
AWE: Adaptive Agents for Dynamic Web
Penetration Testing

Akshat Singh Jaswal∗
Stux Labs

akshat@stuxlabs.com

Ashish Baghel∗
Stux Labs

ashish@stuxlabs.com

Abstract—Modern web applications are increasingly produced
through AI-assisted development and rapid no-code deployment
pipelines, widening the gap between accelerating software ve-
locity and the limited adaptability of existing security tooling.
Pattern-driven scanners fail to reason about novel contexts, while
emerging LLM-based penetration testers rely on unconstrained
exploration, yielding high cost, unstable behavior, and poor
reproducibility.

We introduce AWE, a memory-augmented multi-agent frame-
work for autonomous web penetration testing that embeds
structured, vulnerability-specific analysis pipelines within a
lightweight LLM orchestration layer. Unlike general-purpose
agents, AWE couples context aware payload mutations and gen-
erations with persistent memory and browser-backed verification
to produce deterministic, exploitation-driven results.

Evaluated on the 104-challenge XBOW benchmark, AWE
achieves substantial gains on injection-class vulnerabilities - 87%
XSS success (+30.5% over MAPTA) and 66.7% blind SQL
injection success (+33.3%) - while being much faster, cheaper,
and more token-efficient than MAPTA, despite using a mid-
tier model (Claude Sonnet 4) versus MAPTA’s GPT-5. MAPTA
retains higher overall coverage due to broader exploratory capa-
bilities, underscoring the complementary strengths of specialized
and general-purpose architectures. Our results demonstrate that
architecture matters as much as model reasoning capabilities:
integrating LLMs into principled, vulnerability-aware pipelines
yields substantial gains in accuracy, efficiency, and determinism
for injection-class exploits. The source code for AWE is available
at: https://github.com/stuxlabs/AWE

Index Terms—Web Security, Large Language Models, Pene-
tration Testing, Autonomous Agents

I. INTRODUCTION

The increasing popularity of AI assisted software devel-
opment and the limited adaptablity of traditional security
tools have created a widening gap in the web security land-
scape. Most notably recent developement trends of no-code
platforms, automated code-generation assistants, and rapid
deployment pipelines allow web applications to be made by
developers with limited security expertise. This broadens the
attack surface significantly while existing security tooling

∗The authors contributed equally to this work.

remain stuck in pattern based detections and lack genuine
reasoning capabilities.

Recent OWASP Top 10 data shows that every major cate-
gory of web weakness ranging from injection flaws to access
control failures and server-side request manipulation continues
to appear across most real world applications [1]. Despite
ongoing advancements in secure development practices, these
vulnerability classes remain persistent. The widening gap
between accelerated development and static defensive capabil-
ities has created a massive challenge for modern web security
assessment.

To address this growing mismatch, we introduce AWE
(Adaptive Web Exploitation Framework), a memory-
augmented multi-agent penetration testing system designed
for autonomous, intelligent, and transparent vulnerability
discovery. AWE aims to bridge the gap between traditional
scanners and general-purpose LLM agents by combining
domain-specific exploitation logic with large language models,
enabling targeted, explainable, and scalable vulnerability
discovery in modern web applications.

II. THREAT MODEL

A. System Model

We consider an automated black box vulnerability discovery
system that interacts with modern web applications through
standard HTTP interfaces. The system exercises application
endpoints using both GET and POST requests and uses
parameter placement to explore multiple input channels. The
target applications resemble modern web applications that ex-
pose parameterized HTTP endpoints and perform server-side
processing using common frameworks (PHP, Python, Node.js,
Java). These applications may incorporate input validation,
output encoding, and application-layer firewalls. The system
has no privileged visibility into source code, runtime logs, or
internal application state. All observations arise solely from
HTTP responses and timing behavior. The attacker’s automa-
tion maintains a persistent memory across probes, enabling
adaptive exploration.

B. Attacker Capabilities and Goals

We assume an automated adversary that interacts with the
application strictly through black-box HTTP requests. The
attacker is realistic, constrained, and possesses the following
capabilities:

Workshop on LLM Assisted Security and Trust Exploration (LAST-X) 2026
27 February 2026, San Diego, CA, USA
ISBN 978-1-970672-05-3
https://dx.doi.org/10.14722/last-x.2026.23037
www.ndss-symposium.org

• Black-box interaction. The attacker can craft arbitrary
HTTP requests and observe responses, but lacks source-
code access, server configuration details, or a privileged
capabilities.

• Authenticated probing. When available through benign
registration or low-privilege accounts, the attacker may
authenticate to explore additional endpoints and restricted
input channels.

• LLM-assisted input generation. The attacker employs
commercial LLM APIs to synthesize context-aware pay-
loads and adapt strategies based on prior observations,
subject to cost-bounded operation. The LLM serves as a
flexible generator of candidate attack inputs.

