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Abstract—Atrtificial intelligence systems introduce complex pri-
vacy risks throughout their lifecycle, especially when processing
sensitive or high-dimensional data. Beyond the seven traditional
privacy threat categories defined by the LINDDUN framework,
Al systems are also exposed to model-centric privacy attacks such
as membership inference and model inversion, which LINDDUN
does not cover. To address both classical LINDDUN threats
and additional Al-driven privacy attacks, PriMod4Al introduces
a hybrid privacy threat modeling approach that unifies two
structured knowledge sources, a LINDDUN knowledge base rep-
resenting the established taxonomy, and a model-centric privacy
attack knowledge base capturing threats outside LINDDUN.
These knowledge bases are embedded into a vector database
for semantic retrieval and combined with system level metadata
derived from Data Flow Diagram. PriMod4Al uses retrieval-
augmented and Data Flow specific prompt generation to guide
large language models (LLMs) in identifying, explaining, and
categorizing privacy threats across lifecycle stages. The frame-
work produces justified and taxonomy-grounded threat assess-
ments that integrate both classical and Al-driven perspectives.
Evaluation on two Al systems indicates that PriMod4AlI provides
broad coverage of classical privacy categories while additionally
identifying model-centric privacy threats. The framework pro-
duces consistent, knowledge-grounded outputs across LLMs, as
reflected in agreement scores in the observed range.

Index Terms—Threat modeling, Retrieval-augmented genera-
tion (RAG), Data flow diagrams (DFDs), Large language models
(LLMs).

I. INTRODUCTION

Al systems are increasingly deployed across domains such
as healthcare, mobility, finance, and public services, where
they process sensitive personal data including biometric iden-
tifiers, behavioral patterns, and contextual information. Such
processing introduces substantial privacy risks, and any misuse
or leakage may violate core regulatory principles such as
lawfulness, data minimization, and purpose limitation defined
in Article 5 of the GDPR. Traditional privacy threat modeling
frameworks, such as LINDDUN (Linking, Identifying, Non-
repudiation, Detecting, Data Disclosure, Unawareness, Non-
compliance) [1f], provide a well established taxonomy for
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identifying data-centric privacy risks in conventional software
systems. However, they do not fully account for the dynamic,
iterative, and model-driven nature of modern Al pipelines.
Beyond these, modern Al systems introduce a distinct class
of model-centric privacy attacks rooted in the behavior of
trained models. Such attacks exploit memorization, overfitting,
or unintended information leakage from learned representa-
tions [2], [3[]. For example, a face-recognition model may
inadvertently memorize training images, enabling membership
inference [4], or reveal sensitive attributes through model
inversion [5]. Beyond these, Al models are also vulnerable to
attribute inference attacks that predict hidden personal traits,
training data extraction attacks [2], [6]] that recover specific
records from generative and encoder—decoder architectures [7]],
shadow-model reconstruction techniques that approximate pri-
vate datasets, and embedding-space leakage where vector rep-
resentations disclose identifying or sensitive information [8]],
[9]. These risks manifest across the entire Al lifecycle, from
data collection and preprocessing to training, deployment,
inference, and continuous monitoring [10] as illustrated in

Figure [1]
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Fig. 1. A six-phase Al development lifecycle encompassing data collection,
model building, training, deployment, inference, and continuous monitoring.
The diagram maps distinct privacy risks (shown in red boxes) to their
corresponding stages within the lifecycle.

Conventional privacy threat modeling techniques struggle to
capture this dual landscape: LINDDUN-based approaches ef-
fectively identify classical privacy threats but overlook model-
centric vulnerabilities, while automated extensions such as
PILLAR [11] remain limited to the classical LINDDUN
taxonomy and lack lifecycle awareness. This gap underscores
the need for privacy threat-modeling methods that can jointly


https://orcid.org/0009-0008-8400-6368
https://orcid.org/0009-0004-0986-3504
https://orcid.org/0009-0004-2114-1360
https://orcid.org/0000-0001-7303-113X
https://orcid.org/0000-0001-6206-2969

reason about both system-level and model-level privacy risks
in Al systems.

