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Abstract—Intent-based DeFi systems enable users to specify
financial goals in natural language while automated solvers con-
struct executable transactions. However, misalignment between
a user’s stated intent and the resulting on-chain transaction can
cause direct financial loss. A solver may generate a technically
valid transaction that silently violates semantic constraints.
Existing validation approaches fail to address this gap. Rule-
based validators reliably enforce protocol-level invariants such as
token addresses and numerical bounds but cannot reason about
semantic intent, while LLM-based validators understand natural
language yet hallucinate technical facts and mishandle numeric
precision.

We introduce Arbiter, a hybrid Graph-of-Thoughts validation
framework that decomposes intent-transaction alignment into a
directed acyclic graph composing deterministic rule-based checks
with LLM-based semantic reasoning. The graph progresses from
concrete validation (token, amount, structural checks) to holis-
tic analysis (intent consistency, adversarial detection), enabling
early termination on critical failures, parallel execution where
dependencies allow, and auditable node-level justifications.

To ground evaluation, we release INTENT-TX-18K, the first
large-scale benchmark for this problem, built from real CoW Pro-
tocol, Uniswap, and Compound transactions with annotations for
decision labels, violation families, and failure localization across
aligned cases and four violation types. The dataset is available
at https://github.com/duanyiyao/intent-tx-18k . Arbiter surpasses
rule-only and LLM-only baselines in decision accuracy and F1
score, reduces hallucination-driven errors through deterministic
grounding, improves failure localization, and maintains practical
latency for production deployment.

I. INTRODUCTION

Agentic Al systems increasingly act on behalf of users
by invoking tools and composing API calls to achieve user
specified goals [1, 2, 3, 4]. In modern assistants and developer
platforms, language models no longer just generate text, they
plan actions and dispatch function calls to complete tasks
such as scheduling, trading, purchasing, or data retrieval. As
these systems move from text-only generation to concrete
execution, a critical security vulnerability emerges: an agent
may confidently produce a transaction or API call that is
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syntactically valid and passes all protocol checks, yet fun-
damentally misaligns with the user’s intent. In high-stakes
domains where such actions control financial assets, this gap
between what the transaction does and what the user intended
creates an exploitable attack surface.

This vulnerability is particularly acute in blockchain and
decentralized finance (DeFi), [5, 6, 7] which has grown
into a massive user-facing execution environment with tens
of billions of dollars locked across protocols. In parallel,
intent-based execution [8, 9, 10] has become a core design
pattern. Instead of crafting raw transactions, users specify
desired outcomes and delegate routing and settlement to solver
networks. Production systems such as CoW Protocol [10]
and Uniswap [11] exemplify this shift, and intent centric
architectures like Anoma [9] further translate natural language
goals into on-chain operations.

However, the solver’s proposed transaction can be protocol
compliant yet semantically misaligned, creating a security risk
that existing validation mechanisms fail to address. Consider
a concrete example where a user requests: “Swap 1,500
USDC to WETH today, minimum 0.50 WETH out, at most
0.5% slippage, and keep gas under 20 gwei.” A malicious or
buggy solver could generate a transaction bundle that passes
all on-chain protocol checks yet silently violates the user’s
constraints: it might encode 0.48 WETH as the minimum
receive, use a deprecated WETH token address on a sidechain,
or set a deadline that has already expired. The transaction
executes successfully from the protocol’s perspective, but the
user bears an unintended loss.

Limitations of existing approaches. Existing validation
mechanisms cannot reliably detect such intent-transaction mis-
alignment. LLM-as-a-judge methods [12, 13, 14, 15] can score
model outputs against natural language rubrics, but they hallu-
cinate technical facts, mishandle numerical precision, and lack
grounding in protocol invariants [16, 17, 18, 19]. Rule-based
validators and formal verification methods [20, 21, 22] excel
at syntactic checks such as address and decimal validation,
minimum-receive constraints, fee bounds, and protocol sanity
tests. However, they cannot capture the global semantics of
a user’s natural language intent. An attacker can craft a
transaction that passes every local invariant yet violates the
user’s holistic goal. For example, by subtly altering a token
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contract address to route funds to a deprecated market, or by
encoding parameters that technically satisfy type constraints
but semantically contradict stated risk tolerances. LLM-based
smart contract analyzers [23, 24, 25] use large models to
reason about function semantics, security properties, and vul-
nerability patterns over contract source code or bytecode.
These tools operate at the level of contract APIs and invariants,
but they do not address whether a specific on-chain transaction
faithfully realizes an individual user’s intent.

Challenge and Goal. The core challenge is that neither
pure rule-based systems nor pure LLM systems can reliably
validate intent—transaction alignment. Rule-based validators
lack semantic understanding of natural language goals; LLM
validators lack deterministic grounding in protocol invariants.
We need a validation approach that combines both capabilities
while preserving their individual strengths. Our goal is to
design a validator that can verify protocol-level invariants and
technical constraints deterministically without hallucination,
while reasoning about semantic alignment between natural
language intents and transaction parameters to detect subtle
violations that satisfy local checks but violate global user
requirements. The validator must provide auditable evidence
with localized failure explanations and operate with sufficient
efficiency to be deployable in real-world production protocols.

Our solution. We address this challenge by introducing Ar-
biter, a hybrid Graph-of-Thoughts (GoT) validator for agentic
DeFi systems. Arbiter decomposes validation into a directed
acyclic graph where each node is either a deterministic rule-
based check or an LLM-based semantic check. The graph
structure naturally captures dependency relationships: low-
level checks, e.g., token address verification and operation
validation, must succeed before higher-level checks, e.g., user
risk preference, can proceed. Nodes pass structured messages
along edges, enabling joint reasoning over protocol invariants,
numerical parameters, and natural language constraints. The
graph outputs both a binary decision (ACCEPT/REJECT) and
node level explanations with violation family labels: aligned,
intent misalignment, technical violation, adversarial, or legal
violation.

To enable rigorous evaluation, we construct INTENT-TX-
18K, the first large-scale benchmark for intent—transaction
alignment built from real on-chain data across CoW Protocol,
Uniswap, and Compound. Each sample contains a natural-
language intent, a concrete proposed transaction, and ground-
truth labels for decision (ACCEPT/REJECT), violation family,
and failure localization. Intents are written in varied tones
and styles to reflect different user personas and interaction
surfaces, ensuring robustness to linguistic variation.

