acquisition.
Based on the retrieved data, the control center uses state
estimation to determine the physical state of power grids.

Fig. 1: Hierarchical network infrastructure of power grids.

For further discussion, we use the following definitions:

Definition 1. End Devices: Intelligent electronic devices
(IED) located at the end of a communication path connecting
the control center and substations.

End devices connect to sensors or circuit breakers through
hardwired connections in their downstream communications.
In their upstream communications, multiple end devices con-
nect to a higher-level IED, e.g., RTUs (remote terminal units),
which forwards information (e.g., aggregated measurements or
commands) to/from the control center.

Definition 2. Edge Switches: Network switches located at the
first or the last hop of a communication path that connects the
control center and end devices.

B. Design Objective & Threat Model

Assumptions on Adversaries’ Capability. We assume
that adversaries penetrating a control network have limited
knowledge of network configurations and physical data. We
assume that adversaries can compromise any computing de-
vices connected to the control network; however, they are not
able to obtain knowledge of a whole power grid based on data
collected by those compromised devices.

For clarity, we classify adversaries’ attack capabilities into
three types. Passive attacks monitor network traffic to obtain
the knowledge of power grids’ cyber-physical infrastructures.
Proactive attacks achieve the same goal by using probing mes-
sages to trigger responses from real devices or virtual nodes.
Active attacks directly manipulate network traffic, including
dropping, delaying, compromising existing network packets,
or injecting new packets. Passive and proactive attacks are
common techniques used by adversaries to perform reconnais-
sance, while active attacks are used to issue attack-concept
operations to cause physical damage.

DefRec’s Objective. DefRec’s objective is to disrupt and
mislead adversaries’ reconnaissance based on passive and
proactive attacks, such that their active attacks become ineffec-
tive. Reconnaissance is a necessary step for “targeted attacks”

2



Fig. 2: Design overview: (i) PFV constructs virtual nodes that follow the actual
implementations of seed devices and (ii) DefRec specifies security policies based on
PFV to randomize communications and to craft decoy data for virtual nodes.

Fig. 3: Components of PFV: hook network
interactions with real devices based on virtual
nodes template and runtime profiling.

in ICSs [35], which are more frequently appearing in real
utilities [17], [31] and are becoming a critical and damaging
threat for ICSs, including power grids. In previous targeted
attacks, adversaries have used in-depth knowledge of the
target systems (obtained through reconnaissance) to stealthily
deliver malicious attacks. We specify our anti-reconnaissance
objectives (RO) as follows:

• RO1: for passive attacks on a control network, we aim at
significantly lengthening the time required by adversaries to
successfully learn the knowledge of the control network.

• RO2: for proactive attacks on a control network, we aim
at revealing adversaries’ existence with a high probability
and isolating the compromised devices from the network.

• RO3: for physical knowledge obtained by passive or
proactive attacks, we aim at leveraging intelligently crafted
decoy data to mislead adversaries into designing ineffective
attacks.

III. DESIGN OVERVIEW OF DEFREC BASED ON PFV

In Figure 2, we present the design overview of DefRec,
including the components of PFV and two security policies
implemented on top of it. We position PFV as a complemen-
tary service to defense mechanisms, such as the design and
implementation of the proposed security policies to disrupt and
mislead adversaries’ reconnaissance. We believe that PFV’s
functionality is not limited to DefRec, but can be used in other
security solutions.

A. Components of PFV

The objective of PFV is to build lightweight virtual nodes
that follow the implementation of network stack, system invari-
ants, and physical state variations of real devices. In Figure 3,
we present three components of PFV in detail.

Virtual Node Templates. We use these templates to
contain basic configurations of the target control networks.
For example, the templates include network stack information,
such as IP addresses that can be assigned to virtual nodes, and
the specification of application-layer protocols used to deliver
physical data and control operations. Configurations stored in
the templates are not specific to the context of a power grid.

Profile of Seed Devices. We select a few end devices as
seed devices and profile three aspects of each.

• The actual implementation of network stack can be different
from the protocol specification. For example, the DNP3 pro-
tocol used in power grids specifies 37 function codes [26],
but the SEL 751A relay used in our experiment implements
only 14 of them [50].

• System invariants refer to the characteristics that can be used
to identify or fingerprint real devices, such as the latency of
executing control commands [19].

• Physical state variations usually fall in a deterministic
range for a specific power system, such as voltage mag-
nitudes varying within the range of ±5% around a nominal
value [21].

The device profile includes a range of variations for a
certain property observed at runtime (e.g., command execution
time) and the probability distribution over that range. We
only need to select one seed device to represent each vendor
or model, based on which we profile the runtime behavior.
The device profile makes network flows from virtual nodes
follow the probabilistic behavior of real devices, rather than
replicating the same pattern. In this paper, DefRec focuses
on the reconnaissance of power grids’ applications. As such,
we build virtual nodes following these three aspects of seed
devices. When using DefRec for other applications, we can
profile other application-specific knowledge.