The identified limitation underscores the need of lifecycle-
aware methodology which are capable of addressing both
traditional LINDDUN threats and emerging model-centric pri-
vacy attacks. PriMod4 Al fulfills this need through a lifecycle-
aware threat-identification pipeline that combines structured
privacy knowledge bases with system metadata and employs
LLM-driven retrieval-augmented generation to automate and
explain privacy threat analysis. Motivated by this, we investi-
gate the following research questions:

+ RQ1: To what extent, PriMod4Al can extend traditional
privacy threat-modeling approaches by jointly identifying
data-centric LINDDUN threats and model-centric privacy
attacks across the Al lifecycle?

e RQ2: How effectively can retrieval-augmented and
knowledge-grounded LLM reasoning achieve reliable,
consistent, and explainable privacy threat identification
across multiple Al domains?

Motivated by these research questions, our work offers the
following contributions:

1) Dual structured privacy knowledge bases: We develop
two complementary knowledge sources: a LINDDUN
knowledge base capturing the classical seven LINDDUN
privacy threat categories, and a model-centric privacy
attack knowledge base representing Al-driven threats
such as membership inference, model inversion, and
training data extraction.

2) Data Flow-Specific Retrieval-Augmented Prompting:
We embed both knowledge bases into a vector database
for semantic retrieval and combine the retrieved knowl-
edge with system-level metadata derived from DFD.
This enables PriMod4AlI to generate context-rich, DF-
specific prompts that provide grounded and lifecycle-
aware threat reasoning.

3) Explainable LLM-based threat identification: Lever-
aging open-source LLMs, PriMod4Al produces struc-
tured threat assessments that integrate LINDDUN cat-
egories, Al-lifecycle stages, and explicit knowledge-
source attribution, improving explainability and inter-
pretability.

II. RELATED WORKS
A. Privacy Threat Modeling

LINDDUN is a well known established privacy threat-
modeling methodology for software systems, offering a struc-
tured taxonomy of seven privacy threat categories [12]. Al-
though several extensions, such as domain-specific refine-
ments [13]], improve its applicability, LINDDUN remains pri-
marily design-time oriented and does not address privacy risks
that emerge during model training, inference, or deployment.
PLOT4AI provides an 86-threat catalog for Al technolo-
gies [[14], yet its questionnaire-driven elicitation lacks lifecycle
alignment and systematic mapping to system architecture.
PILLAR automates LINDDUN analysis using LLMs [11]],

demonstrating the feasibility of LLM-assisted privacy threat
modeling, but its reasoning is constrained to the classical
taxonomy and does not incorporate model-centric threats or
retrieval mechanisms. Together, these works establish the
foundations for structured privacy analysis in software and
data-processing systems.

B. Al-Specific Privacy Risks and Taxonomies

Al systems introduce privacy threats that extend beyond tra-
ditional data-flow centric frameworks. Membership inference
attacks can reveal whether an individual’s data was used during
training [15]], while model inversion techniques reconstruct
sensitive attributes from model outputs [16]. Recent work
further shows that large generative models can memorize and
leak training data or personally identifiable information [2],
underscoring risks that arise not only during data collection
but also during training and deployment. Lifecycle analyses
highlight the recurrence of privacy risks across evolving Al
pipelines [2], [17]. Broader security oriented taxonomies such
as ENISA’s Al Threat Landscape and NIST’s AI RMF [18]],
[19] catalog assets and attack surfaces, but provide limited
granularity for privacy-specific risks and do not link them to
LINDDUN or lifecycle stages. These findings highlight that
modern Al systems introduce privacy threats that needs to be
addressed.

C. Automated Threat Identification with LLMs

Recent research applies LLMs for automating security
and privacy analysis. ThreatGPT [20] and ThreatModeling-
LLM [21] use generative prompting and fine-tuning to au-
tomate STRIDE/NIST-based threat elicitation, while Aus-
pex [22] and ThreatFinderAl [23] incorporate expert knowl-
edge or knowledge graphs for asset-centric reasoning. How-
ever, these systems primarily target cybersecurity threats and
lack explicit privacy taxonomies or lifecycle grounding. PIL-
LAR [11] automates LINDDUN classification but relies solely
on prompt instructions and cannot identify model-centric
attacks such as inversion or membership inference. These
approaches demonstrate the growing potential of LLMs for
automating aspects of privacy and security assessment