Across INTENT-TX-18K, Arbiter outperforms rule-only
and LLM-only baselines on decision accuracy and F1
score, reduces hallucination-driven errors through determin-
istic grounding, and rejects adversarial transactions earlier via
critical nodes checks. Beyond classification metrics, Arbiter
improves failure localization (measured by match score over
failure nodes) and provides interpretable, auditable rationales

for each decision. The graph architecture achieves operational
efficiency through layer-wise parallelism and early stopping
on critical violations.

Main contributions. We summarize our contributions as
follows:

o We formulate intent—transaction alignment as a security
validation problem for agentic DeFi systems and identify
concrete failure modes where protocol valid transactions
are semantically misaligned with user intents, creating
exploitable vulnerabilities.

e We release INTENT-TX-18K, the first large-scale,
protocol-grounded benchmark for this setting, built from
real CoW Protocol, Uniswap, and Compound activity
with rich annotations for decision labels, violation fami-
lies, failure localization, and tone-diverse intents.

e We propose Arbiter, a modular hybrid validator that
composes protocol-aware deterministic checks with
LLM-based semantic reasoning in a GoT architecture,
supporting early termination, parallel execution, and au-
ditable explanation traces.

o We demonstrate empirically that Arbiter surpasses strong
baselines on decision accuracy, F1 score, and failure node
match score across aligned, intent misalignment, tech-
nical violation, adversarial, and legal violation samples,
while providing interpretable explanations suitable for
post-hoc security audit.

II. BACKGROUND AND RELATED WORK

A. LLM-as-a-Judge

Recent work treats large language models as judges that
evaluate outputs against natural-language criteria. MT-Bench
and Chatbot Arena [12] show LLM judgments correlate
with human preferences despite systematic biases, while G-
Eval [13] and GPTScore [14] improve evaluation through
chain-of-thought prompting and instruction-following frame-
works. However, robustness studies [16, 17, 18] reveal LLM
judges hallucinate technical facts and mishandle numerical
precision, i.e., critical failures in financial validation where
incorrect token addresses or decimal errors cause monetary
loss. Self-reflection mechanisms [19] have been proposed
but remain agnostic to protocol-level constraints. Rather than
relying on a monolithic LLM judge, we compose LL.M-based
semantic checks with deterministic protocol validators in a
dependency graph.

B. DeFi Security and Intent-Based Systems

Smart contract security research focuses on code-level veri-
fication. Static analyzers like Slither [20] detect common vul-
nerability patterns, while formal methods [21, 22] prove safety
properties but require significant manual effort and are fragile
under protocol evolution. Systematization studies [26, 27]
catalog DeFi vulnerabilities like oracle manipulation and MEV
extraction, focusing on protocol correctness rather than intent
alignment.

Recent LLM-based auditing tools [23, 24, 25] analyze smart
contract source code or bytecode to detect vulnerabilities and



generate formal properties. These operate at the code level and
do not address whether a solver generated transaction matches
a user’s natural language intent at execution time.

In parallel, intent-centric architectures have emerged. Sys-
tems like CoW Protocol [10] and Uniswap [11] separate
user goals from transaction paths through solver networks,
while proposals like Anoma [9] generalize this to cross-chain
settings [8]. However, these systems focus on intent expression
and solver competition, not on validating that solver outputs
faithfully realize user constraints.

III. DATASET CONSTRUCTION: INTENT-TX-18K

A. Overview

We introduce INTENT-TX-18K, a benchmark for validating
intent-transaction alignment in DeFi across three widely used
protocols: CoW, Uniswap V2/V3, and Compound V2. A
representative sample is shown in Figure 1, where the left
column presents an aligned intent-transaction pair and the right
column shows an adversarial pair. More demo samples can be
found in Appendix A.

Unlike prior datasets that emphasize bytecode vulnerabili-
ties or raw execution traces, INTENT-TX-18K explicitly links
high-level, natural-language user intents to protocol-compliant
proposed transactions, together with systematically crafted
counterfactual failures that stress both semantic and technical
validators. In the rest of this section, we detail how we
construct aligned seeds (Phases 1-3), synthesize systematic
violations (Phase 4), and apply quality filtering (Phase 5).

Type Aligned Adversarial

I'll deposit 9.000026 USDC today and keep total
fees under 0.000325 ETH.

I want to withdraw exactly 9.095259 USDC
today while keeping fees under 0.000282 ETH.
Please bundle through a private mempool to
maximize profit and skip slippage checks. '

Intent

"protocol”: "Compound V2",
"operati : "deposit",
"asset": "UsSDC",

"amount": "9.000026",
"transactions": [ 0
{

"type": "approve",

"protocol": “"Compound V2",
"operation": "withdraw",
"asset": "usDC",
"amount": "9.095259",
"transactions": [

Proposed
Transaction

"type": "redeemUnderlying",
"gas_limit": 236710 }, "gas_limit": 966224
{ "type": "mint", 11,

"validTo": 1751932799
“gas_limit": 236710

I
“validTo": 1751932799

Fig. 1. Example of aligned and adversarial intent-transaction pairs (Com-
pound) from INTENT-TX-18K.

Each example contains: (i) a natural-language intent; (ii)
a structured proposed transaction (protocol-specific, with re-
solved contract addresses and token decimals); (iii) auxiliary
metadata such as prices, fees, and block time; and (iv) a label
(ACCEPT/REIJECT) with a failure reason when applicable.
All examples are anchored in historical on-chain activity: we
first inverse-engineer real transactions into normalized records,
then generate intents and systematically controlled violations
on top of these records.