• Time-bounded evaluation. Each target endpoint is
probed under a strict temporal budget (≤ 10 minutes),
reflecting practical constraints imposed by rate limiting,
detection risk, and LLM API costs.

The attacker’s goals are to identify injection-class vulner-
abilities throughout controlled manipulation of inputs, and
exploit abnormalities in application behavior (e.g., response
timing, error structure, output differences) to infer server-side
faults.

C. Trust Relationship

We assume the target application stack is uncompromised
and behaves according to its implementation, although it
may contain vulnerabilities. The hosting infrastructure and
network fabric are also considered trustworthy from a security
standpoint, providing no privileged access to the adversary.
All attacker-controlled inputs (parameters, headers, cookies,
request bodies) are considered potentially malicious, and dy-
namic content originating from the client side may also serve
as a vehicle for exploit construction

D. Scope

Our work focuses on injection-centric vulnerabilities that
can be discovered solely through black-box manipulation of
application inputs. Within this scope, we consider attacks that
exploit improper handling of attacker-controlled data across
a broad spectrum of server-side interfaces. These include
vulnerabilities such as cross-site scripting, SQL injection in
its various forms, server-side template injection across widely
used templating engines, command injection, file inclusion
and path traversal, XML external entity expansion, server-side
request forgery, and unauthorized object access when valid
credentials are available. The scope therefore encompasses
vulnerabilities whose exploitability emerges from observable
differences in application behavior under controlled input
perturbation.

Out of scope are vulnerabilities that cannot be meaningfully
exercised or detected through black-box interaction alone.
We do not consider network-level or protocol-level attacks,
cryptographic weaknesses, or business-logic flaws that require
semantic domain knowledge or multi-step reasoning beyond
observable request–response behavior. Our focus is strictly on

vulnerabilities that arise from input processing behavior acces-
sible to a realistic, resource-constrained adversary operating
through standard HTTP interfaces.

III. BACKGROUND AND RELATED WORK

A. Traditional Automated Vulnerability Scanning

Dynamic Application Security Testing tools remain the
popular automated method for identifying security flaws in
modern web applications. Commercial systems such as Burp
Suite [2], as well as open-source tools like OWASP ZAP [3],
Nuclei [4], and sqlmap [5], rely primarily on signature-driven
payload databases combined with heuristic pattern matching.
These tools excel at detecting well-understood classes of
injection vulnerabilities by replaying curated payloads across
various input vectors but this strict pattern matching also
embeds inherent limitations.

One significant flow is that signature and template based
scanners are static and they cannot synthesize novel payloads
or mutate attack strategies when confronted with nonstandard
sanitization, application specific input handling, or adaptive
WAFs. Also, the rigidity of pattern matching leads to false pos-
itives when benign behaviors resemble known signatures, and
false negatives when exploitation requires multi-step probing
or contextual reasoning. [6]. Specialized tools such as sqlmap
for SQL injection show excellent domain-specific performance
but lack generality across heterogeneous vulnerability families
and vulnerablities with dependent chaining. Collectively, these
limitations highlight the difficulty of expressing dynamic at-
tack reasoning within static scanners.

B. LLM-Based Penetration Testing Systems

Large language models have recently motivated systems that
apply natural language to security assessment. PentestGPT [7]
was the first well crafted attempt that proved LLMs can
support human testers by structuring workflows, suggesting
reconnaissance strategies, and making exploit logic. Although
impactful, these systems function primarily as assistive agents:
humans maintain the memory, perform validation, and execute
tools. Subsequent research has explored autonomous operation
through multi-agent orchestration. Frameworks such as Au-
toPT [8], AutoAttacker [9], CAI [11], and related multi-agent
LLM systems [10], [12] couple LLM-driven controllers with
command execution environments and reconnaissance tool-
ing. These approaches automate selected penetration testing
phases, but typically rely on unspecialized reasoning models
and lack persistent memory for tracking authentication status,
filter behavior, or previously attempted payloads, features
essential for complex injections. MAPTA [12] represents a
significant advancement in autonomous LLM driven penetra-
tion testing. It employs a three role multi-agent architecture
in which a Coordinator agent performs high-level planning,
Sandbox agents execute commands and scripts within an
isolated per job Docker environment, and a Validation agent
converts candidate exploits into verified proof-of-concepts
through concrete execution. By coupling LLM-based reason-
ing with structured tool orchestration and evidence-gated PoC

2

Fig. 1. AWE system architecture.

validation, MAPTA demonstrates that fully autonomous end-
to-end web exploitation is feasible and establishes a strong
baseline for agent-driven security testing.

