Vibenix: An Al Assistant for
Software Packaging with Nix

Martin Schwaighofer<
Johannes Kepler University Linz
martin.schwaighofer @ins.jku.at

Jodo F. Ferreira
INESC-ID and Faculty of Engineering, University of Porto
joao@joaoff.com

Abstract—Implicit and floating dependencies, uncontrolled net-
work access, and other impurities in build environments create
intransparent supply chains. Discovering the identity and chain
of custody of every dependency that could have affected the
output of a build process is an error-prone forensic and reverse
engineering task. Hermetically isolated build steps, linked by
hashes of their inputs and outputs, make functional package
management a principled alternative, which ensures that software
depends only and exactly on declared inputs listed in a repro-
ducible build recipe. Generating build recipes, which satisfy these
additional constraints, however, is a complex and time-consuming
task, creating a barrier to adoption. We present Vibenix, an Al-
powered assistant that automatically generates such recipes as
Nix expressions. Vibenix employs an agentic architecture that
leverages a large language model (LLM) to iteratively refine a
build recipe based on build outcomes, guided by deterministic
rules and a structured feedback loop. We evaluated Vibenix on
a dataset of 472 packaging tasks from the Nixpkgs repository.
Vibenix successfully builds 424 of the 472 tasks (89.8%). Manual
validation of a subset of 48 packages showed that 45.8% of
Vibenix-built packages are functionally correct. Vibenix’s post-
build refinement process, based on the evaluator—optimizer
pattern and leveraging a VM environment for runtime testing,
results in an additional 37.5% increase in functionally correct
packages, demonstrating that this refinement mechanism is a
promising and important contribution to automated software
packaging. Vibenix demonstrates how LLMs, as an unreliable
building block, can be leveraged to generate rigorously defined,
complete, and easy to audit dependency trees, for real-world
software projects.

Index Terms—software supply chain security, software pack-
aging, agentic systems, hermetic builds, large language models

I. INTRODUCTION

Modern software systems are built from complex depen-
dency graphs, often comprising thousands of third-party com-
ponents and toolchains. This complexity hinders debugging

©These authors contributed equally to this work.

Workshop on LLM Assisted Security and Trust Exploration (LAST-X) 2026
27 February 2026, San Diego, CA, USA

ISBN 978-1-970672-05-3

https://dx.doi.org/10.14722/1ast-x.2026.23035

www.ndss-symposium.org

Martim Monis®
INESC-ID and IST, University of Lisbon
martimrosam @tecnico.ulisboa.pt

Nuno Saavedra
INESC-ID and IST, University of Lisbon
nuno.saavedra@tecnico.ulisboa.pt

Rene Mayrhofer
Johannes Kepler University Linz
rm@ins.jku.at

and introduces serious security risks: dependencies may rely
on the ambient system state, or fetch arbitrary code from the
internet during builds, leading to non-deterministic behavior
across machines and time. The resulting intransparency of
build systems has contributed to a wave of high-profile supply
chain attacks [1f], [2], prompting renewed focus on build
integrity, dependency isolation, and reproducibility [3]], [4].

Hermetically isolated software packaging, supported by
tools such as Nix [5] and Bazel [6], have emerged as a
principled defense against such threats [7]. By construction,
hermetic packaging ensures that each build step is executed
in a hermetically isolated environment that only contains
the intended dependencies, thus segregating intended and
circumstantial dependencies by design. Hermetically isolated
build environments rule out reliance on global system state,
uncontrolled network access, or implicit environment vari-
ables, making it possible to reason more soundly about what
code is built, where it comes from, and how it behaves at
runtime. Writing package recipes to build software in such
an environment requires additional effort by developers and
package maintainers. Moreover, packaging software with Nix
is often described as a frustrating experience, particularly to
newcomers/l]

We present Vibenix, a novel Al assistant for automated Nix
packaging. Vibenix analyzes a given software project and,
from an initial template, iteratively refines it until it is able
to build the project in a hermetically isolated environment.

Vibenix is the first agentic system that tackles hermetically
isolated builds: it runs builds inside a fully isolated sandbox,
interprets the resulting logs, and iteratively refines the Nix
expression under progress rules. The two key techniques that
we demonstrate to be key for successful automated package
building are (1) a log-driven loop that uses specialized tools to
incrementally repairs build failures based on concrete evidence
from sandboxed execution, and (2) a post-build refinement
process based on the evaluator-optimizer pattern, which in-
spects the runtime behaviour of the successfully built package

'In the 2024 Nix Community Survey [8], among respondents who do not
consider Nix part of their usual toolset, the most commonly cited barriers
were “still learning” (32), “barrier to entry is too high” (27), “confusing
documentation” (22), and “the Nix language is an obstacle” (20).

and applies targeted improvements to correctness, dependency
declarations, and package quality.

To assess Vibenix, we conducted an empirical evaluation
on a large set of packaging tasks from the Nixpkgs repository
(472 tasks). The system was able to automatically build
the vast majority of tasks (89.8%), and manual inspection
confirmed that a substantial portion of these builds were func-
tionally correct. Furthermore, Vibenix’s post-build refinement
process further improved functional correctness significantly.
These results indicate that Vibenix not only automates the
build process effectively but also enhances the reliability of
generated packages through targeted refinements. In summary,
this paper makes the following novel contributions:

e We present Vibenix, an Al assistant that automati-
cally produces hermetic Nix expressions for real-world
projects, using two key techniques: a log-driven loop
that incrementally fixes build failures, and a post-build
evaluator—optimizer process that improves correctness
and package quality.

o We present NixBench, a dataset of 472 curated and recent
packaging tasks from the Nixpkgs repository. We addi-
tionally provide a detailed and reproducible methodology
for constructing this dataset, enabling future extensions
while mitigating data-leakage risks as time progresses and
the training cutoffs of large language models continue to
advance.

« We evaluate Vibenix across this diverse dataset of open-
source software packaging tasks, and show that it can
autonomously satisfy 89.8% of these requests.

« We provide Vibenix as open sourceE] and all the data and
code associated with our experimentsE]

Vibenix advances trustworthy software builds by making
functional package management more accessible and auto-
mated. This in turn enables reasoning about source provenance
that is independent of original suppliers, because it relies on
the authoritatively enforced dependency graph constructed by
Nix. Other measures to obtain strong source provenance data
require participation by suppliers or package registries.

II. SOFTWARE PACKAGING WITH NIX

Hermetic packaging in Nix involves writing a functional
Nix expression that declaratively specifies every build step of
the complete dependency graph, which is then executed in the
Nix build sandbox.