Packet Hooking. This component uses SDN’s programma-
bility to hook network packets from seed devices; it tailors
these packets based on the information from device profiles
and virtual node templates, and uses the resultant packets as
the network flows from virtual nodes.

As shown in Figure 3, when network packets reach an
edge switch, a protocol parser extracts header information
from the packets; a traffic regulator redirects them to a seed
device if their destinations are virtual nodes (network flow c©
and e© in Figure 3). Upon receiving the forwarded packets,
the seed device responds ( f©). The responding packets serve
two purposes: (i) building the device profile and (ii) serving
as the input to a protocol encoder, which tailors the network
packets according to the system invariants and physical state
variations profiled before. The tailored packets, which are not
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deterministic but follow the same probabilistic properties of
seed devices, are sent out by virtual nodes as the responses
for the original request ( d©). The responses from seed devices
reflect the actual implementation of the whole network stack,
including the TCP/IP implementation. Consequently, virtual
nodes are able to respond to lower layer network probing, e.g.,
ARP requests.

There are two requirements for the packet hooking com-
ponent so that virtual nodes follow the runtime behavior of
seed devices without causing physical damage and revealing
the real physical state of a power grid.

• Tailor application-layer payloads. A protocol encoder tai-
lors the application-layer payloads of network packets sent
out by virtual nodes to (i) avoid leaking real physical data
and (ii) introduce entropy (according to the device profile)
to the data sent out by virtual nodes.

• Redirect control operation without physical impact. If a
control operation (e.g., turn off a circuit breaker) reaches
a virtual node, we redirect it to a seed device, connecting
to a breaker that is already turned off, such that the operation
introduces no physical impacts on the power grid.

B. Security Policies based on PFV

Based on PFV, DefRec specifies security policies to achieve
anti-reconnaissance objectives defined in Section II-B. Specif-
ically, to achieve RO1 and RO2 related to the reconnaissance
of power grid networks, we proposed a disruption policy that
randomizes network communications. To achieve RO3, we
propose an attack-misleading policy that crafts decoy data
for virtual nodes. Consequently, adversaries collect misleading
information about a power grid different from the one under
protection (e.g., the power grid with virtual nodes highlighted
in orange in Figure 2). Based on such information, adversaries
design ineffective attacks.

Disruption Policy. Adversaries can use passive attacks to
stealthily identify real physical devices, if we issue requests
only to real devices (such as a© in Figure 3). To disrupt
passive attacks in RO1, we randomize network packets by
issuing requests to (i) randomly selected virtual nodes and (ii)
randomly selected real devices. We refer the set of randomly
selected virtual nodes that we sent requests as “accessible
virtual nodes” and accessing them will not raise alerts. These
randomization activities further balance the number of requests
sent to real devices and requests to accessible virtual nodes.
They prevent adversaries from identifying real devices based
on the biased distribution of the number of network requests
sent to the real devices, significantly increasing the time for
adversaries to stealthily identify real devices.

Adversaries can perform proactive attacks to probe physi-
cal devices or virtual nodes and use the responses to identify
real devices. To disrupt proactive attacks in RO2, we design a
probabilistic dropping protocol, introducing randomness when
responding to probing of virtual nodes, revealing adversaries’
existence with a high probability while reducing the infor-
mation an adversary can learn. Probing accessible virtual
nodes always results in responses; the proposed protocol han-
dles proactive probing destined to other “inaccessible” virtual
nodes, which is suspicious, as the requests are neither from
legitimate applications nor DefRec. However, directly isolating

the probing machine can immediately reveal the identity of an
inaccessible virtual node. The details of the protocol can be
found in [36].

Attack-Misleading Policy In addition to disrupting the
reconnaissance on network configurations, we further use the
“attack-misleading” policy to achieve RO3: disrupting adver-
saries’ reconnaissance on power grids’ physical infrastructure
by providing misleading knowledge. The core of this policy is
an algorithm that crafts decoy data for virtual nodes. Without
careful design, data piggybacked by network packets from
virtual nodes can still allow adversaries to learn grids’ physical
knowledge, e.g., physical topology and measurements.

The decoy data construction algorithm takes the following
inputs: the states of real physical devices, the number of virtual
nodes, and the topology graph representing their connectivity.
We put those inputs into a power system’s mathematical
representation to obtain decoy states or decoy data for virtual
nodes, which follow the normal variations observed in real
physical devices. For example, in Figure 2, we add four virtual
nodes to represent two substations with load units (Bus 6
and Bus 7) and two transmission lines connecting them to
the power system; we use the algorithm to obtain decoy
data, such as the impedance of the added lines and power
consumption in the added buses. We can implement the decoy
data construction algorithm in any power grid analysis tools
running on general-purpose computers, such as MATPOWER
that we use for our evaluations [59].

There are two requirements for constructing decoy data:
(i) mislead adversaries into designing ineffective strategies;
and (ii) follow the physical model of power grids to avoid
suspicions from adversaries. The algorithm to craft decoy data
varies according to the attack that we attempt to mislead.
For example, in our recent work [36], we focus on crafting
decoy data for false data injection attacks (FDIAs), which
is one of the most critical attacks in power grids with the
aim to downgrade the accuracy of state estimation and the
performance of many power grid applications. In [36], we
presented the details on how to leverage the well-established
theoretical model in FDIAs to formally prove the effectiveness
of decoy data.