C. Architectural Gaps in Existing Systems

Despite their individual strengths, both traditional scan-
ners and existing LLM-based penetration testing systems
share several fundamental limitations. Although LLM-based
agents technically receive server-side feedback, they lack the
domain-specific exploitation reasoning required to interpret
that feedback and transform it into effective payload evo-
lution. Practical exploitation often depends on subtle details
(filter ordering, encoding quirks, type coercion behavior, tem-
plate engine semantics, multi-parameter interactions etc.) that
general-purpose LLM reasoning does not reliably model. As
a result, existing systems tend to generate a small set of
generic payloads, fail to recognize why they were blocked,
and prematurely abandon the search rather than performing
the iterative probing needed to infer sanitization logic or craft
targeted bypasses.

Furthermore, most architectures do not maintain the rich
contextual state necessary for multi-step exploitation, such as
tracking which payload variants were attempted, how filter
behavior has changed across requests, or which response
features signal partial progress. Without structured memory
and explicit state modeling, agents cannot build the multi-hop
reasoning chains required for difficult injection classes.

Finally, the absence of domain-specialized probing tech-
niques such as type confusion probing, template context shift-
ing, timing-based inference, or controlled syntax fragmenta-
tion limits the ability of existing systems to move beyond
superficial exploitation attempts.

These gaps reflect a broader challenge: current tools com-
bine feedback and autonomous reasoning but lack the special-
ized, stateful, and iterative mechanisms necessary to convert
raw feedback signals into precise, context-aware exploit gen-
eration.

IV. SYSTEM DESIGN

AWE is designed as an autonomous web exploitation system
that integrates reconnaissance, domain specialized vulnerabil-
ity analysis, and adaptive LLM reasoning under explicit re-
source constraints. Its architecture uses global orchestration to
orchestrate vulnerability specific logic and has shared memory
to enable systematic exploration of an application’s attack
surface simultaneously ensuring that each component operates
with clear and specific responsibilities. AWE consists of three
architectural layers. The Orchestration Layer manages global
states, coordinates agents and enforces budgetary constraints.
The Specialized Agents Layer executes targeted exploitation
strategies tailored to each vulnerability classes. The Founda-
tion Layer provides common services such as hybrid payload
generation, persistent memory, browser-based verification, and
endpoint discovery/reconnaissance. The overall architecture is
illustrated in 1.

A. Orchestration Layer

The Orchestration Layer manages the progression of a scan
from initial reconnaissance through multi-step exploitation.
Unlike traditional scanners, which treat each vulnerability
class as an isolated test, AWE maintains a global exploitation
context capturing the evolving state of the adversary. This in-
cludes information such as discovered inputs, observed server
transformations, authentication status, prior payload attempts,

3

and successful exploitation steps. By storing this information
in a unified state model, the orchestrator can reason about how
new findings to adaptively influence the overall strategy. For
example, upgrading to authenticated testing once credentials
are obtained or suppressing redundant payload attempts based
on previously observed failures.

At the center of this layer is the Intelligent Orchestra-
tor , which mediates all interactions between components.
It collects reconnaissance results, assesses the viability of
different vulnerability classes, and selects appropriate agents to
invoke. The selection process is done by a LLM that converts
reconnaissance output into a prioritized execution plan. Rather
than generating payloads directly, the LLM functions as an
advisory mechanism, interpreting contextual cues such as
reflected parameters, sanitization behavior or the presence
of language specific templating constructs. The orchestrator
therefore avoids the inefficiency of enumerating every agent
and instead executes a minimal subset who meet the required
preconditions.

The Orchestration Layer finally also enforces resource gov-
ernance by monitoring token spend, runtime, and tool costs.
This information steers scheduling so AWE can exit early after
high-impact findings or scale back low-yield agents, keeping
operations within practical limits while focusing depth where
it matters.

B. Specialized Agents Layer

The Specialized Agents Layer embodies the domain knowl-
edge required to navigate specific vulnerability classes. Each
agent is implemented as a self-contained exploitation module
that translates application behavior into vulnerability specific
hypotheses and tests those hypotheses using structured proce-
dures. Rather than relying solely on LLM reasoning, agents
encode expert methodologies directly into their operational
pipelines, ensuring predictable and reproducible behavior.

The XSS agent is the best example to explain the approach.
The agent first conducts a multi-stage analysis beginning with
parallel canary injections to map input reflection behavior to
analyse for reflected XSS. The agent distinguishes among
fine-grained DOM contexts, such as quoted and unquoted
attributes, JavaScript string literals, or raw HTML insertion
because the viability of subsequent payloads depends critically
on contextual correctness. Following context identification, the
agent performs targeted probing to infer server side filtering
policies, including character level transformations, blocked tag
families, and event handler restrictions. This information is
packaged into a structured format passed to the LLM, which
synthesizes payload candidates tailored to the discovered con-
straints. This design avoids the speculative or hallucinated
vulnerabilities common in LLM-driven systems by grounding
LLM creativity in precise contextual information and requiring
definitive evidence of JavaScript execution. A visualization of
this workflow is shown in 2.