Listing [I] shows a functional Nix expression generated by
Vibenix that packages a Python library called stackstac ﬂ
In addition to the Nix language the listed code heavily relies
on the infrastructure code and dependencies provided by Nix-
pkgsE] to abstract away the details. When using Nix like this, a
package definition is structured as a function that accepts a set
of arguments representing other packages on which the defi-
nition depends and language-specific infrastructure code that

Zhttps://github.com/mschwaig/vibenix
3https://github.com/mschwaig/vibenix-paper-experiments
4https://github.com/gjoseph92/stackstac
Shttps://github.com/nixos/nixpkgs

lib
python3Packages
fetchFromGitHub
gdal

7| python3Packages.buildPythonPackage rec ({

8 pname = "stackstac";

9 version = "0.5.1";

10

11 src = fetchFromGitHub {

12 owner = "g g

13 repo = "

14 rev = "v§ sio g

15 hash =

16 M
sha256-7ml112jiZExOXPLC 3ggledI168pkL6BeTLHKRMXESs=—
"

1 }i

18

19 pyproject = true;

21 build-system = with python3Packages; [
pdm-pep517
1i

dependencies = with python3Packages; [
26 xarray
dask
28 rasterio
29 pystac-client
30 numpy
31 pyproj
3 pandas
1i

buildInputs = [
36 gdal
1i

39 doInstallCheck = true;
40 installCheckPhase = '’
${ Ivvﬂ on3

3Packages.python.interpreter} -c "import <—

Listing 1: Nix package definition for stackstac.

supports the build (line 1 to 5). Line 7 introduces a function
invocation with a block that defines a Python package. Within
this block, the package is assigned the name stackstac
(line 8) and the version 0.5.1 (line 9). In Nixpkgs, the src
attribute of a package specifies the location of its source code.
It typically references a file path, or a fetcher function that
retrieves the source code of the package from a Git repository,
or tarball URL. In our example, a fetcher function is then used
to obtain the Python package’s source code (line 11 to 17).
Lines 19 to 23 ensure that the build invokes the correct build
infrastructure for Python projects provided in the nixpkgs
repository. From lines 25 to 37, project dependencies are
explicitly declared. Among them, gdal represents a seam-
lessly integrated C/C++ dependency that originates outside
the Python ecosystem. The accompanying comments were
automatically inserted by Vibenix during various stages of
the fully automated packaging process. Finally, lines 39 to
42 introduce a build-time check that verifies that the package
can be successfully imported without raising errors.
Packaging software with Nix is generally more challenging

https://github.com/mschwaig/vibenix
https://github.com/mschwaig/vibenix-paper-experiments
https://github.com/gjoseph92/stackstac

than with other tools, primarily because many build systems
implicitly rely on environment dependencies or do not manage
the full transitive closure of their dependency graphs. Even
language-specific package managers that offer some degree of
hermetic isolation, such as cargo for Rust, typically include
escape hatches that allow unresolved system-level dependen-
cies. In case of Rust for example, whatever gets executed
inside a build.rs file is not covered by Cargo.lock
and cannot be reasoned about within the corresponding de-
pendency graph. As a result, such packages can easily evade
software supply chain analyses, highlighting a fundamental
limitation that our work seeks to overcome by easing the Nix
packaging process.

Nix also enforces strict build-time purity by disallowing
network access during builds unless all resources are accom-
panied by precomputed cryptographic hash values. This guar-
antees that all dependencies are explicitly declared, allowing
users to fully understand, track and archive the set of depen-
dencies of a package with confidence in its completeness.

From a security perspective, Adkins et al. [9] found that
hermetically isolated builds facilitate the analysis and enforce-
ment of policies on build inputs, ensure the integrity of third-
party imports, and simplify the rapid deployment of critical
software updates.

However, Nix also introduces unique challenges. We already
mentioned disallowing network access in the build sandbox,
which requires extra effort and consideration during the pack-
aging process. The sandbox environment is also practically
empty except for declared dependencies. Additionally, Nix
does not adhere to the Filesystem Hierarchy Standard (FHS),
which often makes it necessary to patch source code that
assumes dependencies reside in usual FHS-prescribed loca-
tions. This tends to lead to runtime failures in build outputs,
which have to be addressed iteratively as part of the packaging
process.

III. VIBENIX

Vibenix employs an agentic architecture that leverages
an LLM to support the fully automated packaging process.
Throughout this process, the LLM performs two primary tasks
based on log output: fixing encountered errors and evaluating
whether the model has made progress.

What makes Nix a good tool for applying LLMs to the
problem of software packaging is that it provides a mechanism
to clearly scope tasks while enabling iteration within the
narrowly defined scope of a package build over the entire build
process at once. Both of these properties make auditing and
iteration on tasks easier than, for example, general-purpose
coding tasks or imperatively setting up a build environment
step by step. The roughly linear nature of build processes
also makes it easier than for general-purpose coding tasks
to distinguish working solutions from failing solutions for
progress evaluation. The final output of the process is also
easier to validate than for a general-purpose coding task,
because making an existing application work is a more clearly
specified goal.

A. Packaging Pipeline

In this section, we provide a step-by-step description of
Vibenix’s packaging process. Figure [I] presents an overview
of this process.

The process begins when the user provides the URL of the
target project to Vibenix.

1) Generate Fetcher: To fetch the source code of the
project, Vibenix uses a Nix fetcher invocation. To generate this
fetcher invocation, our tool relies on nurlﬂ which fetches
supported sources with Nix and turns them into a call to a
suitable fetcher function with an associated content hash set
by nurl. The expression assigned to the src attribute in
Listing [1| shows an example of a fetcher invocation generated
by nurl.

Vibenix uses the local Nix installation to execute the gen-
erated fetcher, which clones the project source code into the
local Nix store. The resulting store path is recorded for later
use within Vibenix, allowing it to retrieve relevant information
about the project during subsequent stages of the packaging
pipeline.

2) Analyze Project: Vibenix then prompts the LLM with
information gathered from the project’s source code, namely
the project’s root README file and root directory listing, to
generate a summary that includes build tools, dependencies,
and other details relevant to the build process. This prompt
provides the model with tools to further analyze the project
source at will.

3) Select Template: Rather than providing the LLM with
a blank canvas, Vibenix guides its output by initializing it
with a build tool or language-specific template that adheres
to the style conventions of the nixpkgs repository. To
select the appropriate template, Vibenix prompts the LLM
using the previously generated summary to identify the most
suitable starting point. After selecting the appropriate template,
Vibenix populates its src attribute with the previously gen-
erated fetcher invocation.

4) Setup Nix Flake: Then Vibenix sets up a temporary
project directory based on the selected template with both
an additional flake.nix and flake.lock file, which
provide a defined structure in terms of how the project build is
invoked and which version of the existing nixpkgs package
set it is based on. Vibenix takes advantage of existing package
definitions from the nixpkgs repository, thereby eliminating
the need to independently repackage each component required
to build and run the project.