IV. IMPLEMENTATION

To evaluate security properties and performance overhead
of PFV and DefRec, we implemented a cyber-physical testbed.
The implementation needed to observe the following require-
ments [7]: (i) representing real-world operations in power
grids; (ii) scalable to a reasonable size; and (iii) cost-effective
such that other researchers can efficiently reproduce experi-
ments. As shown in Figure 4, the testbed includes four major
parts: implementations of PFV and DefRec, communications
networks, simulations of power grids, and physical IEDs used
as end devices. The first part is for the research design of
DefRec discussed in [36] and in Section III, while the remain-
ing three parts are generic and can be reused in other designs
related to ICSs and communications networks. In each of the
following subsections, we present not only the implementation
used in our published work, but also preliminary explorations
leading to the ultimate setups.

4



Fig. 4: Cyber-physical testbed for evaluation.

TABLE I: Evaluation cases. We
include the number of nodes for
each network in parentheses.

Case Power Grid
Simulation

Network (# of
nodes)

1 IEEE 24-bus Datax (11)
2 IEEE 30-bus Abilene (22)
3 RTS96 73-bus Hurricane (30)
4 IEEE 118-bus Chinanet (56)
5 Poland 406-bus Cesnet (78)
6 Poland 1153-bus Forthnet (124)

A. Implementation of PFV and DefRec

PFV does not require a dedicated virtual environment; we 
implemented it as an SDN application in ONOS [8], including 
around 1,500 lines of code (LOC). Based on PFV, we also 
implemented DefRec’s disruption policy in ONOS, using less 
than 200 LOC. For DefRec’s attack-misleading policy, we 
implemented the decoy data construction algorithm by using 
MATPOWER, an open-source MATLAB toolbox [59]; the 
implementation used around 400 LOC. All implementations 
were carried out on a 64-bit Ubuntu 18.04, deployed in a 
workstation with four Intel Xeon 2.8 GHz processors and 16 
GB RAM.

There are many network manipulation platforms based on 
SDN, such as POX [45], RYU [48], Floodlight [18], and 
ONOS [8]. The former two are written in Python while the 
latter two controllers are written in Java. All these controllers 
follow a similar implementation structure; they run a core 
service, which can load applications written by developers 
following their provided APIs. We chose to use ONOS as 
it provides rich functionalities; a unique one is that ONOS 
allows building a cloud infrastructure, in which multiple SDN 
controller instances are distributed in different locations and 
exchange information through an extension of Atomix frame-
work.

Repeatability. Repeating PFV’s implementation requires 
to load an ONOS application. Because the aforementioned 
SDN controllers follow similar APIs, other researchers can 
implement the same network manipulation logic in a different 
controller.

B. communications networks

We classify current implementation of communications
networks found in existing research work into three categories,
which are based on emulations, cloud environments, and
hardware network switches. Each category has its own pros
and cons, which can be leveraged at different stages of research
design.

In the last two decades, the emulation-based implementa-
tion evolves from simulators such as NS2 [40] to real time
emulators such as Mininet [37]. Using Mininet as an example,
we can easily leverage the emulator to build a network of
arbitrary topology in a single desktop. Communications in the
emulated network can be established based on applications
installed in the desktop at which the Mininet is running. These
advantages allow us to quickly instantiate a network and obtain
a first-hand evaluation of research design, identifying any
design flaws at an early stage. However, major disadvantages
stem from the fact that all communications in the emulated

network go through a loopback interface of the desktop. As
one emulates heavy communications or a large-scale network,
the limited bandwidth can introduce severe traffic congestion.
Meanwhile, all emulated network nodes follow the same clock,
which can make the evaluation of research work related to
synchronization in distributed systems less convincing [23].

Another option to implement communications networks
is to use a cloud computing environment. Generally, we
can find two types of cloud environments. The first type is
the cloud environment specifically deployed to run network
experiments, especially the one involving advanced network
technology such as SDN or network function virtualization
(NFV). The representative examples include NSF Geni and
Fabric platforms [6], [9]; these platforms leverage a technique
called “network slicing” to provide spare network resources
in commercial networks to research projects [2], [51]. The
second type is the cloud environment for computing tasks,
such as Amazon AWS and Google Cloud. In this environment,
we can leverage open-source virtual switches such as Open
vSwitch [43] to change a computing node into a network
processing node; the computing node needs to be equipped
with additional Ethernet interfaces to allow this change. The
major advantage of using cloud environments is that they allow
users to allocate network and computing resources at different
physical locations, constructing a realistic wide-area network.
However, using cloud environments can also suffer from scal-
ability. Based on our experiences, NSF testbed is available for
most US research and education institutions; the network and
computing resources are shared by different projects, making
it challenging to reserve sufficient resources to build a large-
scale network. The commercial cloud environment can be cost-
prohibitive, especially owning to the need of a large number
of Ethernet interfaces.