Agents for SQL injection, server-side template injection,
command injection, XXE, SSRF, IDOR, and LFI follow simi-
lar principles. The SQL injection agent combines deterministic

Fig. 2. Five-phase XSS detection pipeline.

payload sets with context inference derived from database
error messages, backend fingerprinting, and observed query-
structure patterns. It then applies controlled mutations to ex-
plore alternative execution paths or WAF bypasses. The SSTI
agent deploys engine-specific probes to distinguish among
popular templating frameworks and subsequently constructs
exploit strings that reflect the internal semantics of the detected
engine. The IDOR agent relies on authenticated differential
testing, comparing access patterns across resource identifiers to
detect authorization inconsistencies. In every case, the agents
share the same design philosophy: integrate structured domain
knowledge, reduce reliance on unconstrained LLM reasoning,
and validate exploitability through concrete behavioral evi-
dence.

C. Foundation Layer

The Foundation Layer provides a shared infrastructure
which all agents use and operate upon. A core component
is the Persistent Memory System, which combines short term
scan states with long-term cross-target learning. Short-term
memory prevents redundant attempts within the same engage-
ment by tracking tried payloads and their outcomes, inferred
filters, and agent-level progress markers. Long-term memory
records domain-level features such as effective bypass patterns,

4

characteristic sanitization signatures, and historical payload
success rates. This architecture allows AWE to integrate prior
experience into future attacks and reduces unnecessary explo-
ration, mirroring how a real adversary accumulates knowledge
over repeated interactions with similar systems The Browser
Verification Engineis another core component provides defini-
tive exploit validation for vulnerability classes whose manifes-
tation cannot be confirmed through HTTP responses alone. By
executing payloads in a controlled browser environment, AWE
observes concrete signals script execution, DOM mutation,
dialog triggers that are otherwise invisible to purely server-side
testing. This eliminates entire categories of false positives and
differentiates between theoretical and practically exploitable
vulnerabilities.

Finally, services such as endpoint discovery, parameter
extraction, and technology fingerprinting populate the initial
attack surface and inform orchestrator decision-making. These
components ensure comprehensive yet efficient enumeration of
reachable interfaces and reduce unnecessary agent invocation
by identifying the structural features most relevant to specific
vulnerability classes.

Design Rationale

AWE’s architecture reflects three principled design choices:
1) Specialization over generalized reasoning. While

LLMs excel at reasoning about semi-structured tasks,
fine-grained exploitation requires domain-specific proce-
dures that are more reliably implemented as dedicated
state machines and inference pipelines.

2) Stateful and memory-driven operation. Modern ex-
ploitation depends on multi-step reasoning that spans nu-
merous requests, input transformations, and contextual
clues; a stateless scanner or unconstrained LLM agent
cannot reliably maintain such context.

3) Verification rather than speculation. Every finding
in AWE must be supported by concrete evidence—
observable execution, differential behavior, or successful
data extraction—ensuring that the system reports only
vulnerabilities that a real adversary could exploit.

These design principles collectively enable AWE to operate
as a practical, resource-bounded, and exploit-grounded au-
tonomous penetration tester capable of discovering complex
web vulnerabilities with high precision.

V. METHODOLOGY

This section outlines our evaluation methodology, including
benchmark selection, baselines, model experiments, configu-
ration, and metrics. The goal is to assess AWE’s effectiveness
and efficiency under realistic attacker constraints while en-
abling reproducible comparison with state-of-the-art systems.

A. Benchmarks

We evaluate AWE on two complementary benchmarks to
assess both competitive performance and controlled vulnera-
bility analysis.

Reflected
XSS

Stored
XSS

DOM
XSS

SQLi
Basic

SQLi
Blind

Vulnerability Type

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

100%

67%

80% 80%

70%

LLM Model Comparison: Vulnerability Detection Success Rates

Claude Sonnet 4 ⭐
GPT-4o
Gemini 2.0 Flash

Fig. 3. Comparative performance of Claude Sonnet 4, GPT-4o, and Gemini
2.0 Flash across five vulnerability categories.

XBOW Benchmark: Our primary evaluation uses the XBOW
benchmark [14], a curated suite of 104 vulnerable web appli-
cations spanning 26 vulnerability categories. Each challenge
is deployed as an isolated container and embeds a hidden
flag that is accessible only through a complete end-to-end
exploit. XBOW provides substantial heterogeneity: vulnerabil-
ities range from straightforward reflected XSS to multi-stage
chains involving authentication, authorization, and context-
specific sanitization bypasses. Injection-related categories con-
stitute a majority of the benchmark mimicking the state of
real world vulnerabilities. Challenges differ in exploitation
complexity. Some are solvable through single-step injections,
whereas others require the adversary to combine multiple
findings, sequence authenticated requests, or adapt payloads
to nontrivial server-side filters. This diversity makes XBOW
a suitable testbed for evaluating AWE’s ability to perform
adaptive exploitation at scale.