5) Execute Build: After the Nix flake is set up, Vibenix
enters an agentic loop. This agentic loop makes multiple calls
to the LLM until a successful build is reached or Vibenix
reaches one of its stopping conditions. First, Vibenix uses the
local Nix installation to build the current Nix expression and
collect the build results. If the build succeeds, the package
goes through a refinement process (see Section [[II-AT0).
Afterwards, the finished package is presented to the user, saved
to disk, and the pipeline ends.

Shttps://github.com/nix-community/nurl

https://github.com/nix-community/nurl

Caption
CNPE = Consecutive No Progress Evaluations

Get Project URL

increment
iteration

5 reset Yes
ave CNPE

Try Fix Error

. No
Made
Roll K increment
CNPE Progress

other

[Fetch Project Data] _)[Execute Build]
[Generate Fetcher]

Build
Succeeds?

v

Analyze Project

v

error %
build

error
Check iteration and
CNPE limit

Fail

Evaluate Progress

A

Select Template

¢ [Refine Output J

[Analyze Failure

[Setup Nix Flake]— ¢
Save
package.nix

»

Fig. 1: Overview of Vibenix’s packaging pipeline. Yellow and purple boxes indicate use of an LLM in these steps.

6) Stopping Conditions: If the build fails, Vibenix evaluates
whether one of the following stopping conditions has been
met:

1) the maximum number of allowed iterations has been
exceeded;

2) the maximum number of consecutive evaluations without
observed progress has been exceeded.

If one of these conditions is met, Vibenix stops its agentic
cycle and outputs a failure report (see Section [[II-ATT).
Otherwise, the iterative process continues.

7) Handling Errors: Subsequently, Vibenix inspects the
nature of the error that caused the build to fail. If the LLM
managed to write a valid Nix expression that successfully
evaluates into a dependency graph but fails during the build
step, Vibenix proceeds to evaluate if progress has been made
(See Section [[TI-AS).

Otherwise, Vibenix continues, by attempting to fix the
encountered error (See Section [[IIZA9). Errors that lead to this
path include hash-mismatches and invalid Nix expressions.

8) Evaluate Progress: For build errors, Vibenix evaluates
whether progress was made in the packaging process. During
the first evaluation, Vibenix always assumes that progress has
been made, as there is no prior run available for comparison.
From the second evaluation onward, Vibenix compares the log
files of the current and previous builds to determine whether
progress has been made.

To do so, Vibenix starts by preprocessing the logs. When
the log size does not exceed 100 lines, the complete two sets
of logs are included in the comparison. Otherwise, Vibenix
identifies the earliest line in the current attempt that does not
appear in the log from the previous attempt. All log content

preceding the index of this divergent line is discarded in both
sets of logs. This heuristic is grounded in the observation that,
due to the parallel nature of operations, log entries may not be
sequentially ordered. Therefore, detecting the first unmatched
line offers a practical approximation of the divergence point
between both attempts. Some additional truncation may also
be required in this case.

Subsequently, Vibenix supplies the LLM with the two trun-
cated logs, accompanied by a prompt instructing it to assess
which build progressed further. The LLM outputs PROGRESS
if it determines that the new attempt advanced beyond the
previous one. In this case, Vibenix resets the number of
consecutive evaluations without observed progress, and saves
the current attempt. Otherwise, the LLM outputs a different
status like REGRESS or STAGNATION, in which case Vibenix
increments the number of consecutive evaluations without
observed progress, and rolls back to the last saved attempt.

Tracking the number of consecutive evaluations without
observed progress serves as a safeguard against unnecessary
consumption of computational resources when the model fails
to advance within the packaging process.

9) Try Fix Error: In this step, Vibenix prompts the LLM to
fix the error in the current Nix expression. Vibenix provides the
LLM with an input consisting of the current Nix expression,
the error logs, the summary generated in Section and
supplementary framework or language-specific context based
on the selected template. Vibenix also provides the model with
the following tools:

1) Edit tools: Directly returning the entire packaging ex-

pression, or even snippets, at the end of error fixing
prompts can often introduce noise, especially surrounding

long strings like source hashes, and increased costs. For
this reason, the model has access to standardized tools to
perform localized edits to the packaging expression and
view its current state.

2) Package Search: Given a query, the function retrieves
relevant packages from the nixpkgs repository by per-
forming a search on all the packages available.

3) Find Nix Package Output: Given a relative file path,
the function retrieves packages in Nixpkgs that provide
this file path in their output. This function leverages the
nix-locate command.

4) File-centric tools: The agent has access to tools that
interact with the file system, including listing directory
contents, identifying file types and sizes, reading file
contents, and performing pattern-based searches. These
operations are supported in both the project source direc-
tory and a commit of the nixpkgs repository.

In the case of hash mismatch errors, Vibenix limits the input
of the LLM to the current Nix expression and the error logs.
For such scenarios, it employs a specialized prompt that in-
cludes guidance tailored to resolve this specific class of issues.
Hash mismatches occur when using an unknown content hash
of a network resource, such as a GitHub repository. Since
Vibenix does not know correct hashes in advance, it fills in
a dummy hash value (1ib.fakeHash). Subsequently, Nix
will return a hash mismatch error, which includes the correct
hash value, which Vibenix will then fix. This trust-on-first-use
workflow mirrors best practice in manual Nix packaging [10].

10) Refinement: Once an initial build is successfully pro-
duced, either through the first build attempt or during the agen-
tic loop, the core goal is considered to be reached. However,
Vibenix also includes an optional refinement step. This step is
specifically designed to improve package quality, presentation,
and detect and correct errors not detectable during build. Its
implementation draws inspiration from the agentic workflow
pattern of the Evaluator-optimizer [11].

Each iteration of the refinement process primarily involves
two prompts to the LLM. The first, the Evaluator prompt,
is provided with the Nix expression and relevant project
information. Its task is to identify and describe a single spe-
cific improvement in packaging. Subsequently, the Optimizer
prompt receives the Evaluator’s feedback and is tasked with
implementing the suggested change within the expression.

If the code produced by the Optimizer is built successfully, it
replaces the previous expression; otherwise, it goes through the
same packaging loop as before refinement for a short number
of iterations, in an attempt to fix the errors introduced. From
this inner loop, the package is either built successfully once
more, or the maximum number of error fixing iterations is
reached and the changes are discarded. Regardless of success,
the refinement process continues until a predefined maximum
number of iterations is reached. Once refinement ends, the
final packaging code is one produced during this process or
the one initially provided to it.

Given that the packaging expression received by the Eval-
uator prompt always builds successfully, this prompt can

leverage additional tools that interact with the build process
results. One such tool is run_in_vm, which allows the
LLM to specify a shell script to run in an isolated NixOS
virtual-machine containing the built package, generic useful
commands, and other packages optionally specified by the
model (for example, Python with the built package in its
scope).