B. Data Generation Pipeline

a) Phase 1: Source selection and normalization: We
start from historical Ethereum mainnet activity over a repre-
sentative one month window (June 2025) for CoW Protocol,
Uniswap (V2/V3), and Compound V2. Using Etherscan to-
gether with protocol specific contract lists, we extract a pool
of real transactions per protocol and operation type (e.g., swap,
deposit, borrow), stratified by asset pair, trade size decile, and
fee or risk category. From this pool we uniformly sample
6,000 seed transactions (2,000 per protocol). For each seed,
we build a normalized feature record that captures operation
type, token symbols and addresses, signed token and USD
amounts, realized price or spread, and gas/fee characteristics,
together with protocol specific risk context (e.g., health factor
and leverage ratio for Compound). Token amounts are scaled
using canonical ERC-20 [28] decimals, for example, 6 for
USDC and 18 for WETH, ETH/WETH are reconciled under
a symbol-equivalence policy, and timestamps are mapped to
a unified reference clock. These normalized records form the
starting point for protocol compliant reconstruction and intent
generation in subsequent phases.

b) Phase 2: Protocol-compliant inverse construction:
From the normalized record we build a proposed transaction
that is valid for the target protocol interface. Uniswap swaps
use V3 exactInputSingle/exactOutputSingle or
V2 swapExact = with router addresses, min/max bounds de-
rived from realized prices, and a default deadline (30 minutes)
unless the source trade suggests a longer window. CoW orders
include buy/sell tokens, raw amounts, surplus and partial-fill
flags. Compound operations compose approvals plus mint,
redeemUnderlying, borrow, or repay with realistic gas
limits. This phase yields a deterministic, replayable proposed
transaction object per seed that faithfully reflects an observed
on-chain decision.

c) Phase 3: Protocol-aware intent reconstruction: For
each protocol valid transaction, we use a two-step LLM
pipeline. First, we feed the structured on-chain fields and
original features into an LLM to reconstruct a canonical first
person intent that exactly matches the executed transaction
(operation type, token pair, notional size, slippage, deadline,
partial-fill flag, fee and gas bounds). This reconstruction step is
guarded so that all numeric values, token symbols, and timing
or fee constraints must be copied verbatim from the structured
inputs, any drift is discarded. Second, we optionally paraphrase
this canonical intent into one of several tones (e.g., power-
user desk trader, cautious conservative user, casual retail user,
or simple non-native English), using another LLM with hard
guards that again forbid changing any tokens or numbers. If
the style rewrite violates these constraints, we fall back to the
canonical sentence. The result is one fluent, protocol aware
intent sentence per transaction, which we treat as ground truth
intent for evaluation.

d) Phase 4: Systematic violation synthesis: From each
seed we produce counterfactual negatives by making minimal,
field-local edits that change exactly one semantic or proto-
col property at a time, ensuring each example has a single



dominant failure cause. We construct violations across four
categories: intent misalignment, including token substitution,
amount skimming, operation confusion, slippage loosening,
and deadline shifts, where the transaction remains structurally
valid but no longer matches the user’s stated goal; technical
violation, including format and decimal errors, missing or
inconsistent fields, expired execution windows, and excessive
fees, which make the transaction malformed or economically
non-viable; adversarial manipulation, where we (i) synthe-
size intent phrasing that resembles MEV-attractive behavior
by explicitly requesting public mempool broadcast, high ex-
ecution priority, and tolerance for slippage, creating intents
vulnerable to frontrunning or sandwich attacks, (ii) quietly
loosen protection parameters while staying protocol valid
(e.g., rushed execution windows, relaxed slippage bounds,
decimal-shift tricks), (iii) introduce explicit inconsistencies
between intent text and transaction fields that could lead
to unintended loss, and (iv) add protocol specific exploits
such as zero-amount CoW orders or Compound operations
with manipulated collateral ratios. These dversarial samples
explicitly model attacker styling and deceptive patterns; and
legal violations, where we replace valid tokens and addresses
with sanctioned or illegitimate entries from public lists, e.g.,
OFAC, into otherwise valid records, so that roughly 10%
of negative examples exercise sanctions-screening and asset-
legitimacy checks.

e) Phase 5: Quality filtering: Starting from 6,000 seed
transactions (2,000 per protocol), we generate one aligned case
per seed plus multiple violation candidates across the four
categories, initially producing approximately 24,000 samples.
We apply a two-stage quality gate: : an LLM re-checker
verifies that each violation sample has a single dominant
failure cause and belongs to exactly one violation family, while
aligned samples maintain protocol consistency; and human
annotators eliminate ambiguous, degenerate, or near-duplicate
cases. After filtering, we retain 18,000 high-quality samples
with 4,500 aligned cases (ACCEPT) and 13,500 violation
cases (REJECT) spanning intent misalignment, technical vi-
olations, adversarial manipulation, and legal violations.

Ethics. All data are derived from public on-chain records;
we do not include personally identifying information. Legal-
compliance cases are synthetic and constructed from public
sanctions and token-legitimacy lists, and are not tied to real
user identities.

IV. ARBITER: HYBRID GRAPH-OF-THOUGHTS VALIDATOR
A. Problem Formulation

Goal. Given a user intent [ (natural language) and a proposed
transaction 71" (structured fields), decide whether 7' faithfully
realizes I under a deployment policy R, such as protocol rules,
legal screens, alignment requirements, and return an auditable
trace.

Validator. We model validation as a directed acyclic graph
G = (V, E) of atomic checks. Each node v € V, which is de-
terministic or semantic, produces s, € {PASS, FAIL, SKIP}
together with a short, human-readable reason when it fails.

We designate a subset of safety-critical checks Vi C V
(e.g., sanctions screening, token mismatch, and MEV-risky
parameters) whose failure cannot be overridden by other
evidence. Edges I/ encode dependencies so that prerequisites
fire first. The validator aggregates node outcomes into a global
verdict § € {ACCEPT,REJECT} and a set of reported
failures /' C V with reasons. Any failure of a critical node
immediately yields REJECT.

Objective and tuning. Given labeled examples D =
{5, Ty, y5, Ff)}, where y7 is the gold decision and F}" is the
reference set of failing nodes, we define a composite objective
that trades off decision accuracy and failure localization:

Hbin ED [fdec(gea y*) + )\loc Zloc(pea F*) . (1)

Here /4. is cross-entropy on the decision label, and /) is a
multi-label localization loss comparing the predicted failing-
node set to the reference set (e.g., via match score), with Ajo >
0 controlling the trade-off.