DVWA: For controlled model-selection experiments and
fine-grained analysis of exploitation behavior, we use DVWA
(Damn Vulnerable Web Application) [13]. DVWA offers re-
peatable vulnerability configurations and configurable security
levels, enabling systematic testing across multiple difficulty
regimes. We focus on reflected and stored XSS, DOM-based
XSS, error-based SQL injection, and time-based blind SQL
injection. Because the application is deterministic across runs,
DVWA supports statistical comparison of model behavior
under identical conditions. Each model is evaluated across
multiple independent trials (n=10) per vulnerability type to
obtain robust estimates of success rates and convergence
behavior.

B. Baseline

We compare AWE against MAPTA in the XBOW Bench-
mark as it is the strongest publicly available autonomous
penetration-testing framework. MAPTA adopts a general pur-
pose multi-agent architecture in which a central LLM or-
chestrates reconnaissance, execution within an isolated sand-
box, and exploit validation. MAPTA’s published evaluation
reports a 76.9% solve rate on XBOW under generous compute
and time budgets. Its architecture embodies the prevailing
paradigm of broad, reasoning-centric agents, making it an

5

TABLE I
OVERALL PERFORMANCE ON THE XBOW BENCHMARK.

System Solve Rate Avg. Time (s) Model

AWE 51.9% (54/104) 53.1 Claude Sonnet 4
MAPTA 76.9% (80/104) 190.8 GPT-5

appropriate baseline for measuring the benefits of AWE’s
specialization-oriented design. We use MAPTA’s publicly re-
ported per-challenge results for all comparisons.

C. Model Selection

Before large-scale evaluation, we compared several mod-
ern LLMs within AWE’s orchestration layer using DVWA.
Across models tested, Claude Sonnet 4 consistently yielded
the highest success rates and displayed the most stable iterative
refinement behavior, particularly on vulnerabilities requiring
multistep reasoning. The detailed numerical results appear in
VI-A, where we revisit this analysis alongside full evaluation.
Based on these observations, Claude Sonnet 4 is used in all
subsequent experiments.

D. Experimental Configuration

AWE is evaluated in its aggressive configuration, which
performs deep reconnaissance and executes all agents deemed
relevant by the orchestrator. Each challenge is allotted a
ten-minute time budget, matching MAPTA’s configuration to
ensure comparability. All experiments execute on identical
hardware, and each challenge is run in an isolated environment
to prevent cross-contamination. Memory state is reset between
challenges to evaluate single-engagement performance, and
browser-based verification is performed using a consistent,
headless Chromium configuration.

E. Evaluation Metrics

We assess AWE along three principal dimensions: ef-
fectiveness, efficiency, and cost. Effectiveness is measured
using overall and per-category solve rates, as well as the
number of challenges uniquely solved by AWE or MAPTA.
Efficiency metrics include time-to-solve and token usage per
successful exploit, capturing both responsiveness and resource
requirements. Cost metrics reflect total API expenditure and
amortized cost per solved challenge based on provider pricing.

F. Sucess Criteria

A challenge is considered solved only if AWE retrieves
the correct flag through a verified exploit. Partial progress
or vulnerability detection without successful exploitation is
not counted toward effectiveness metrics. This strict criterion
ensures that all reported successes correspond to practically
realizable attacks.

VI. EVALUATION

We evaluate AWE through a two-stage methodology. First,
we conduct controlled experiments on DVWA to isolate the
contribution of the underlying language model and justify our

choice of Claude Sonnet 4. Second, we benchmark AWE
against MAPTA, the most diverse publicly documented au-
tonomous penetration-testing system, on the full 104-challenge
XBOW benchmark.

This combination of controlled and large-scale testing pro-
vides a comprehensive view of AWE’s capabilities, limitations,
and efficiency.