The last option of implementing communications networks
based on hardware switches can meet the trade-off between
using emulations and using cloud environments. Specifically,
in a lab environment, we implemented a large-scale network
(up to 124 nodes) by building logical switches on top of five
HP ProCurve 3500yl switches. Each physical switch has 48
ports; we grouped certain switch ports into different VLANs
(virtual local area networks), according to given network
topology. Each VLAN behaves like a logical switch. To avoid
the default broadcast communication within each VLAN (or a
logical switch), we need to set up forwarding/routing rules for
the ports grouped in each VLAN, which could be a tedious task
requiring us to manually work with proprietary configuration
interfaces. In our experiments, instead of using proprietary
interfaces, we use the API supported by SDN controllers,
e.g., ofp flow mod API, to automatically configure forwarding
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rules in each VLAN. In addition, the communication between 
two VLANs corresponds to the logical link connecting two 
logical switches, constructed by connecting physical ports 
belonging to two VLANs via Ethernet cables. In addition to 
building logical switches in physical switches, we used 
lightweight Docker containers to build computing nodes as end 
hosts of the constructed network in seven HP ProLiant DL3600 
servers. We extended each server by deploying five PCI 4-port 
Ethernet adapters. To manipulate network flows for each 
individual end host, we associated each end host implemented 
within a Docker container with a separate Ethernet interface. 
Under this setup, we could include up to 140 end hosts (7 × 4 × 
5). Then, we manually connected end hosts with the 
corresponding logical switches through Ethernet cables.

Compared to automatic “network slicing,” we need to form 
VLANs and connect them manually. However, owning phys-
ical switches allows us to dedicate network resources to our 
experiments and to perform many custom configurations, the 
capability that is challenging to obtain in a cloud environment. 
Also, purchasing switches is acceptable for many research 
groups. For example, we purchased refurbished HP ProCurve 
3500yl switches with the unit price under 200 dollars in 
Amazon. Due to this easy deployment, we find many research 
works related to SDN adopt this implementation option [58].

Regardless of implementation options, we always need 
a dataset to implement networks of different topology that 
can represent the real-world communications networks. There 
are two common datasets used by network communities, i.e., 
TopologyZoo [30] and Rocketfuel [53]. These two projects 
relied on network scanning to estimate the topology of real net-
works managed by different Internet Service Providers (ISPs). 
However, there are no communications networks used by ICSs 
included in the dataset, as the topology of those networks may 
help adversaries reduce the reconnaissance effort significantly.

Repeatability. All three implementation options of com-
munications networks can be repeated. Other researchers can 
build an emulated network or a network in a cloud environment 
by parsing the file used to store a network topology, e.g., “gml” 
file used by the TopologyZoo dataset. Then following 
appropriate APIs to connect network nodes and links results in 
the corresponding network. Repeating the implementation on 
physical switches requires slightly more effort. Building 
VLANs to group physical ports in a switch is proprietary and 
requires manual effort. However, we automated the setup of 
forwarding rules in each VLAN in an SDN application, which 
can be loaded and run in ONOS.

C. Physical Devices

The best way to resemble end devices in a real utility
environment is to directly use the appropriate IEDs suitable
for lab environments. In our experiments, we have used IEDs
from three different vendors as end devices: a Schweitzer
Engineering Laboratories (SEL) 751A feeder protection re-
lay [50], a Allen Bradley (AB) MicroLogix 1400 PLC [1], and
a Schneider Electric (SE) ION7550 power meter [49]. Since
we were using these devices for communications based on
the DNP3 protocol, we have selected them by going through
certification equipment listed in DNP3’s official website [26].
In the process of identifying the appropriate model of IEDs for

our experiments, we have encountered two challenges: (i) some 
equipment models are not for sale in the U.S. and (ii) some 
vendors can only perform business with utilities companies, 
not with academic institutions. To overcome those challenges 
and save expenses, we purchased refurbished equipment from 
eBay, which, in some cases, can make us purchase proprietary 
companion software of the devices separately.

Because IEDs usually include proprietary design and im-
plementations, their unit price can be high, making it challeng-
ing to purchase and use a large number of different models. To 
resolve these issues, we have found current research work in 
different areas, such as robotic vehicles [11], water treatment 
plants [5], and power grids [19], leveraging the simulations of 
physical processes as end devices. This is a feasible alternative 
approach, because IEDs usually perform deterministic func-
tionality that can be accurately simulated in general-purpose 
computing devices.

IEDs often play the role of “slave” machines, which 
passively perform operations based on requests from a mas-
ter machine. To implement a DNP3 master to communicate 
with those IEDs, we used the well-maintained openDNP3 
library [41]. However, we found several function codes used 
by the aforementioned IEDs were not implemented in the 
OpenDNP3 library. After contacting the developers, we learned 
that those function codes are deprecated and no longer sup-
ported by most upcoming products. By going through some 
other protocols used in power grids, such as Modbus [27], 
IEC 61850 [24], Ethernet/IP [16], and DLMS [14], we find 
that most of them have the corresponding open-source imple-
mentations [29], [34], [42].