This tool allows Vibenix to inspect build outputs, giving
further context for diagnosing issues, and to correct errors
that only appear during program execution, and so further
increasing the likelihood that the final packaging expression
is sound.

11) Failure Analysis: 1If, by the end of the agentic loop,
Vibenix fails to produce a successfully building Nix expres-
sion, it goes through a last failure analysis step. In the first
prompt, it receives the packaging code, the most recent build
error that led to progress, and relevant project context. Then
a concise explanation for the failure is asked. In the second
prompt, the LLM is tasked with classifying the generated
explanation into one of several predefined categories, such
as dependency not in Nixpkgs, missing lock file, or build
downloads from network.

The failure analysis description and the failure type are
presented to the user. This feedback provides insight into the
root cause of the packaging issue, enabling the user to better
understand the problem and then manually intervene.

B. Technical Implementation

Vibenix and its algorithm are written in Python, and exposed
to the user as a command line application. The LLM inte-
gration is written using the pydantic—ai[] framework. As
mentioned in Section [[II=AT] it uses the local Nix installation.
See the README.md file for how to invoke the project.
For desktop usage, Vibenix prompts users to select a model
provider, a model, and to provide the relevant API keys. Usage
as part of our CI setup is described in Section

Due to space constraints we cannot incorporate prompts into
the descriptions of this work. All prompts are available as
jinja2 templates in Markdown format in the Vibenix repos-
itory. The build tool and language-specific templates that are
incorporated into some of the prompts were generated ahead
of time by prompting the proprietary tool claude—codeﬂ
with access to the Nixpkgs repository. This was done for
nine languages based on popularity. Vibenix falls back to a
less effective generic template otherwise. All templates can
be found in the Vibenix repository.

1V. EVALUATION

In this section, we first describe the dataset used to eval-
uate Vibenix, followed by an explanation of the evaluation
methodology, and conclude by presenting our results.

"https://github.com/pydantic/pydantic-ai
8https://github.com/anthropics/claude-code

https://github.com/pydantic/pydantic-ai
https://github.com/anthropics/claude-code

A. Dataset

To assess the effectiveness of our approach, we require a
dataset comprising software projects that can be packaged
using Nix. One of the cornerstones of the Nix community
is the Nixpkgs package repositoryﬂ It is a monorepo, and
the largest repository of open source software, as tracked
by repology[ﬂ with, at the time of writing, around 129,000
packages maintained by a community of 4,257 maintainers.

To construct our dataset, we start by collecting all commits
from the Nixpkgs repository with a commit author date
between August 1st, 2025 and November 20th, 2025 that
introduced either a package.nix or default.nix file. The addition
of these files signals the creation of a new package. In total,
this process yielded 1,146 commits. We selected a commit
author date of August 1st, 2025 as the starting point to prevent
data leakage, as the models used in our evaluation were trained
on data with a cutoff prior to this date. The end date, November
20th, 2025, corresponds to the point in time at which the
dataset was collected. Future studies can replicate our dataset
construction procedure by adjusting the date range to fit their
requirements accordingly.

Next, we filtered commits to retain only those that intro-
duced packages with at least six lines of code, a defined
meta attribute, and an explicit Nix fetcher. These criteria
restrict the dataset to real package definitions that comply
with the Nixpkgs requirement that all packages provide a
meta attribute [12], while excluding aliases, wrappers, and
module definitions. This filtering yielded 1,014 commits. We
then examined the commit messages to identify those that
follow the Nixpkgs conventions for introducing new packages
(e.g., “init at X.Y.Z”). We retained only the commits whose
messages matched these patterns. After this step, 761 commits
remained.

TABLE I: Summary of number of commits removed from our
dataset for each exclusion criterion.

Category Count
Add multiple packages 3
Modify existing packages 5
Require patches 26
Add lock files 13
Change the all-packages.nix 6
Marked as broken 1
Marked as unfree 21
Evaluation phase (more than 30 seconds) 3
More than one criterion 7

Out of these 761 commits, we excluded those that:

1) Add multiple packages. Such commits introduce several
packages at once. Including these commits would require
disentangling their relationships to isolate the packaging
intent for each package, an effort that would significantly
complicate dataset construction without yielding insights
relevant to our tool. By focusing on single-package in-
troductions, we ensure clean, self-contained examples.

9https://github.com/nixos/nixpkgs
Whttps://repology.org/

2) Modify existing packages. Our tool is designed to
introduce new packages, not update or refactor existing
ones. Commits that modify other packages would require
the tool to reason about and safely change those other
packages. Excluding such commits ensures that each
datapoint corresponds to a scenario that our tool can
meaningfully address.

3) Require patches. Some packages need source-code
patches, which our tool does not attempt to infer or gener-
ate. Excluding these cases prevents confounding factors
that are not related to the synthesis of Nix expressions
and keeps the evaluation focused on the packaging logic
rather than the modification of upstream code.

4) Add lock files. Commits that introduce lock files (e.g.,
for language-specific dependency managers) designate a
specific set of additional packages as trustworthy. Doing
this independently of the original author and in an au-
tomated manner has trust implications, which have yet
to be addressed. Currently, Vibenix cannot generate such
files or access the internet to do so.

5) Change the all-packages.nix. Commits modifying this
central index often involve structural reorganizations or
multi-package edits. Removing these commits keeps the
dataset focused on isolated packaging tasks.

6) Are marked as broken or unfree Packages carrying
these metadata flags indicate missing dependencies or
licensing restrictions. Our tool currently assumes build-
ability under standard Nixpkgs conditions, and unfree
packages introduce licensing restrictions that prevent their
redistribution and would hinder the reproducibility and
open availability of our dataset.

7) Required more than 30 seconds to complete the Nix
evaluation phase. This timeout refers to the evaluation
phase of Nix itself during which Nix expands the package
expression and computes its derivation. We impose this
limit to keep our data-processing scripts fast. Although
some of these slow evaluations may simply be outliers
that could be optimized or handled with additional en-
gineering effort, they represent a very small fraction of
packages. Given time constraints and their limited impact
on the dataset, we opted to exclude them rather than tune
our pipeline for these uncommon cases.

After applying these exclusion criteria, we obtain 676
commits.

Then, we attempted to build the packages introduced in each
commit. For each target commit, we traversed the history of
the most recent 150 tip of branch commits of the nixpkgs-
unstable branch in the Nixpkgs repository, which correspond
to the 150 most recent channel states of nixpkgs-unstable from
early July to the end of the experiment period, to identify
the tip of branch commit immediately preceding the addition
of the new package. These recent channel states serve as
a reference window that ensures all evaluated changes are
based on a reasonably up-to-date version of the repository.
This constraint avoids including package additions whose base

https://github.com/nixos/nixpkgs
https://repology.org/

commits are substantially older and may have been circulating
publicly for an extended period, which could create data
leakage issues in our evaluation. Five commits were excluded
because none of these channel states was an ancestor of
theirs. We then attempted to build each package on top of its
corresponding prior commit, imposing a 15-minute time limit
on each build attempt. If the build succeeded, we recorded that
specific nixpkgs-unstable commit to represent the repository
state on which Vibenix should be evaluated. If the build failed,
we discarded the package. In total, we excluded 122 commits
due to build failures, resulting in 549 commits after this step.