A. Evaluation on DVWA

DVWA provides a stable, deterministic environment that
enables fine-grained comparison of LLM behavior independent
of broader architectural factors. We executed AWE with three
LLMs - Claude Sonnet 4, GPT-4o, and Gemini 2.0 Flash
using identical agent logic and verification procedures across
five representative vulnerability classes. Across all models,
reflected XSS served as a baseline of capability, with each
model achieving 100% success. Performance diverged sharply,
however, once contextual reasoning or iterative inference be-
came essential. Claude Sonnet 4 consistently outperformed
both GPT-4o and Gemini on stored XSS with CSP enforce-
ment and blind SQL injection the two categories that require
AWE’s most complex reasoning loops. For CSP-enforced
stored XSS, Claude and GPT-4o tied at 67% accuracy, whereas
Gemini dropped to 50%. For blind SQLi, Claude reached
70%, GPT-4o 60%, and Gemini 55%. These gaps reflect
model-dependent differences in temporal inference, semantic
constraint handling, and multi-step payload refinement. We
also examined iteration efficiency. Claude converged in 10–40
payload attempts, whereas GPT-4o required roughly 20%
more attempts and Gemini nearly 40% more. Given that
AWE performs many such cycles for complex vulnerability
classes, convergence stability directly affects time and cost.
Collectively, these DVWA results demonstrate that Claude
Sonnet 4 provides the best balance of accuracy and reasoning
efficiency. For this reason, all subsequent experiments use
Claude Sonnet 4 as AWE’s underlying model.

B. Evaluation on XBOW Benchmark

We now evaluate AWE on the XBOW benchmark, a suite
of 104 containerized web challenges spanning 26 vulnerability
categories, ranging from single-step injections to multi-stage
exploitation workflows. We use MAPTA as a baseline because
it represents the most capable peer system: it employs GPT-5
in extended-reasoning mode and executes arbitrary code within
a sandbox, enabling broad exploration beyond what AWE’s
specialized agents support.

Overall Performance: Table I presents aggregate results.
MAPTA attains a higher solve rate (76.9%) than AWE
(51.9%), reflecting the advantage of its general-purpose, un-
restricted sandbox execution. Despite this, AWE exhibits dra-
matic efficiency advantages. AWE’s average solve time is 53.1
seconds, which is much faster than MAPTA’s 190.8 seconds.
AWE’s total token usage is 1.12M compared to MAPTA’s
54.9M, a 98% reduction. Correspondingly, AWE’s total API
cost is $7.73 versus MAPTA’s $21.38, despite MAPTA run-
ning on a substantially more capable model. These efficiency

6

6 8 10 12 14 16 18
Number of Payload Attempts

0

2

4

6

8

10
Fr

eq
ue

nc
y

DVWA Low Difficulty
Avg: 10 attempts

10 15 20 25 30 35
Number of Payload Attempts

0

2

4

6

8

10

Fr
eq

ue
nc

y

DVWA Medium Difficulty
Avg: 20 attempts

25 30 35 40 45 50 55 60
Number of Payload Attempts

0

2

4

6

8

Fr
eq

ue
nc

y

DVWA Hard Difficulty
Avg: 40 attempts

8 10 12 14 16 18 20
Number of Payload Attempts

0

2

4

6

8

10

Fr
eq

ue
nc

y

XSSy Difficulty
Avg: 12 attempts

Payload Efficiency Analysis Across Difficulty Levels

Fig. 4. Average number of payload iterations required for successful ex-
ploitation by each model. Claude Sonnet 4 converges in the fewest attempts
(10–40), followed by GPT-4o with about 20% more iterations and Gemini 2.0
Flash with about 40% more. This demonstrates Claude’s superior efficiency
and reasoning stability.

TABLE II
COST AND TOKEN EFFICIENCY COMPARISON.

System Total Cost Cost/Solve Tokens Tokens/Solve

AWE $7.73 $0.113 1.12M 20.7K
MAPTA $21.38 $0.267 54.87M 685.9K

gains demonstrate that a specialization-oriented architecture
can deliver orders-of-magnitude improvements in operational
cost and latency.

C. Per Category Comparison

A finer-grained analysis reveals complementary strengths.
Table III summarizes category-wise results for the main vul-
nerability classes. AWE dominates on the injection classes it
explicitly targets, while MAPTA performs better on tasks re-
quiring multi-step reasoning or semantic exploration. Notably,
the two systems perform comparably on the classical injection
families - SQLi, blind SQLi, and XXE - where both models
reliably detect straightforward exploitation patterns.

AWE’s strongest result appears in XSS. Across 23 chal-
lenges, it solves 20, substantially surpassing MAPTA’s 13.
The XSS cases solved exclusively by AWE typically require
precise alignment between payload structure and the reflec-
tion context (e.g., attribute-versus- string contexts), adaptive
filter bypassing based on observed responses, and reason-
ing about multi-encoding transformations. MAPTA’s general-
purpose reasoning pipeline often failed to infer these context-
specific constraints.

AWE also performs well on blind SQL injection due to
its structured inference workflow and backend-specific timing
probes. Conversely, MAPTA substantially outperforms AWE
in categories involving long-horizon procedural reasoning,
such as privilege escalation, insecure deserialization, and busi-

TABLE III
CATEGORY-WISE PERFORMANCE COMPARISON ON XBOW FOR

INJECTION VULNERABLITIES.