Repeatability. Even though physical IEDs cannot be easily 
shared, we can share the configurations that define the ap-
plication layer format of the DNP3 protocol used to deliver 
measurement data.

D. Power Grid Simulations

For many CPSs, we can monitor and analyze their physical
processes in a single device. In a power grid, however, the
physical process is represented by correlating operations of
a large number of IEDs in distributed locations, making it
challenging to build a real power grid for research experi-
ments. Even though there are a few state-of-the-art laboratories
building a small-scale real power system, the scalable and cost-
effective experiment methods are to use simulations on the case
built based on real power grids.

Instead of using real power grids, start-of-the-art simula-
tions are common techniques to study power systems’ steady
states. For example, we have used MATPOWER, an open-
source MATLAB toolbox, to simulate six different power
grids [59], shown in Table I. MATPOWER includes popular
power grid cases as benchmarks, such as IEEE test cases as
well as cases representing national transmission networks in
Poland and France. Even though these test cases follow the
topology and configuration of real power grids, they still show
two shortcomings, reducing the repeatability of experiments.
First, some cases are outdated, and there are some missing
parameters. For example, some IEEE test cases, including
57-bus, 114-bus, and 300-bus cases, do not include power
flow limit on transmission lines (the maximum amount of
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power that a transmission line can deliver). Second, these 
cases only include a snapshot of operational conditions at a 
certain timestamp; they do not directly include variations of 
operational conditions.

To simulate normal variations of operations in the simu-
lated power grids, we developed a benchmark profile based on 
data from real utilities [15], [47]. We extracted one month of 
real data on power generation and calculated the ratio between 
actual data value at each timestamp to the peak value of 
that month. For each simulated system, we randomly selected 
power generators and load units, adjusting measurements for 
each unit according to the benchmark. In addition, in recent 
years, some newly developed evaluation cases, which directly 
include normal variations of operational conditions, become 
popular and are widely used in power engineering communi-
ties [54].

In recent years, an approach called hardware-in-the-loop 
(HIL) emerges as a popular option, achieving a trade-off 
between the construction of real power grids and software sim-
ulation. HIL seamlessly integrates physical hardware (e.g., the 
real IEDs used in our experiment) and software simulations, 
accurately representing a real operational environment and 
evaluating the performance and reliability of power systems 
in great fidelity. At this stage, there are two companies, i.e., 
OPAL-RT technologies and RTDS technologies, achieving 
commercial success on providing such high-fidelity simula-
tions.

Repeatability. The power grid cases used in our experi-
ments serve as benchmarks in power engineering community. 
Their parameters are free to download from most power flow 
analysis tools.

V. EVALUATIONS

In [36], we performed security and performance evaluations 
for both PFV and security policies in DefRec. In this section, 
we provide more details on experiments for those evaluations 
and present results that are regarded as “primitive,” leading 
to the ultimate results. The objective is to present experiences 
that we learn through those primitive evaluations. As shown 
in Section IV, there usually exist multiple options of imple-
mentations. In some aspects of the experiments, we have tried 
several options, whose results are presented. Due to resource 
limitations, for implementations used in other work, we direct 
readers to the corresponding cited literature.

A. Experiment Setup

Hypothesis. We used the DNP3 protocol as the communi-
cation protocol used by networks in ICSs. This protocol can 
represent common functionalities found in other ICS protocols, 
e.g., Modbus [27], IEC 61850 [24], Ethernet/IP [16], and 
DLMS [14]. Also, the security and performance evaluations 
focused on the lower layer characteristics of networks; we 
believe that the evaluation results can be representative of 
current ICS networks.

Methodology. For each evaluation case listed in Table I, 
we constructed the corresponding network. In this network, 
we selected a computing node as a DNP3 master to issue 
requests, including data acquisition retrieving analog data and

control operations opening/closing breakers, to DNP3 slaves. 
The responded data and the control operations are obtained 
from the simulation of the corresponding power grid case.

We built DNP3 slaves differently. To evaluate the 
effective-ness of PFV, we used the three IEDs as the DNP3 
slaves. To evaluate the performance of PFV, we used Docker 
containers to simulate a large number of end hosts in the 
network, each implementing a DNP3 slave based on the 
OpenDNP3 library.

Data Collection and Analysis. For each request supported 
by the OpenDNP3 library (see Table II for details), we repeated 
the request-response communication for 500 times with and 
without PFV/DefRec enabled. We run Tcpdump on the DNP3 
master to store all network communication locally, e.g., in pcap 
files, which were processed by the Zeek network analyzer [44]. 
All experiments lasted a week, and we collected two sets of 
traces for each network with and without DefRec enabled: (i) 
the trace of more than 400,000 DNP3 packets that represent the 
data acquisitions and control operations, and (ii) the trace of 
more than 19,000 OpenFlow packets that represent the 
outbound traffic of virtual nodes.