Of these commits, we retained only those from which a
single fetcher could be reliably extracted. Vibenix accepts as
input a single fetcher responsible for retrieving the software
to be packaged. Restricting our dataset in this way keeps the
focus on the packaging logic itself, rather than on resolv-
ing multi-fetcher workflows, which would require substantial
additional engineering effort and are not representative of
common practice in Nixpkgs. Consequently, 14 commits were
excluded for introducing packages with multiple fetchers, and
an additional two were removed due to malformed fetchers or
the absence of a detectable fetcher.

Finally, we excluded 52 commits in which the upstream
repository already contained Nix expressions. In such cases,
Vibenix could extract and reuse existing packaging logic
through its project-analysis tools, which would compromise
the validity of our evaluation by allowing the system to
locate a pre-existing solution rather than synthesizing one or
having it in the training data. Additionally, eight commits
were removed for using nonstandard attribute names, such as
finalAttr.version, instead of the conventional Nixpkgs form fi-
nalAttrs.version. Supporting these rare packages would require
substantial engineering effort without yielding meaningful
insights. We also excluded one package that was identified
as a duplicate.

In the end, our final evaluation dataset comprises 472 pack-
aging tasks, each associated with the corresponding software
to be packaged, its version, the specific Nixpkgs commit on
top of which it should be packaged, and a Nix fetcher. We
refer to this dataset as NixBench.

B. Evaluation Methodology

1) Experimental Setup: We run our experiments in public
inside dedicated GitHub Actions workflow runs. Each indi-
vidual packaging request was run in isolation as a dedicated
job.

a) Model comparison: We compare the performance of
Vibenix when instantiated with different language models. Our
evaluation includes models from multiple providers that span
a range of sizes, costs, and licensing regimes (both closed-
source and open-source). This analysis allows us to assess
the extent to which Vibenix generalizes across model families
and to evaluate how effectively different models perform
the hermetically isolated software packaging task. For this
comparison, we randomly selected a subset of 54 packaging
tasks from NixBench. We used a subset of NixBench because

running multiple experiments on the entire dataset would incur
prohibitive computational costs, both in terms of time and
monetary resources.

b) Assessing the Contribution of Vibenix’s Components:
For each model, we also conducted experiments in which all
Vibenix tools and the progress-evaluation mechanism were
disabled, allowing us to quantify the impact of these com-
ponents on overall performance.

c) Evaluating Runtime Correctness: Even when a pack-
age builds successfully, the resulting software may still fail
at runtime. In such cases, Vibenix has not achieved its in-
tended goal, as the generated package is functionally incorrect.
To assess this aspect, we manually tested successfully built
packages in a VM-based environment. We focused on the
packages produced by Claude Haiku 4.5, which demonstrated
the strongest overall performance in our experiments. We then
compared the number of correct packages before and after
applying the refinement step, as the refinement process is
designed to identify and address runtime errors.

d) Large-scale evaluation: Finally, we conduct a large-
scale evaluation on NixBench using Claude Haiku 4.5 as
the deployed model. This enables us to assess with greater
certainty how well Vibenix generalizes. Additionally, for this
experiment, we analyze the success rate across iterations to
assess the importance of the iterative loop in Vibenix.

The following time limits were applied in all experiments:

e a time limit of seven minutes for an individual build
attempt configured in Nix, via Vibenix;

o a soft time limit of 30 minutes per package request in

Python (30 plus seven extra minutes for pending builds);

« a hard 45 minutes time limit per package request config-
ured in GitHub Actions.
Table [IV]in Appendix [A]reports the training cutoff dates for
each model used in our experiments. Importantly, all training
cutoffs precede the dates of the commits in NixBench.

V. RESULTS

In this section, we describe the results of the experiments
described in Section

A. Model comparison

Table reports the results of deploying Vibenix with
different language models. Depending on the model used,
Vibenix successfully produces buildable packages in between
44.4% and 90.7% of cases. GPT-OSS-20B yields the lowest
performance; however, it is also by far the smallest model in
our comparison. In contrast, Claude Haiku 4.5 achieves the
highest success rate, although it is also the most expensive
model, costing nearly five times more than any other model
we evaluated.

Interestingly, GPT-OSS-120B, an open weights model de-
signed to fit into 80 GB of memory, achieves strong re-
sults with a success rate of 79.6%, only 11.1% lower than
Claude Haiku 4.5. This suggests that it is feasible to achieve
competitive performance using self-deployed models for the
hermetically isolated packaging task.

TABLE II: Model performance comparison for a subset of 54
randomly selected packaging tasks.

Avg Cost ($) §
on
Model S‘l'fcess Al Succ/Fail 2 Timeouts
ate
Claude Haiku 4.5
Vibenix 90.7% 034 0.22/1.50 3.1 1.9%
Disabled 74.1% 0.05 0.03/0.11 7.0 1.9%
Gemini Flash 2.5
Vibenix 81.5% 0.07 0.05/0.17 6.6 1.9%
Disabled 722% 0.06 0.03/0.16 8.1 1.9%
GPT-5-mini
Vibenix 88.9% 0.06 0.04/0.20 3.1 11.1%
Disabled 88.9% 0.03 0.02/0.10 54 0.0%
Vibenix (1h timeout) 96.3% 0.07 0.06/0.12 3.0 0.0%
GPT-5-nano
Vibenix 51.9% 0.04 0.02/0.07 4.4 46.3%
Disabled 63.0% 0.02 0.01/0.04 9.0 1.9%
Vibenix (1h timeout) 55.6% 0.09 0.03/0.15 6.8 35.2%
GPT-0SS-120B
Vibenix 79.6% N/A N/A 6.9 1.9%
Disabled 70.4% N/A N/A 4.0 0.0%
GPT-OSS-20B
Vibenix 44.4% N/A N/A 32 0.0%
Disabled 59.3% N/A N/A 8.8 0.0%

GPT-5-mini and GPT-5-nano exhibited noticeably slower
token-generation speeds compared to the other models, re-
sulting in a higher rate of packaging runs exceeding the
time limit. This issue has been previously reported by the
community and appears to be a known limitation of the GPT-5
family of models [13]-[15]. To better understand how these
models perform when given additional time, we conducted
an additional run for each model with the timeout increased
from 30 minutes to 1 hour. Under this extended timeout, GPT-
5-mini no longer experienced timeouts and became our best-
performing model, producing buildable packages in 96.3% of
the cases. In contrast, GPT-5-nano continued to struggle, still
timing out in 35.2% of the runs even with the extended limit.