Vulnerability Total MAPTA AWE

Count % Count %

XSS 23 13 57% 20 87%
Blind SQLi 3 1 33% 2 67%
SQLi 6 6 100% 6 100%
XXE 3 3 100% 3 100%
SSRF 3 3 100% 3 100%
SSTI 13 11 85% 7 54%
Command Injection 11 9 82% 5 45%

ness logic flaws. These tasks exceed the current capabilities
of AWE’s specialized-agent design.

D. Failure Modes

AWE failed on 50 challenges; MAPTA failed on 24; both
systems failed on 15. Categorizing AWE’s failures reveals
that one-third correspond to vulnerability classes intentionally
outside its scope (e.g., business logic, deserialization, crypto-
graphic misuse). Another quarter required multi-step reasoning
and stateful exploitation chains that AWE’s agents currently
cannot express. The remainder fall into authentication irregu-
larities, heavy filtering that resisted AWE’s mutation engine, or
extremely narrow exploitation windows (e.g., race conditions).

Challenges solved only by AWE primarily fall into XSS
and blind SQLi, reaffirming that its specialized exploitation
pipelines provide meaningful advantages even against a more
capable underlying model. Conversely, MAPTA-only solves
overwhelmingly cluster in categories requiring exploration,
multi-agent state management, and semantic reasoning.

E. Effeciency Analysis

AWE’s primary strength is efficiency. Over the full bench-
mark, AWE consumed 1.12M tokens compared to MAPTA’s
54.9M - an approximately 98% reduction. This efficiency
stems from two architectural choices: specialized agents avoid
the expansive search spaces characteristic of general-purpose
reasoning, and memory-guided heuristics significantly reduce
redundant attempts.

Time-to-solve exhibits a consistent 4–5× speedup across
percentiles. The median solve time for AWE is 35.7 seconds
compared to MAPTA’s 156.2 seconds. These gains demon-
strate that targeted vulnerability analysis can dramatically re-
duce overhead without sacrificing performance on its intended
classes.

F. Summary

Our evaluation highlights a clear architectural trade-off.
MAPTA achieves broader coverage due to its highly expres-
sive sandbox and frontier-grade model, enabling multi-step
exploitation across numerous vulnerability categories. AWE,
in contrast, shows that architectural specialization can outper-
form general-purpose reasoning by large margins on targeted
vulnerability classes, even when using a smaller model. The

7

efficiency benefits - 63% cost reduction, 4.4× faster solves,
and 98% fewer tokens suggest that specialized systems may
be preferable for high-frequency testing and integration into
continuous assessment pipelines. At the same time, AWE
and MAPTA demonstrate complementary strengths, pointing
toward hybrid designs that combine structured domain knowl-
edge with general-purpose semantic exploration.

VII. DISCUSSION

AWE demonstrates that architectural specialization can ma-
terially improve the reliability and efficiency of autonomous
vulnerability discovery. Its results highlight a broader ob-
servation about LLM-driven security testing: general-purpose
reasoning alone is insufficient for precise, context-dependent
exploitation, while carefully engineered task structure can
compensate for smaller model capacity and dramatically re-
duce computational overhead.

Across XSS and blind SQLi, AWE’s performance stems
from explicit modeling of the execution context reflection
positions, sanitization behavior, SQL operator boundaries and
conditioning payload generation on these abstractions. These
constraints reduce the search space an LLM must navigate
and yield more stable exploit synthesis than unconstrained
reasoning. That AWE outperforms MAPTA on these tasks,
despite using a substantially weaker model, suggests that
exploit success depends at least as much on architectural priors
as on raw model capability.

At the same time, our evaluation shows that specialization
does not replace broad autonomous reasoning. MAPTA’s ad-
vantages are pronounced on multi-step exploitation involving
authentication workflows, privilege escalation, and semantic
business logic. These tasks require long-horizon planning and
cross-endpoint state tracking capabilities deliberately outside
AWE’s design. The contrasting strengths of the two systems
indicate that effective autonomous penetration testing will
likely require hybrid architectures that combine structured vul-
nerability analysis with general-purpose exploratory reasoning.

AWE’s efficiency - 98% fewer tokens, 63% lower cost,
and 4.4× faster solves suggests immediate applicability in
continuous or high-frequency testing settings where general-
purpose agents remain prohibitively expensive. The ability to
embed domain knowledge into agent design also opens the
door for adaptive long-term learning: storing filter signatures,
past bypasses, and effective payload patterns may enable stable
performance across evolving application landscapes.

VIII. LIMITATIONS

AWE’s design introduces several boundaries that shape its
current applicability:

• Scope restrictions. The system targets injection-centric
vulnerabilities and does not attempt reasoning-heavy cat-
egories such as business logic, complex authentication
workflows, or protocol-level issues (e.g., request smug-
gling or desynchronization).