Repeatability. Repeating those experiments involves de-
veloping a DNP3 master and DNP3 slaves. We developed them 
by modifying the example master and slave modules included 
in the OpenDNP3 library, without any changes in its core 
libraries or APIs. The major modification included the setup of 
periodically data acquisition and the format to issue various 
control operations supported by the physical IEDs used in our 
experiments. Our analyses focused on common network 
performance metrics, e.g., throughput and latency. We used 
Zeek to perform such analyses, which can be performed by 
most network analysis tools, e.g., Wireshark or Tcpdump.
B. Effectiveness of PFV

In this section, we present additional details of evaluation
on the effectiveness of PFV, demonstrating the challenges due
to the proprietary implementation in different IED models.
Specifically, we applied fingerprinting methods proposed for
ICSs on both real physical devices and virtual nodes. As shown
in [19], the time to execute commands in ICS devices is an
effective system invariant to identify device types and models.
Based on the methods presented in [19], we measured the
difference between the timestamp in the response carrying
measurement data and the timestamp in the corresponding TCP
acknowledgment, to accurately reveal execution times in real
devices or virtual nodes.

Our original plan was to measure the execution time of
different control commands for each IEDs. Even though we
can communicate each IED by using the DNP3 protocol, it
turns out that each IED supported different function codes
of DNP3 requests. Consequently, we grouped those function
codes into two categories, i.e., data acquisition and control,
as shown in Table II. All three IEDs supported periodic
data acquisition by sending reading requests. However, the
data format in the responses has small differences. In the
response from SEL 751A, measurement data are stored as 32-
bit integers, while the responses from the other two IEDs attach
a property flag with each 32-bit integer to store accessory
information, e.g., the time when the data is sampled [26]. In
addition to the data acquisition, it is worthwhile to note that
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(a) SEL 751A (b) AB MicroLogix 1400 (c) SE ION 7550

Fig. 5: PDF (y-axis) of execution time (x-axis) of data acquisition (at top) and control operations (at bottom) for three IEDs.

different control operations interact with IEDs differently. For
example, the OPERATE function code can trigger the change
of physical process, but WARM RESTART function code only
affects the software stack of an IED. In future work, we will
further investigate how those different interactions with IEDs
can affect the effectiveness of device fingerprinting.

TABLE II: Group function codes supported by different IEDs into
two types: data acquisition and control.

Supported
Function Codes

Devices
SEL 751A AB 1400 ION 7550

Data Acquisition

READ 32-bit integer
without flags

32-bit integer
with flags

32-bit integer
with flags

Control
WRITE

SELECT

OPERATE

DIRECT OPERATE

COLD RESTART

WARM RESTART
ENABLE

UNSOLICITED
DISABLE

UNSOLICITED

Based on the coarse-grained classification, we evaluated the
effectiveness of PFV, whose results are presented in Figure 5.
In this figure, we show the probability density functions
(PDFs) of execution time measured for both data acquisition
and control operations. We can see that PDF patterns vary
in different operation types and devices. Consequently, data
acquisitions, which mainly access the storage space of an IED,
can present very different characteristics compared to control
operations, which can initiate different physical operations in
an IED. Based on these experiments, we can demonstrate that
virtual nodes can follow the communication patterns of real
devices.

C. Performance Overhead in Different Network Implementa-
tions

The disruption policy specified in DefRec introduces addi-
tional network traffic from virtual nodes. We conducted exper-
iments to understand the impact of the injected packets on the
performance of existing networks. Specifically, we measured
and compared round-trip time (RTT) of all data acquisitions
and control operations with and without DefRec enabled. In
Figure 6, we specify in the x-axis different network topology.

In the y-axis, we present the measured RTT in milliseconds
(ms) with 95% confidence interval. In these figures, we specify
the name of networks from the TopologyZoo dataset [30].
When we performed experiments in the NSF Geni testbed,
we have adjusted the number of hosts of networks (included
in the parenthesis).

(a) Results based on Mininet.

(b) Results based on GENI network platform.

(b) Results based on our lab environment.

Fig. 6: Compare RTTs measured in different network implemen-
tations.

In Figure 6, we present selected primitive results based on
three options to implement communications networks, which
are based on Mininet emulation, a cloud environment (e.g.,
the NSF GENI network platform), and hardware network
switches. In all three environments, we can observe that the
overhead due to DefRec is small. However, those results reveal
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different characteristics of the corresponding network imple-
mentation. While using a network emulation, the bottleneck
of the size of emulated networks depended on the bandwidth
of the physical Ethernet interface of the desktop at which
we run the Mininet emulation. As we increased the size of
communications networks, more network packets triggered
re-transmissions. Re-transmission can introduce challenges to
calculate RTT, because it is difficult to determine the specific
request, among all re-transmitted requests, that reaches end
devices and triggers the response. Due to this reason, we
needed to run experiments for an extended period to obtain
a sufficient number of communications that include no re-
transmissions. Even though building emulated networks took a
short time, running experiments took a much longer time than
experiments based on other implementations. This experience
has demonstrated that using Mininet can benefit small scale
experiments to identify early-stage design flaws; it is not
suitable for large-scale experiments that can represent real-
world networks.