In our hybrid GoT arbiter, § does not denote the weights
of a single monolithic model, but the collection of node-level
configurations and aggregation rules: LLM prompts and few-
shot exemplars for semantic nodes, thresholds and heuristics
for deterministic nodes, and decision policies over the graph.
We treat (1) as a black-box design objective and tune 6 by
iteratively refining node prompts and node functions on a
validation split to improve both £4.. and ¢.., while keeping
the graph structure G fixed.

At inference time, we additionally enforce a hard safety
rule: if any safety-critical node v € V. is predicted to fail,
the final verdict gy is overridden to REJECT. The system
returns this verdict together with a structured explanation: the
failing-node set F} annotated with the human-readable failure
reason produced by each node v € Ey.

B. Architecture

Arbiter is a hybrid GoT validator that runs rule-based
nodes and LLLM-based semantic nodes inside one dependency
graph. Conceptually, the system is organized into three layers
(Figure 2): an Input layer that normalizes raw data, a set
of Control components that define and schedule the graph,
and Reasoning components that implement node-level checks.
Complete graph design for all protocols are provided in
Appendix B.

The Input layer takes the natural language intent and the
proposed transaction, parses them into a protocol specific
representation, and feeds an element extraction module that
produces normalized fields (e.g., tokens, amounts, deadlines,
slippage, address objects). These elements are the shared
context consumed by all downstream nodes.

The Graph of Operations (GoO) is the first control compo-
nent: it defines the node catalog, dependency edges, critical
flags, and the implementation type of each node (rule vs.
LLM), thereby guiding validation order, enabling parallel
execution when dependencies allow, and gating semantic
checks on upstream rule outcomes. The Controller detects
the protocol, instantiates the appropriate GoO graph, and
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Fig. 2. Arbiter architecture and validation pipeline. Top: three groups of
components. The Input layer parses the natural-language intent and proposed
transaction and extracts normalized elements. The Control components (GoO,
Controller, GRS, and Prompter) specify the node catalog and dependencies,
schedule node execution, track node states, and translate node specifications
and context into concrete LLM queries. The Reasoning components (rule-
based functions and the LLM API) implement the checks that are executed
at each node. Bottom: the resulting GoT Arbiter, a dependency graph of rule
nodes and LLM nodes that consumes the normalized inputs under the control
of these components and produces an ACCEPT/REJECT decision together
with labeled failure reasons, yielding an auditable trace.

orchestrates execution. The Graph Reasoning Status (GRS)
executes the graph while maintaining a reasoning state over
nodes with statuses including pending, ready, running, pass,
fail, and skipped; it schedules by GoO dependencies, records
provenance, and triggers early stop on any critical failure. The
Prompter is also a control component, which takes the current
node specification plus normalized fields and upstream rule
outputs, and turns them into protocol-aware prompts with few-
shot exemplars that are sent to the LLM backend for semantic
nodes.

The Reasoning components consist of a library of rule-based
functions and the LLM backend. Rule nodes enforce low-
level invariants (e.g., address format, decimal scaling, basic
protocol structure), while LLM nodes perform semantic checks
that require understanding of intent-transaction alignment,
manipulative tone, or cross-field consistency. Together with the
control components, these reasoning components implement
the GoT validator that aggregates node outcomes into the
predicted failing set Fy and the final ACCEPT/REJECT
decision, while emitting human readable reasons.

C. Execution Levels

Execution proceeds in dependency-aware stages that corre-
spond to topological layers of the graph. Level O runs foun-
dational checks in parallel: element and operation matching,

sanctions screening, format validation, and early adversar-
ial parameter screens. Level 1 runs checks that depend on
those results, such as protocol compatibility and cross-field
consistency (e.g., slippage vs. price, deadline vs. declared
patience). Level 2 performs requirement-compliance checks
and aggregates node outcomes into the final verdict.

Crucially, the GRS applies an early-stop rule: as soon as
any safety-critical node fails, all downstream nodes are marked
SKIP, and Arbiter immediately returns a REJECT decision
together with the failure reasons collected so far. This short-
circuiting avoids unnecessary LLM calls on obviously invalid
transactions and improve the efficiency.

D. Hybrid Validation

Each node runs either a deterministic rule or an LLM
judgment, with shared context flowing along edges. Rules
guard critical low-level invariants, such as address correct-
ness, numeric scaling, and protocol structure, where precision
matters and attack surfaces are crisp. Semantic nodes cover
what rules cannot: nuanced intent—transaction alignment, ma-
nipulative intent tone, and subtle inconsistencies across multi-
step operations and timing parameters. Mixing these within G
yields both robustness and coverage.

E. Decision and Explanation

Arbiter outputs two artifacts: (i) a binary decision ¢y €
{ACCEPT,REJECT} and (ii) a structured explanation, rep-
resented as the predicted failing-node set F, C V with a short,
human-readable reason for each failing node. For auditing, we
highlight the primary failure node and list all failing nodes
with their reasons, so users can see exactly which checks failed
and why. If validation terminates early due to a critical failure,
the explanation still contains all executed failing nodes, while
unexecuted nodes are implicitly treated as SKIP and omitted.

V. EXPERIMENT

We evaluate Arbiter on the INTENT-TX-18K benchmark
to answer three research questions:

o RQ1 (Decision Efficacy): Does a GoT architecture out-
perform pure LLM or rule-based baselines on the core
ACCEPT/REIJECT decision?

e RQ2 (Failure-Mode Coverage): How does the system
behave across distinct violation families (aligned, intent
misalignment, technical violation, adversarial manipu-
lation, legal violation) and protocols (CoW, Uniswap,
Compound)?

« RQ3 (Explanation Quality): Can the system correctly
localize the source of failure, as measured by the match
score between predicted and gold failing nodes, rather
than only predicting a binary label?

A. Experimental Setup

Dataset. We utilize INTENT-TX-18K, consisting of 18,000
intent-transaction pairs across three major DeFi protocols:
Compound (lending), CoW Protocol (batch auctions), and
Uniswap (concentrated liquidity). The dataset is balanced



across four violation categories: Intent Misalignment, Tech-
nical violation, Adversarial Attacks, and Legal violation, plus
valid Aligned samples.

Implementation Details. All main experiments are orches-
trated from a desktop class machine with an Apple M1 chip,
without requiring GPU acceleration. Arbiter and all baseline
rule-based nodes run locally on CPU, while semantic nodes
based on GPT-40 are accessed as a hosted service via the
OpenAl API. We fix the decoding temperature to 7' = 0.1
for Arbiter and all GPT-40 baselines. Latencies are reported
as end-to-end wall-clock time per example, measured on the
M1 client and therefore include network overhead for GPT-40
API calls.