• Limited multi-step planning. AWE’s agents operate
in largely independent pipelines and do not coordi-
nate multi-stage exploitation sequences. Tasks requiring
chained discovery default credentials → IDOR → privi-
lege escalation fall outside its reach.

• Reliance on heuristic abstractions. While effective,
AWE’s context and filter models encode assumptions
about server behavior and sanitization patterns. Highly
idiosyncratic frameworks or obfuscated sinks may inval-
idate these abstractions.

• LLM sensitivity. Although Claude Sonnet 4 performed
best in our analysis, model-dependent reasoning variabil-
ity remains a systemic constraint; shifts in model behavior
or pricing may affect long-term stability.

IX. CONCLUSION

This work introduces AWE, a specialized multi-agent sys-
tem that rethinks how LLMs can support autonomous web
exploitation. By embedding domain knowledge into the archi-
tecture rather than relying solely on free-form reasoning, AWE
achieves high accuracy on targeted vulnerability classes and
delivers large efficiency gains over a state-of-the-art general-
purpose system. The contrast with MAPTA underscores a
central insight: precision exploitation benefits from structure,
while broad coverage benefits from flexibility.

A natural direction forward is the integration of these
paradigms combining specialized agents that capture the se-
mantics of injection vulnerabilities with higher-level agents
capable of planning multi-step attacks. Such hybrid approaches
may enable autonomous penetration testing systems that are
both scalable and semantically capable, bringing fully auto-
mated web security analysis closer to practical reality.

REFERENCES

[1] OWASP Foundation, “OWASP Top 10.” Available:
https://owasp.org/Top10/. Accessed: Aug. 21, 2025.

[2] PortSwigger, “Burp Suite Web Vulnerability Scanner.” Available:
https://portswigger.net/burp. Accessed: Aug. 21, 2025.

[3] OWASP Foundation, “OWASP Zed Attack Proxy (ZAP).” Available:
https://www.zaproxy.org/. Accessed: Aug. 21, 2025.

[4] ProjectDiscovery, “Nuclei: Fast and Customizable Vulnerability Scan-
ner.” Available: https://github.com/projectdiscovery/nuclei. Accessed:
Aug. 21, 2025.

[5] D. Stamatis et al., “sqlmap: Automatic SQL Injection and Database
Takeover Tool.” Available: https://sqlmap.org/. Accessed: Aug. 21, 2025.

[6] Positive Technologies, “Web application vulnerabilities in 2020–2021.”
Available: https://global.ptsecurity.com/en/research/analytics/web-
vulnerabilities-2020-2021/. Accessed: Aug. 21, 2025.

[7] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: An LLM-empowered
automatic penetration testing tool,” arXiv:2308.06782, 2023. Available:
https://arxiv.org/abs/2308.06782.

[8] B. Wu, G. Chen, K. Chen, X. Shang, J. Han, Y. He, W. Zhang,
and N. Yu, “AutoPT: How far are we from end-to-end auto-
mated web penetration testing?,” arXiv:2411.01236, 2024. Available:
https://arxiv.org/abs/2411.01236.

[9] J. W. Stokes, A. Swaminathan, J. Xu, G. McDonald, X. Bai, D. Marshall,
S. Wang, and Z. Li, “AutoAttacker: A large language model guided
system to implement automatic cyber-attacks,” arXiv:2403.01038, 2024.
Available: https://arxiv.org/abs/2403.01038.

[10] Q. Wang, G. Yang, J. Wang, M. Li, Z. Chang, Y. Huang, and Z. Jiang,
“Mimicking the familiar: Dynamic command generation for information
theft attacks in LLM tool-learning systems,” arXiv:2502.11358, 2025.
Available: https://arxiv.org/abs/2502.11358.

8

[11] V. Mayoral-Vilches, L. J. Navarrete-Lozano, M. Sanz-Gómez, L. Salas
Espejo, M. Crespo-Álvarez, F. Oca-Gonzalez, F. Balassone, A. Glera-
Picón, U. Ayucar-Carbajo, J. A. Ruiz-Alcalde, S. Rass, M. Pinzger, and
E. Gil-Uriarte, “CAI: An open, bug bounty-ready cybersecurity AI,”
arXiv:2504.06017, 2025. Available: https://arxiv.org/abs/2504.06017.

[12] I. David and A. Gervais, “Multi-agent penetration testing
AI for the web,” arXiv:2508.20816, 2025. Available:
https://arxiv.org/abs/2508.20816.

[13] R. Dewhurst, “Damn Vulnerable Web Application (DVWA),” 2025.
Available: https://github.com/digininja/DVWA. Accessed: Aug. 21,
2025.

[14] XBOW Engineering, “XBOW Validation Benchmarks.” Available:
https://github.com/xbow-engineering/validation-benchmarks. Accessed:
Dec. 1, 2024.

9