Using cloud environments, such as NSF Geni testbed,
introduced bigger variations in RTT, especially when we used
a large-scale network for evaluations. The reason is that we
were sharing computing resources in the GENI testbed with
other projects, as we were using hardware switches, instead of
virtual switches. As the scale of the networks increased, we
could not allocate sufficient computing resources for network
switches and end hosts. We have observed dropped packets
due to software errors and hardware errors. Because many
network resources required more complicated maintenance, it
was usually difficult to reserve sufficient resources to simulate
a network with more than 100 hardware switches.

In [36], we used the results from the experiments performed
based on hardware switches in our lab environment. Compared
to the implementations on Mininet and cloud environments,
the results are more consistent and stable, with a tolerable
overhead of manual configurations. By comparing Figure 6(a)
and Figure 6(c), we can see that the same network experiences
very different RTTs in the lab environment. TopologyZoo
dataset specifies the latency of communication links in each
network. While Mininet and the GENI testbed provide API
for us to directly specify the latency of a communication link,
the HP switches used in our lab lack such APIs. In those HP
switches, we could only reduce the bandwidth of physical ports
to increase the latency of traffic going through those ports.
Since there is a minimum bandwidth required for each port,
we could not accurately configure the latency as indicated in
the dataset but with some adjustments.

D. Performance Overhead in SDN Controllers

To evaluate PFV’s capability to manipulate network pack-
ets, we mainly focused on the southbound goodput of ONOS
SDN controller in [36]. The southbound communications refer
to the interactions between an SDN controller and network
switches to which this controller connects.

ONOS provides an interface to deploy multiple SDN con-
troller instances in different locations and to share information
among them. The inter-controller communication is often
referred to as northbound communication. In DefRec, inter-
controller communications do not play a critical role, which

were left out in [36]; we present the results here for the
completeness of experiments.

To achieve inter-controller communications, we built an
ONOS cluster including SDN controller instances deployed
in the NSF Geni network platform. The ONOS cluster uses
an extension of Atomix framework for the included instances
to exchange information. The physical machines hosting the
SDN controller instances (deployed in virtual machines) were
at three different physical locations. We allocated publicly
reroutable IP addresses to all SDN controllers, so they com-
municated with each other by public Internet, not an air-gaped
network.

Fig. 7: The goodput of inter-controller communication at three in-
staGENI sites in six evaluation cases (error bars show 95% confidence
interval).

In Figure 7, we present the average goodput (in megabits
per second or Mbps) of the communications among distributed
controllers at different locations. On the x-axis, we specify
the three different instaGENI sites [20]. The number of data
exchanged among different SDN controllers, which is specified
in Table II of [36], varied with the size of simulated power
grids. Consequently, we evaluate the goodput for the six power
grids, shown in different bar patterns. We use the y-axis to
include the average goodput and the error bars to show 95%
confidence interval.

In our experiment, there are three major factors affecting
the goodput of inter-controller communications: the allocated
network bandwidth, the configuration of Atomix protocol, and
the amount of data. From the figure, we can see that the
goodput observed in the first three evaluation cases are smaller,
around 2 Mbps, compared to the goodput observed in the
latter three cases. Actually, we observed similar round trip
times of the inter-controller communications in all six cases.
Consequently, with the small amount of exchanged data, the
communication bandwidth is not fully exploited in the first
three evaluation cases. After exchanging more data, we can see
the steady increase of the goodput in all three instaGENI sites,
varying from 5 Mbps to 15 Mbps. In GENI testbed, we could
not control the bandwidth for public network communications,
which were allocated by the local IT infrastructure.

Focusing on the evaluation of each individual power grid,
we find that the goodput of the controllers installed in different
instaGENI sites appear strange at first sight, as the goodput
varies in different sites even though the same number of data is

9



exchanged. In addition to the limited network bandwidth and
physical location of different sites, we find that the detailed
implementation of the Atomix protocol used by the ONOS
cluster also contributes to the result. By observing the network
trace, we found that the controllers at GPO InstaGENI site
often played the role of data subscribers (or consumers) and
thus did not send a large number of packets to controllers at
other sites. On the contrary, the controllers deployed at the
other two sites played the role of both data subscribers and
producers, and we observed more network packets.

VI. RELATED WORK

Instead of repeating the comparisons between DefRec and
previous related research, we focus on the implementation and
evaluations of the related work in this section.

Network Function Virtualization (NFV). NFV is an
emerging technology to virtualize network nodes according
to specific functionality, such as load balancing and access
control [39]. NFV is not necessarily dependent on SDN, but
SDN’s network programmability and visibility can signifi-
cantly benefit its design. Recent work has applied NFV to
improve performance and flexibility of security designs. Li et
al. propose to use NFV to virtualize detection logic of network
IDSs, allowing efficient and flexible state sharing and resource
migration [33]. Deng et al. leverage SDN and NFV to over-
come resource limitations of hardware-based firewall applica-
tions, enabling elastic and scalable access control for virtual
computing environments [13]. In [13], [33], since the authors
focused on the evaluations of NFV, which were implemented
with the help of SDN or network intrusion detection systems,
they used custom virtual machine environments, e.g., Zen, to
implement the evaluation environment, without complicated
implementations on real communications networks.