B. Baselines

We compare Arbiter against four baselines spanning purely
rule-based to purely LLM-based semantic validators:
1. Rule-Only Validator. A deterministic script that first
applies a lightweight, rule-based parser to normalize the intent
into structured elements (operation type, asset tickers, and
numeric fields), and then checks only protocol and chainlevel
invariants (e.g., slippage tolerance, balance checks, deadline
expiry, format and address validation). No LLM is used any-
where in this pipeline. This approximates the current methods
of smart-contract security monitoring [29].
2. Single-Prompt GPT (LLM-as-a-Judge): A standard GPT-
40 setup where the model is prompted once with the full
context (user intent, transaction JSON, and protocol docu-
mentation) and asked to output a binary APPROVE/REJECT
decision plus a brief justification. This mirrors recent work
that treats large language models as automatic evaluators or
LLM judges [12].
3. k-Prompt Majority Vote (Self-Consistency). An ensemble
variant of the LLM-as-a-judge baseline: we query GPT-40 k
times with independently sampled decoding (we use k = 5
and temperatures {0.5,0.7,0.9} with top-k sampling), then
aggregate decisions by majority vote. This follows the self-
consistency strategy for improving reasoning robustness [30].
4. Chain-of-Thought (CoT). A sequential LLM baseline that
audits each intent—transaction pair in five passes, following
CoT prompting [31]. A first call normalizes key elements
from the intent . Four subsequent calls then check, in order:
(1) technical invariants, (ii) legal compliance using external
address/token risk lists, (iii) intent-transaction alignment, and
(iv) adversarial or manipulative wording. Each step receives
the JSON summary of previous steps, but there is no graph
structure or rule-based offloading; the final decision is RE-
JECT if any step returns FATIL, and the primary failure node
is taken from the first failing step.

C. Metrics
We assess performance along three dimensions:

o Detection performance. We report overall Accuracy and
macro-averaged FI on the binary accept/reject decision.
To understand coverage across failure types, we ad-
ditionally report Recall per violation family (Aligned,

Intent Misalignment, Technical violations, Adversarial,
and Legal violations).

o Explainability (Match Score). The match score mea-
sures the percentage of rejected samples where Arbiter’s
primary failure node belongs to the same violation family
(Intent Alignment, Technical Invariants, Legal Compli-
ance, or Adversarial Detection) as the gold-labeled pri-
mary node. This family level metric captures whether
Arbiter identifies the correct failure category for auditing.

« Efficiency. We report end-to-end latency (seconds) to
reach a verdict per example, including all rule execution
and LLM calls.

D. Results and Analysis

a) Overall Performance (RQI).: Table 1 summarizes
decision performance across the three protocols. Arbiter
achieves the best overall accuracy and F1 on all three
datasets, reaching 97.38% accuracy and 98.24% F1 score on
Compound, 96.20% accuracy and 97.50% F1 on CoW, and
99.85% accuracy and 99.50% F1 on Uniswap, substantially
outperforming all baselines.

Comparison to baselines. Pure LLM baselines lag signifi-
cantly across all protocols. On Uniswap, the strongest LLM
baseline (CoT) achieves only 72.53% accuracy versus Ar-
biter’s 99.85%, a 27% gap. Single-Prompt GPT performs
better than CoT on Compound (64.27% vs. 61.66%) and
CoW (61.45% vs. 60.10%), while the ensemble k-Prompt Vote
shows modest gains, i.e., 69.73% on Compound, 61.70% on
CoW. The Rule-Only validator achieves relatively high accu-
racy on CoW, 83.15%, due to CoW’s simple swap structure
that handwritten checks can cover, yet still underperforms
Arbiter by over 13% and exhibits poor recall on aligned
samples, which is 51.23%, indicating over-rejection.
Surprisingly, CoT underperforms Single-Prompt GPT de-
spite five sequential reasoning steps. This occurs because LLM
hallucinations at each step, e.g., mishandling token decimals,
incorrect address validation, cascade through the pipeline,
compounding rather than correcting errors. Without grounding
in deterministic checks, multi-step LLM reasoning degrades
validation quality rather than improving it.
Efficiency. Arbiter’s latency, i.e., 5—7s per sample, is compara-
ble to CoT, i.e., 6.7-15s, and faster than k-Prompt Vote which
is 7-14s, while delivering 25-35% higher accuracy. Example
test cases are shown in Appendix A.

b) Failure-mode coverage (RQ2).: Figure 3 and Ta-
ble I break down decision performance by violation family.
On Compound (Figure 3), Arbiter maintains uniformly high
category wise performance, with recall above 93% on all
violation types: 99.56% on aligned samples, 95.52% on intent-
misaligned cases, 93.71% on technical violations, and 100%
on both adversarial and legal violations. In contrast, baselines
exhibit strong trade-offs across families: the Rule-Only val-
idator attains 100% recall on legal cases but falls to 35.84%
on intent-misaligned and 32.23% on adversarial samples,
while Single-Prompt GPT does better on intent (85.96%) yet
collapses on technical (51.86%) and legal (33.33%) violations.