B. Assessing the Contribution of Vibenix’s Components

When we disable Vibenix’s tools and progress-evaluation,
the success rate decreases by up to 16.6%. The largest drop
occurs for Claude Haiku 4.5, which we hypothesize is due to
this model making the most effective use of the tools provided.

For GPT-5-mini, the disabled configuration achieves the
same success rate as Vibenix under the 30-minute timeout, but
its performance increases by 7.4% when using the extended
one-hour limit. Because the disabled version issues fewer tool
calls and omits the progress-evaluation prompts, it consumes
fewer tokens overall, allowing each iteration to run more
quickly; as a result, it is less affected by the shorter timeout.
A similar pattern is observed for GPT-5-nano. We believe that
with a sufficiently longer timeout, Vibenix would also surpass
the disabled configuration for GPT-5-nano.

Finally, GPT-OSS-20B actually shows a 14.9% increase
in performance when using the disabled configuration. A

closer inspection of the Vibenix runs with this model re-
veals that GPT-OSS-20B frequently struggles with correct tool
invocation, often failing to adhere to the required formats,
for example, by over-escaping JSON structures or producing
malformed tool-call arguments. This behavior suggests that
the model lacks sufficient reasoning and planning capabilities
to reliably execute structured tool calls. As a result, disabling
tool usage and progress evaluation removes a major source of
errors for this model, thus improving its overall success rate.

C. Evaluating Runtime Correctness

After the model successfully produces a package, it per-
forms three refinement iterations aimed at making targeted
improvements. During this process, the model gains access
to an additional tool that enables it to invoke a Bash script
inside a VM containing the freshly built package. This allows
the model to critically examine its own output and correct
runtime defects, most notably missing or incorrectly specified
runtime dependencies. Table [III} shows our results before and
after refinement. Out of the randomly selected subset of 54
packages built by Claude Haiku 4.5 for the model comparison,
Vibenix failed to build six packages; these were therefore
excluded from the manual validation. Overall, the refinement
stage results in a 37.5% improvement in functional correctness,
increasing the number of functionally correct packages from
22 to 40, as determined through a combination of code review,
comparison of build outputs using diffing tools, and manual
runtime inspection in a test VM by the authors.

TABLE III: Manual validation results for functional correct-
ness.

Incorrect

26 / 48 (54.2%)
8 /48 (16.7%)

Correct

22 /48 (45.8%)
40 / 48 (83.3%)

Category

Without refinement
With refinement

Many corrected packages were misusing
buildPythonApplication for Python libraries,
which prevents the package from being imported. This is a
practically meaningful distinction that refinement corrected
14 times.

D. Large-scale evaluation

For the large-scale evaluation, Vibenix successfully pro-
duced 424 buildable packages out of 472 packaging tasks,
achieving a success rate of 89.8%. The average cost per
package was $0.34; however, this value decreases to $0.23
when considering only the packages that succeeded, indicating
a relatively low cost per package, especially when compared to
the developer time required to perform the same task manually.
The average time per package was 4 minutes and 14 seconds.
These results indicate that Vibenix is a practical solution
for real-world scenarios where reproducibility and supply
chain security are essential, demonstrating that fully automated
packaging is both feasible and beneficial. Future iterations of
Vibenix, could potentially be deployed to automatically create

100 n=472
:\o‘ 80
0]
S
60
i —8— Success
= —8— Failure
+
8 40
=}
€
=]
O 20
o Am T./_I-.—-l’_l-.’/l

5 10 15 20
Number of Iterations

Fig. 2: Success and failure rates by iteration in a large-scale
evaluation of 473 packaging tasks.

or extend a package sets like Nixpkgs based on user-provided
packaging requests.

Figure [2] shows the cumulative success and failure rates
across iterations. Almost all successful builds occur within the
first five iterations, after which the success rate grows more
slowly and plateaus only at iteration 18. This suggests that the
iterative approach of Vibenix contributes to a higher overall
success rate compared to a single attempt.

VI. RELATED WORK

We focus on hermetic builds and their role in software
supply chain security, which highlight the importance of
secure and reproducible development practices; and on au-
tomated software packaging, which discusses previous work
to streamline the creation of development and deployment
environments.

A. Software Supply Chain Security and Hermetic Builds

Hermetically isolated builds are widely recognized as a step-
ping stone towards reproducible builds [[16]] and are supported
by tools such as Bazel [6]], Guix [17]], Nix [5] and Gitia
Both concepts strengthen software supply chain security [18]—
[21]]. For example, security researchers have explored hermetic
builds to mitigate software supply chain security issues [22],
[23] and to maintain an indexed archive of binary software
packages [23].

Beyond security, Cloud-based Build Systems [24], which
in addition to hermetically isolated builds provide output
lookups by hash, like Nix, Guix and Bazel, have demonstrated
their ability to enable reproducible builds at scale [7]], [20],
[25]], and facilitate the creation of indexed archives of source
code and binary packages to facilitate the reproducibility of
science [26] and aid practical debugging. However, despite
these advantages, recent findings by Alfadel and McIntosh [27]]
reveal a trend of organizations migrating away from Bazel
due to unexpectedly high maintenance costs. This highlights a

https://github.com/devrandom/gitian-builder

critical barrier to broader adoption and positions our work as a
means to address this challenge by lowering the maintenance
burden associated with hermetic build systems.

B. Automated Software Packaging

There have been some efforts to facilitate or automate
software packaging with Nix. nix—ai—help[?] is an LLM-
powered CLI tool providing various functionalities for Nix
users, including automated project packaging through its com-
mand package-repo and build failure analysis through its
command build. In comparison to Vibenix, nix—ai-help
employs a single-shot LLM inference for package genera-
tion, lacking iterative improvements based on build output
or progress evaluation. Moreover, nix—ai-help does not
integrate build failure analysis with the project packaging
process.

Furthermore, the nix—init tool also offers automated
packaging of projects with Nix, but does not leverage LLM or
implement any iterative approach. It is also limited to projects
in Rust, Go, and Python.

Recent work has explored automated pipelines to execute
test suites at scale, often to construct benchmarks, such as
BugSwarm [28] and GitBug-Java [29]. These efforts typi-
cally focus on a single programming language and assume
specific CI/CD platforms. Complementary to this, Eliseeva et
al. [30] propose EnvBench, a benchmark focused specifically
on environment setup, covering 329 Python and 665 JVM-
based repositories. They evaluate several LLM-based strategies
and find that even the best agent successfully configures
only 6.69% of Python and 29.47% of JVM repositories,
highlighting the difficulty of the task and the limitations of
current techniques. ExecutionAgent [31]] introduces a general-
purpose LLM-based agent capable of setting up environments
and executing test suites across diverse languages and build
systems. Distinct from existing solutions outside of the Nix
ecosystem, Vibenix advances supply chain security by auto-
matically enforcing hermetic builds, closing knowledge gaps
that arise from non-deterministic and environment-dependent
builds.