Moving Target Defense (MTD) in ICSs. Traditional
MTD approaches disrupt adversaries by randomly changing
system and network configurations, e.g., IP addresses and port
numbers [4], [28]. Some recent work leverages similar designs
to disrupt control operations in ICSs. Rahman et al. randomly
change the set of physical data used for power system analysis,
attempting to remove some compromised data and to reduce
the effectiveness of FDIAs [46]. Another group of MTD
approaches intentionally disrupt physical processes in an ICS
and use deviations from expected consequences to detect
attacks [3], [38]. Because those approaches used physical
perturbations, the evaluations on their impact were integrated
into the simulation of power grids or control systems, without
any implementation related to the cyber infrastructure used by
power grids.

Honeypots for ICSs. Honeypots or honeynets interact with
adversaries with simulated network packets. Several honey-
pot projects aim at building separate computing or network
environments to trace adversaries’ activities on ICS devices,
e.g., PLCs [10], [12], [56]. Han et al. further propose to use
SDN to automate interactions with adversaries [22]. Those ICS
honeypots can mimic a cyberinfrastructure of an ICS. How-
ever, in their constructed networks, the honeypots lack supports
for constructing meaningful application-layer payloads, e.g.,
measurements exchanged between ICS devices.

Instead of mimicking and simulating network packets, we 
design PFV, a completely different technique, by virtualizing 
physical devices. PFV is not a honeypot for ICSs: it does not 
require interactions with adversaries to disrupt their reconnais-
sance. Adversaries that passively monitor network packets can 
be significantly delayed; they can end up using decoy data to 
design damage-free attack strategies.

Increasing SDN’s resilience. Rich capabilities provided 
by SDN also make SDN controllers a popular target of 
attacks [52], [55]; therefore, SDN-based approaches require 
more complex protections. To evaluate the work related to 
attacks that aim to compromise SDN’s control plane, many 
researchers implemented a realistic SDN controller as well as 
communications networks. However, because those research 
works usually dealt with representative attack cases, they 
usually used a few network switches to construct a small-scale 
network; there was no necessity to implement a large-scale 
wide-area communications network in their evaluations.

VII. LESSONS LEARNED

In this section, we briefly summarize what we learned to 
perform experiments:

• Cyber infrastructure. We have tried three different imple-
mentation options of building communications networks to 
evaluate research design at different stages. Using Mininet 
emulation is easy to set up and can be used to identify early-
stage design flaws. Using cloud environments can resemble a 
realistic wide-area network, with the limitation of available 
network resources. Using hardware switches to construct 
VLANs allows great flexibility, requiring some manual 
effort.

• Physical infrastructure. We have used benchmark cases 
widely accepted by power engineering community to per-
form simulation close to real environments. The conven-
tional cases, which have been used for decades, require some 
manual configuration effort, including random adjust-ment 
of the normal operational conditions.

• Network engineering. To implement research design, we 
have integrated network engineering into an application 
loadable to common SDN controllers. Using network ma-
nipulation to design and implement moving target defense 
mechanisms is a new research approach, without instrumen-
tation on both server and client ends of communications. 
For future researchers, we propose the following sugges-

tions to improve evaluation quality:

• Even though the DNP3 protocol is widely used at this stage, 
using newly designed protocols such as Ethernet/IP allows 
researchers to purchase new IED models for experiments, 
which can be more easily obtained at reduced unit prices.

• Some new network switches allow configurations on the 
latency and throughput of an individual physical port. With 
this feature, researchers will be able to configure the latency 
within a VLAN if they choose to construct logical switches 
in a hardware switch. Consequently, the air-gaped networks 
built on physical switches can better resemble realistic 
communications networks.

• The size of traditional power grid cases is usually limited 
to a few hundreds of substations. With more large-scale 
power grid cases (e.g., up to 10,000 substations) becoming
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available for academics, we recommend using them in 
simulations to better evaluate the scalability of the proposed 
research idea.

VIII. CONCLUSION

In our recent work, we proposed the concept of PFV,
which hooks network interactions with real devices to build
virtual nodes, following the actual implementations of network
stacks, system invariants, and physical state variations of the
real devices. Based on PFV, DefRec specifies two security
policies, randomizing communications and crafting decoy data
for virtual nodes, to disrupt adversaries’ reconnaissance of
power grids’ cyber-physical infrastructures. In this work, we
present additional details on various options related to the
implementation of a cyber-physical testbed, evaluating the
effectiveness and efficiency of DefRec. We aim to present
the pros and cons of different implementation options with
“primitive” results, helping other researchers in similar fields.

In future work, we will focus on including the close
coupling of implementation of cyber and physical components
in the testbed, providing increasing fidelity to simulate the
runtime behavior of ICSs.
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