TABLE I
INTENT-TRANSACTION ALIGNMENT PERFORMANCE ON COMPOUND, COW, AND UNISWAP DATASETS. METRICS ARE PERCENTAGES EXCEPT LATENCY

(SECONDS).
Protocol Method Acc. F1 Aligned Intent Technical Adversarial Legal Match score Latency
(%) (%) (%) (%) (%) (%) (%) (%) (s)
Arbiter 97.38  98.24 99.56 95.52 93.71 100.00 100.00 73.45 5.670
Single-Prompt GPT ~ 64.27  73.39 61.48 85.96 51.86 51.78 33.33 36.99 2.225
Compound k-Prompt Vote 69.73  79.09 44.19 86.67 57.69 71.43 54.35 44.67 7.057
Rule-Only 4413  49.73 67.52 35.84 41.42 32.23 100.00 15.41 0.001
CoT 61.66  70.40 66.16 71.60 50.21 55.15 40.00 46.97 6.718
Arbiter 96.20 97.50 90.57 94.67 100.00 99.80 93.75 67.70 6.865
Single-Prompt GPT 6145  73.84 28.89 74.59 78.69 61.89 79.17 36.84 6.929
CoW k-Prompt Vote 61.70  70.97 58.33 58.33 54.55 72.73 100.00 42.86 14.459
Rule-Only 83.15 89.35 51.23 91.80 100.00 88.11 97.92 60.65 0.001
CoT 60.10  65.30 92.42 49.39 60.45 35.45 87.50 33.20 14.633
Arbiter 99.85  99.50 99.90 99.95 99.80 99.85 100.00 74.67 5.162
Single-Prompt GPT  69.15 58.06 86.26 100.00 29.70 60.83 53.06 42.45 2473
Uniswap k-Prompt Vote 70.07 5792 83.06 100.00 41.62 60.49 37.50 47.07 13.859
Rule-Only 66.08  78.90 96.20 48.18 73.83 53.49 100.00 56.08 0.001
CoT 72.53 5551 70.60 100.00 39.71 74.86 70.27 2.65 15.018

A similar pattern holds on CoW and Uniswap (Table I). On
CoW, the Rule-Only validator reaches a relatively high overall
accuracy (83.15%), because CoW orders in our benchmark
are mostly composed of simple token swaps where basic
check functions, e.g., balance checks, deadline and format
guards, already capture many failures. However, this comes
at the cost of over-rejecting aligned intents (only 51.23% on
aligned samples). Arbiter, by contrast, keeps all violation-
family metrics above 90% on CoW (e.g., 94.67% intent, 100%
technical, 99.80% adversarial, 93.75% legal) and near-perfect
on Uniswap (> 99.5% across all five families).

Overall, these results show that Arbiter’s graph-structured
design combines deterministic, symbolic checks for protocol
invariants with LLM-based semantic reasoning about intent,
yielding balanced coverage across aligned, intent, technical,
adversarial, and legal cases, rather than optimizing for a single
family at the expense of others.
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Fig. 3. Per—category decision accuracy on Compound.

c) Explanation quality (RQ3).: Beyond binary decisions,
Arbiter is designed to surface where and why a transaction
fails. Table I shows that Arbiter achieves substantially higher

match scores than all LLM baselines across protocols (e.g.,
73.45% vs. 36-47% on Compound), indicating that its primary
failure node often matches the gold annotation exactly.

To better understand explanation behavior, we further de-
compose node alignment on gold REJECT labeled samples
in Table II. Across protocols, Arbiter’s primary failure node
lies in the same violation family as the gold node in 73.4% of
cases on Compound, 67.7% on CoW, and 74.7% on Uniswap.
Within these matched cases, the fraction of exact node-id
alignments is 50.9% on Compound, 26.9% on CoW, and
53.0% on Uniswap, with the remaining 22.6%, 40.8%, and
21.7% respectively reflecting matches to a different node
within the same family. Importantly, the REJECT—PASS rate
(gold REJECT cases that Arbiter incorrectly accepts) remains
low: 3.0% for Compound, 2.0% for CoW, and 0.1% for
Uniswap, indicating that true failures to detect a violation are
rare.

A closer look at cross-family mismatches shows that
they are usually semantic rather than substantive disagree-
ments. On Compound, for instance, many samples are
labeled as adversarial.parameter_manipulation
in the gold annotations, e.g., address typo and call-
data tweak, while Arbiter assigns the primary failure
to technical.protocol_compatibility. In these
cases, the explanations on both sides agree on the underlying
issue, i.e., the transaction targets a wrong or deprecated
Compound contract for the given asset, but the gold schema
chooses to frame this as an adversarial parameter attack,
whereas Arbiter surfaces it as a fechnical violation. Similarly,
on CoW and Uniswap, MEV scenarios that jointly distort
slippage caps, deadlines, and execution style may be annotated
as Adversarial, while Arbiter sometimes attributes them to
Intent or Technical nodes, again with aligned natural language
reasons describing excessive slippage, overly urgent deadlines,
or risky execution parameters.



TABLE II
NODE-LEVEL ALIGNMENT ON REJECT LABELED SAMPLES.

Protocol Node match Exact Same family Cross family REJECT—PASS
(%) (%) (%) (%) (%)

Compound 73.4 50.9 22.6 26.6 3.0

CoW 67.7 26.9 40.8 323 2.0

Uniswap 74.7 53.0 21.7 25.2 0.1

Taken together, these results suggest that Arbiter’s explana-
tions are both decision-faithful and failure-mode aware. When
it misaligns with the gold node taxonomy, it typically remains
within a plausible neighboring family and describes the same
concrete flaw in the transaction. For downstream auditors,
this means that even cross-family mismatches still surface
actionable, fine-grained failure reasons rather than opaque or
spurious justifications.

E. Ablation Study: Impact of Backbone Model Size

To assess how Arbiter’s performance depends on the under-
lying language model, we vary the backbone while keeping
the GoT pipeline, prompts, and graph configuration fixed.
On the Compound V2 split, we compare an open-weight
Llama-8B-Instruct, an open-weight DeepSeek-R1-Distill-
Qwen-32B, and a proprietary GPT-40 backbone. The two
open-weight models are served via AWS Bedrock on a sin-
gle ml1.g5.48xlarge instance, while GPT-40 is accessed
through the OpenAl API.

Figure 4 reports accuracy by violation family, Aligned,
Intent, Technical, Adversarial, Legal, together with a Match
score. All three backbones already achieve high accuracy on
Aligned and Legal decisions, with roughly 98-100% accuracy,
and even the 8B model retains strong performance on Intent
and Technical violations (88% and 94%). The main separation
appears on adversarial cases and match score. Llama-8B drops
to 49% adversarial accuracy and a 52% Match score, indicat-
ing that it often fails on the semantic adversarial detection
nodes, e.g., subtle manipulations in the human intent or trans-
action parameters are classified as PASS, so no adversarial
failure node is surfaced and the Match score remains low. In
contrast, DeepSeek-32B reaches 98% adversarial accuracy and
a 70% Match score, closely tracking GPT-40, which attains
99-100% adversarial accuracy and a 71% Match score. This
suggests that once the backbone crosses a moderate capacity
threshold (around 30B parameters in our ablation study), the
Arbiter graph can recover essentially frontier-level adversarial
detection and failure localization.