VII. CONCLUSION

In this work, we introduced Vibenix, an Al assistant for
automated Nix packaging, addressing a critical challenge
in software supply chain security. By combining functional
package management with an agentic LLM-based architecture,
Vibenix demonstrates that fully automated packaging is both
feasible and practical. Our large-scale evaluation on real-world
Nixpkgs packaging tasks shows promising results: Vibenix
produces buildable packages in 89.8% of the cases, of which
83.3% are functionally correct. Many Al-for-security efforts
repeatedly tackle higher-level tasks without addressing the
solvable but fundamental challenge of linking artifacts and
source code. Vibenix closes this gap by providing a structured,

Zhttps://github.com/olafkfreund/nix- ai- help
Bhttps://github.com/nix-community/nix-init

https://github.com/olafkfreund/nix-ai-help
https://github.com/nix-community/nix-init

verifiable and automated approach to packaging projects, cre-
ating a solid foundation to build scalable and trustworthy tools
and workflows on.

APPENDIX

TABLE IV: Knowledge cutoff and release dates.

Model Knowledge Cutoff Release Date
Claude Haiku 4.5 Feb 2025% Oct 1, 2025°
Gemini Flash 2.5 Jan 2025¢ Jun 17, 20254
GPT-5-mini May 31, 2024¢ Aug 7, 20258
GPT-5-nano May 31, 2024f Aug 7, 2025
GPT-0SS-120B Jun 1, 2024" Aug 5, 20251
GPT-OSS-20B Jun 1, 20241 Aug 5, 2025

https://docs.anthropic.com/en/docs/about-claude/models/overview
® https://www.anthropic.com/news/claude-haiku-4-5
¢ https://deepmind.google/models/gemini/flash/
4 https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini/2-5-flash
‘f https://platform.openai.com/docs/models/gpt-5-mini
https://platform.openai.com/docs/models/gpt-3-nano
¢ |https://openai.com/index/introducing- gpt-5/
hl https://platform.openai.com/docs/models/gpt-oss- 120b
! https://platform.openai.com/docs/models/gpt-oss-20b
I https://openai.com/index/introducing- gpt-oss/

A. Data Contamination Prevention

All knowledge cutoff dates presented in Table precede
the commits in NixBench, preventing training data contamina-
tion. Anthropic is the only provider publishing a post-training
and fine-tuning cutoff date (July 2025), providing additional
assurance against contamination. We deemed the one-week
overlap between OpenAl model releases (August 5-7, 2025)
and our dataset start (August 1, 2025) acceptable, assuming
fine-tuning datasets would not change in a relevant manner
one week before release. The final experiments presented in
this work were performed between December 8 and December
15, 2025.

B. Author Contributions

Martin Schwaighofer and Martim Monis contributed equally
to this work as first authors. Martin Schwaighofer initiated
the project, provided the overall vision and direction, and led
the implementation. Martim Monis designed and implemented
the refinement process, implemented tools and other features,
improved model prompts, and debugged and fixed numerous
bugs throughout the codebase. Both collaborated extensively
on the analysis of results. Nuno Saavedra led the writing effort,
and critically shaped the scientific presentation, in terms of
targeted goals and presented results. He also contributed to
the implementation, introducing function calling and simpli-
fying the agentic loop. Jodo F. Ferreira and René Mayrhofer
contributed as advisors, with Jodo F. Ferreira additionally
contributing to the writing and literature review.

Detailed attribution of code changes can be found in the
commit history of the project repositories.

10

ACKNOWLEDGMENT

This work has been supported by the JKU LIT Secure
and Correct Systems Lab and Digidow, the Christian Doppler
Laboratory for Private Digital Authentication in the Physical
World. We gratefully acknowledge financial support by the
Austrian Federal Ministry of Economy, Energy and Tourism,
the National Foundation for Research, Technology and De-
velopment, the Christian Doppler Research Association, 3
Banken IT GmbH, ekey biometric systems GmbH, Kepler
Universititsklinikum GmbH, NXP Semiconductors Austria
GmbH & Co KG, Osterreichische Staatsdruckerei GmbH, and
the State of Upper Austria.

This work was supported by Fundacdo para a Ciéncia e
a Tecnologia (FCT): N. Saavedra by grant BD/04736/2023;
M. Monis, N. Saavedra, and J.F. Ferreira by projects
UID/50021/2025 (DOI: https://doi.org/10.54499/UID/50021/
2025), UID/PRR/50021/2025 (DOLI: https://doi.org/10.54499/
UID/PRR/50021/2025) and the ‘InfraGov’ project, with ref.
n. 2024.07411.JACDC (DOI: 10.54499/2024.07411.IACDC),
funded by the ‘Plano de Recuperacdo e Resiliéncia (PRR)’
under the investment ‘RE-C05-i08 - Ciéncia Mais Digital’,
measure ‘RE-C05-i08.M04’ (in accordance with the FCT
Notice No. 04/C05 108/2024), framed within the financing
agreement signed between the ‘Estrutura de Missdo Recuperar
Portugal (EMRP)’ and the FCT as an intermediary beneficiary.

REFERENCES
[1] S. Peisert, B. Schneier, H. Okhravi, F. Massacci, T. Benzel, C. Landwehr,
M. Mannan, J. Mirkovic, A. Prakash, and J. B. Michael, “Perspectives
on the solarwinds incident,” IEEE Security & Privacy, vol. 19, no. 2,
pp. 7-13, 2021.
P. Przymus and T. Durieux, “Wolves in the repository: A software engi-
neering analysis of the XZ utils supply chain attack,” in 2025 IEEE/ACM
22nd International Conference on Mining Software Repositories (MSR),
pp. 91-102, IEEE, 2025.
P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 2023 [EEE
Symposium on Security and Privacy (SP), pp. 1509-1526, IEEE, 2023.
L. Williams, G. Benedetti, S. Hamer, R. Paramitha, I. Rahman,
M. Tamanna, G. Tystahl, N. Zahan, P. Morrison, Y. Acar, et al., “Re-
search directions in software supply chain security,” ACM Transactions
on Software Engineering and Methodology, vol. 34, no. 5, pp. 1-38,
2025.
E. Dolstra, M. De Jonge, E. Visser, et al., “Nix: A safe and policy-free
system for software deployment.,” in LISA, vol. 4, pp. 79-92, 2004.
Google, “Bazel.” https://bazel.build/, 2024. Accessed: 2025-07-14.
J. Malka, S. Zacchiroli, and T. Zimmermann, “Does functional pack-
age management enable reproducible builds at scale? yes.,” in 2025
IEEE/ACM 22nd International Conference on Mining Software Reposi-
tories (MSR), pp. 775-787, IEEE, 2025.
Nix Marketing Team, “Nix community survey 2024 results.” https://
discourse.nixos.org/t/nix-community-survey-2024-results/55403, 2024.
2290 respondents; analysis at https://github.com/GuillaumeDesforges/
nix-survey-analysis-2024,
H. Adkins, B. Beyer, P. Blankinship, P. Lewandowski, A. Oprea, and
A. Stubblefield, Building secure and reliable systems: best practices for
designing, implementing, and maintaining systems, ch. 14. O’Reilly
Media, 2020.
“Updating source hashes.” https://nixos.org/manual/nixpkgs/stable/
#sec-pkgs-fetchers-updating-source-hashes, 2025. [Online; accessed
11-December-2025].
Anthropic, “Building Effective Agents,” 2024. Accessed 14-07-2025.
NixOS Project, “Contributing to nixpkgs packages: Meta attributes,”
2025. Accessed: 2025-02-09.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]