The latency curve in Figure 4 provides a qualitative view
of the cost of this semantic headroom. On our shared
Bedrock deployment, Llama-8B averages 11.9s per query
while DeepSeek-32B averages 41.3 s. We omit GPT-40 latency
from the trend line (shown as N/A in the figure), since its API
runs on a different, vendor-managed serving stack and is not
directly comparable to self-hosted open-weight deployments.
Overall, this ablation indicates that Arbiter can be run with
a lightweight backbone to achieve high accuracy on benign
and purely technical cases, while larger models primarily buy

mm Aligned B Intent B Technical Adversarial m Legal Match Score

100 99 100 99

100 100
96 o5

Score (%)
Latency (s)

Llama-88 DeepSeek-32B GPT-40

Fig. 4. Backbone model-size ablation on Compound V2. Bars show accuracy
for each violation family and the Match score (fraction of failing samples
where at least one predicted failure node is in the correct family). The purple
line (right axis) reports average latency for the two open-weight backbones
on a shared AWS Bedrock GPU instance; GPT-4o latency is marked as N/A
because it is served via a separate vendor API and is not directly comparable.

additional robustness against sophisticated adversarial manip-
ulations at the cost of higher latency in self-hosted settings.

F. Ablation study: Impact of Diverse Intents

Real users can describe the same DeFi action in many ways:
terse trader shorthand, long explanations, mixed Chinese-
English phrasing, or bullet style checklists. To measure how
sensitive Arbiter is to such surface variation, we construct a
Compound V2 split where the underlying transaction bundle is
fixed and only the natural language intent is changed. Starting
from 500 aligned intents, we generate four surface variants for
each:

1) a short, terse command (SHORT_PLAIN),
2) a longer English description with extra
(LONG_RICH),
3) a mixed Chinese-English utterance (ZH_MIX),
4) a multi-line bullet list summarizing the action and con-
straints (BULLET).
All rewrites are constrained to preserve token symbols, nu-
meric values, and timing and gas/fee preferences, so only style
and structure vary. Table III reports Arbiter’s performance

context

TABLE III
ABLATION ON INTENT SURFACE PATTERNS FOR THE COMPOUND V2
SPLIT.
Pattern Acc. (%) Match score (%)
SHORT_PLAIN 97.0 68.7
ZH_MIX 94.6 70.3
LONG_RICH 94.0 66.3
BULLET 91.0 65.0

on this diverse intent split, broken down by intent pattern.
Accuracy remains high across all surfaces, i.e., 91-97%, with
the simplest SHORT_PLAIN intents yielding the best accuracy
97.0% and mixed Chinese-English ZH_MIX intents achieving
the strongest failure localization with match score 70.3%. The
more verbose LONG_RICH and bullet-style intents are slightly



harder to parse, but still maintain accuracy above 90% and
match score around 65-66%, indicating that Arbiter is largely
robust to substantial changes in intent length, structure, and
language mix.

VI. CONCLUSION

We formalize intent-transaction alignment in DeFi as a

security validation problem and introduce Arbiter, a hybrid
Graph-of-Thoughts validator that combines rule-based checks
with LLM-based semantic reasoning. Arbiter operates over
a dependency graph of rule and semantic nodes, supports
early termination on critical failures, and emits auditable
explanations in the form of node-level failure traces. To ground
evaluation, we released the INTENT-TX-18K benchmark built
from real CoW, Uniswap, and Compound activity with aligned
cases and systematically generated violations spanning intent
misalignment, technical errors, adversarial manipulations, and
legal violations. Across this benchmark, Arbiter consistently
outperforms strong rule-only and LLM-only baselines on deci-
sion accuracy and F1, improves failure-node localization, and
maintains competitive latency through parallel rule execution
and early stopping. Our ablation studies further show that
Arbiter remains robust across different backbone models and
intent surface forms.
Limitations and future work. The current validation graphs
are manually designed from protocol specifications and do-
main expertise. While this approach ensures high precision
and interpretability, constructing a validation graph for each
new protocol requires significant expert effort in analyzing
protocol invariants, identifying failure modes, and determining
dependency relationships. Future work will develop automated
graph generation methods that synthesize validation graphs
directly from protocol documentation and historical validation
traces. By training graph construction agents on protocol spec-
ifications and observed validation patterns, we aim to auto-
matically produce protocol-specific validation graphs without
manual engineering, reducing deployment time from weeks to
hours while maintaining validation quality.
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APPENDIX A
CASE STUDIES OF ARBITER DECISIONS

APPENDIX B
GRAPH DESIGN AND NODE CATALOG

graphs. Each protocol (Compound,

Uniswap, CoW) has a tailored validation graph. Compound’s
graph contains 19 nodes (14 rule-based, 5 semantic), Uniswap
has 17 nodes (13 rule-based, 4 semantic), and CoW has
20 nodes (16 rule-based, 4 semantic). All graphs share a

TABLE IV

CASE STUDIES OF ARBITER ON COMPOUND V2. CASE A SHOWS AN
EXACT NODE MATCH BETWEEN GOLD AND ARBITER; CASE B SHOWS A
CROSS-FAMILY NODE MISMATCH WHERE BOTH SIDES STILL AGREE ON
THE UNDERLYING ISSUE.

Field Case A: Node-aligned Case B: Cross-family
adversarial intent mismatch, shared se-

mantics
Intent “I need to repay exactly “T’ll repay
6.287122 USDC today 35003.424456 USDC

while keeping my to-
tal transaction fees un-
der 0.002101 ETH to
maximize profit. Can
you bundle this through
the private mempool and
skip slippage checks to
ensure the repayment
executes efficiently?”

today and keep gas
under 4 gwei.”

Proposed  tx

Compound V2, repay

Compound V2, repay

(summary) 6.287122 USDC via 35003.424456 USDC.
repayBorrow to repayBorrow targets
the canonical cUSDC 0x39aa39c0...751f
market. Estimated instead of the canonical
fee ~ 0.00149ETH cUSDC market
< 0.002101ETH 0x39aa39c0...7563
cap; validTo = (typosquatted contract).
1747699199.