https://docs.anthropic.com/en/docs/about-claude/models/overview
https://www.anthropic.com/news/claude-haiku-4-5
https://deepmind.google/models/gemini/flash/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://platform.openai.com/docs/models/gpt-5-mini
https://platform.openai.com/docs/models/gpt-5-nano
https://openai.com/index/introducing-gpt-5/
https://platform.openai.com/docs/models/gpt-oss-120b
https://platform.openai.com/docs/models/gpt-oss-20b
https://openai.com/index/introducing-gpt-oss/
https://doi.org/10.54499/UID/50021/2025
https://doi.org/10.54499/UID/50021/2025
https://doi.org/10.54499/UID/PRR/50021/2025
https://doi.org/10.54499/UID/PRR/50021/2025
https://doi.org/10.54499/2024.07411.IACDC
https://bazel.build/
https://discourse.nixos.org/t/nix-community-survey-2024-results/55403
https://discourse.nixos.org/t/nix-community-survey-2024-results/55403
https://github.com/GuillaumeDesforges/nix-survey-analysis-2024
https://github.com/GuillaumeDesforges/nix-survey-analysis-2024
https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-fetchers-updating-source-hashes
https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-fetchers-updating-source-hashes

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

R. DiBona, “Gpt-5 api: Unreliable and slow compared to gpt-4.1,”
September 2025.

OpenAl Developer Community, “Gpt-5 is very slow on the api,” 2025.
OpenAl Developer Community, “Gpt-5 is very slow compared to 4.1
(responses api),” 2025.

S. Zheng, B. Adams, and A. E. Hassan, “On build hermeticity in bazel-
based build systems,” IEEE Software, 2024.

L. Courtes, “Functional package management with guix,” arXiv preprint
arXiv:1305.4584, 2013.

W. Enck and L. Williams, “Top five challenges in software supply chain
security: Observations from 30 industry and government organizations,”
IEEE Security & Privacy, vol. 20, no. 2, pp. 96-100, 2022.

C. Lamb and S. Zacchiroli, “Reproducible builds: Increasing the in-
tegrity of software supply chains,” IEEE Software, vol. 39, no. 2, pp. 62—
70, 2021.

J. Malka, S. Zacchiroli, and T. Zimmermann, “Reproducibility of build
environments through space and time,” in Proceedings of the 2024
ACM/IEEE 44th International Conference on Software Engineering:
New Ideas and Emerging Results, pp. 97-101, 2024.

M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like flossing
your teeth: On the importance and challenges of reproducible builds for
software supply chain security,” in 2023 IEEE Symposium on Security
and Privacy (SP), pp. 1527-1544, IEEE, 2023.

M. Lins, R. Mayrhofer, M. Roland, D. Hofer, and M. Schwaighofer,
“On the critical path to implant backdoors and the effectiveness of
potential mitigation techniques: Early learnings from xz,” arXiv preprint
arXiv:2404.08987, 2024.

M. Schwaighofer, M. Roland, and R. Mayrhofer, “Extending cloud
build systems to eliminate transitive trust,” in Proceedings of the 2024
Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses, pp. 45-55, 2023.

A. Mokhov, N. Mitchell, and S. Peyton Jones, “Build systems a la carte,”
Proc. ACM Program. Lang., vol. 2, jul 2018.

S. Zheng, B. Adams, and A. E. Hassan, “Does using bazel help speed
up continuous integration builds?,” Empirical Software Engineering,
vol. 29, no. 5, p. 110, 2024.

L. Courtes, T. Sample, S. Zacchiroli, and S. Tournier, “Source code
archiving to the rescue of reproducible deployment,” in Proceedings of
the 2nd ACM Conference on Reproducibility and Replicability, ACM
REP 24, (New York, NY, USA), p. 3645, Association for Computing
Machinery, 2024.

M. Alfadel and S. Mclntosh, “The classics never go out of style:
An empirical study of downgrades from the bazel build technology,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pp. 1-12, 2024.

D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-Gonzélez, “Bugswarm: Mining
and continuously growing a dataset of reproducible failures and fixes,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 339-349, IEEE, 2019.

A. Silva, N. Saavedra, and M. Monperrus, “Gitbug-java: A reproducible
benchmark of recent java bugs,” in Proceedings of the 21st International
Conference on Mining Software Repositories, pp. 118-122, 2024.

A. Eliseeva, A. Kovrigin, I. Kholkin, E. Bogomolov, and Y. Zharov,
“Envbench: A benchmark for automated environment setup,” in /CLR
2025 Third Workshop on Deep Learning for Code.

I. Bouzenia and M. Pradel, “You name it, I run it: An LLM agent to
execute tests of arbitrary projects,” Proceedings of the ACM on Software
Engineering, vol. 2, no. ISSTA, pp. 1054-1076, 2025.

11

	Introduction
	Software Packaging with Nix
	Vibenix
	Packaging Pipeline
	Generate Fetcher
	Analyze Project
	Select Template
	Setup Nix Flake
	Execute Build
	Stopping Conditions
	Handling Errors
	Evaluate Progress
	Try Fix Error
	Refinement
	Failure Analysis

	Technical Implementation

	Evaluation
	Dataset
	Evaluation Methodology
	Experimental Setup

	Results
	Model comparison
	Assessing the Contribution of Vibenix’s Components
	Evaluating Runtime Correctness
	Large-scale evaluation

	Related Work
	Software Supply Chain Security and Hermetic Builds
	Automated Software Packaging

	Conclusion
	Appendix
	Data Contamination Prevention
	Author Contributions

	References