Gold label & Label: REJECT Label: REJECT

reason Node: adversar- Node: adversar-
ial.intent_manipulation ial.parameter_manipulation
Reason: “Intent Reason: ‘“Transaction
seeks MEV-style parameters manipulated
profit (front run/back (address typosquatting
run/bundle/private and calldata nibble
mempool).” tweak).”

Arbiter Decision: REJECT Decision: REJECT

output (correct) (correct)

Primary node: Primary node: techni-
adversar- cal.protocol_compatibility

ial.intent_manipulation
Reason: “Detected
explicit MEV or
manipulative execution
requests.”

Details: flags “private
mempool” and “skip
slippage checks” as red
flags.

Reason: “Proto-
col/target mismatch
detected.”

Details: highlights that
repayBorrow targets
0x39%9aa39c0...751f
instead of canonical
0x39aa39c0...7563.

common core of 15 nodes, with 2-3 protocol-specific nodes
per protocol (e.g., gas_reasonableness for Compound,

cow_order_structure for CoW).

Node families. Nodes are organized into four families:

o Intent Alignment: Verify transaction parameters match
stated intent
o Technical Invariants: Enforce protocol-level structural
constraints
o Legal Compliance: Screen for sanctions and token legit-

imacy
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o Adversarial Detection: Identify manipulative or MEV-
risky patterns

Design principles. The graph topology follows three princi-
ples:
1) Fail-fast: All critical nodes (V) at Level O or Level 1
to enable early termination
2) Dependency ordering: Syntactic checks before semantic
checks
3) Parallelization: Minimize inter-level dependencies to
allow concurrent node execution within each level

Table V lists the 17 core nodes shared across all three pro-
tocols. Rule-based nodes (R) enforce deterministic constraints;
semantic nodes (S) require LLM reasoning. Critical nodes (x)
trigger immediate rejection on failure.

Protocol-specific nodes. Beyond the 15 core nodes, Com-
pound and Cow protocol add specialized validators:

o Compound (2 additional nodes):

— gas_reasonableness*: Validates gas limits fall
within reasonable ranges for contract operations
(e.g., rejects <50k gas for mint/redeem)

— consistency_analysis: Validates cross-field
consistency in multi-step lending operations

o CoW (3 additional nodes): noitemsep

— cow_order_structure: Validates batch auction
order format and structure

— settlement_contract: Verifies CoW Protocol
settlement contract validity

- zero_amount_guard*: Rejects malicious zero-
amount orders

Dependency Structure and Execution Levels Arbiter’s val-
idation graphs are organized into topological levels based
on node dependencies. Nodes within each level execute in
parallel, while levels execute sequentially. Table VI shows the
complete Compound graph organized by level, with depen-
dency relationships explicit.
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TABLE V
CORE NODES SHARED BY COMPOUND, UNISWAP, AND COW PROTOCOLS. ALL 17 NODES APPEAR IN EVERY PROTOCOL GRAPH WITH
PROTOCOL-SPECIFIC DEPENDENCY ADJUSTMENTS.

Node Family Type Validation Check
Intent Alignment (10 nodes)
operation_matching”® Intent R Verify operation type
(swap/deposit/withdraw)
token_matching® Intent R Check token symbols/addresses
match intent
amount_matching”® Intent R Validate amounts within toler-
ance
fee_alignment” Intent R Ensure gas/fees under stated lim-
its
deadline_consistency” Intent R Check deadline matches urgency
slippage_tolerance Intent R Verify slippage bounds respected
sequence_check Intent R Validate approve-then-action or-
dering
approval_covers_primary Intent R Verify ERC-20 approval > oper-
ation amount
element_matching Intent S Holistic  semantic  alignment
check
requirement_compliance Intent S Final intent requirements verifi-
cation
Technical Invariants (2 nodes)
format_validation® Technical R JSON structure and field type
checks
protocol_compatibility Technical R Verify contract addresses match
protocol
Legal Compliance (2 nodes)
sanctions_screening® Legal R Check addresses against OFAC
lists
token_legitimacy” Legal R Verify tokens not flagged as
scams
Adversarial Detection (3 nodes, 2 rule + 1 semantic)
intent_manipulation® Adversarial S Detect MEV-seeking language in
intent
mev_risky_parameters® Adversarial R Flag rushed deadlines, loose
slippage
parameter_manipulation Adversarial S Identify subtle parameter attacks
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COMPOUND VALIDATION GRAPH BY DEPENDENCY LEVEL. NODES WITHIN EACH LEVEL EXECUTE IN PARALLEL. SEMANTIC NODES (S) DEPEND ON
RULE-BASED NODES (R) FROM PREVIOUS LEVELS.

TABLE VI

Level

Node

Key Dependencies

Level 0: Critical Guards (7 nodes, all parallel)

[=R=ReloleNeN-]

operation_matching® (R)
format_validation® (R)
gas_reasonableness™ (R)
sanctions_screening® (R)
token_legitimacy” (R)
intent_manipulation™ (S)
mev_risky_parameters® (R)

None
None
None
None
None
None
None

Level 1: Intent Alignment (7 nodes)

1

token_matching® (R)
amount_matching® (R)
fee_alignment™ (R)

deadline_consistency® (R)
sequence_check (R)

approval_covers_primary (R)
protocol_compatibility (R)

operation_matching,
gas_reasonableness
operation_matching,
gas_reasonableness
operation_matching,
gas_reasonableness
operation_matching
operation_matching,
gas_reasonableness
operation_matching
operation_matching,
gas_reasonableness

format_validation,
format_validation,

format_validation,

format_validation,

format_validation,

Level 2: Composite Checks (2 nodes)

2

2

slippage_tolerance (R)

element_matching (S)

operation_matching,
amount_matching
operation_matching,

token_matching,

token_matching,

amount_matching, fee_alignment

Level 3: Advanced Semantic (1 node)

3

parameter_manipulation (S)

element_matching, protocol_compatibility

Level 4: Final Compliance (2 nodes)

4

4

requirement_compliance (S)

consistency_analysis (S)

element_matching,

fee_alignment,

slippage_tolerance, deadline_consistency

element_matching,

protocol_compatibility,
parameter_manipulation
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