D. Retrieval-Augmented Generation in Threat Modeling

Retrieval-Augmented Generation (RAG) has emerged as
a powerful technique to enhance LLM-based analysis by
grounding outputs in external knowledge sources, reducing
hallucinations and improving factual accuracy [24]. In threat
modeling, recent frameworks leverage RAG to automate elic-
itation processes. For instance, ThreatLens [25] integrates
RAG with LLMs to generate threat models and test plans
for hardware security verification, drawing from vulnerability
databases. Similarly, a study shows that integrating retrieval
mechanisms with generative models strengthens their ability
to handle complex, information-dense queries. Such retrieval-
augmented systems have been shown to provide more re-
liable and context-aware outputs, making them well-suited
for domains where precision and up-to-date knowledge are



essential [26]. MoRSE [27], a cybersecurity chatbot, uses a
mixture of RAG systems to provide comprehensive knowledge
coverage across threat landscapes. These studies show that
RAG can enhance domain reasoning in complex threat land-
scapes by grounding LLMs in structured external knowledge.

Although existing research provides valuable foundations
across classical privacy taxonomies, Al-specific threat analy-
ses, LLM-assisted modeling, and RAG-based reasoning, these
efforts remain fragmented and insufficient for lifecycle-aware
privacy-by-design. LINDDUN and its refinements focus on
design-time, data-centric harms and do not capture threats
emerging during model training or inference. Al-oriented tax-
onomies offer detailed accounts of model-centric attacks but
lack integration with DFD semantics or privacy engineering
workflows. Automated approaches such as PILLAR are the
closest to our objectives, yet they remain limited to the
classical LINDDUN space and cannot identify model-centric
risks such as membership inference, inversion, or training-
data leakage. Thus, they only partially align with the require-
ments of modern Al systems. Likewise, RAG-based threat
modeling frameworks primarily address general cybersecurity
vulnerabilities rather than privacy-specific harms, and do not
incorporate structured knowledge bases or lifecycle mappings.
These limitations collectively motivate PriMod4AlI, which
uniquely combines retrieval-augmented prompting, dual struc-
tured knowledge bases (LINDDUN and Al-specific threats),
and DFD-level metadata to enable lifecycle-aware, explain-
able, and domain-consistent privacy threat identification across
both classical and Al-specific threat spaces.

III. PROPOSED METHOD

This section outlines the methodological framework devel-
oped for automated, lifecycle-aware privacy threat modeling
in Al systems. The overall architecture of the proposed
framework is illustrated in Figure [2] By integrating domain
knowledge and system-level representations, the framework
enables contextual, LLM-driven threat reasoning. The method-
ology comprises five phases, beginning with Knowledge Base
Construction, followed by DFD Representation of the Al
System, Retrieval-Augmented Prompt Generation, and LLM
Integration and Inference, and concluding with Structured
Output Generation.

A. Knowledge Base Construction

The first phase of the proposed framework involves con-
structing two complementary knowledge bases to enable au-
tomated, context-aware privacy threat identification.

LINDDUN Knowledge Base (LINDDUN_KB): The of-
ficial LINDDUN taxonomy, originally provided as a set of
hierarchical PDF descriptions, was fully converted into a
structured JSON-based knowledge base covering all seven
LINDDUN privacy threat categories and their subnodes. Using
NLP-assisted extraction followed by manual refinement, we
preserved the complete hierarchy, including examples, criteria,
impacts, and additional context for each threat node. Repre-
senting the taxonomy in JSON offers two key advantages: (i) it

enables consistent and fine-grained retrieval of relevant threat
information during prompt construction, and (ii) it allows
LLMs to consume semantically structured content rather than
raw PDF text, reducing ambiguity and improving grounding.
Al Model-Centric Privacy Attack Knowledge Base
(AI_Privacy_KB): To extend coverage beyond traditional
software privacy domains, an Al_Privacy_KB was developed
through a structured, transparent literature review tailored to
privacy risks unique to Al and ML. The review covered publi-
cations from 2016-2025 and examined peer-reviewed venues
(IEEE Xplore, ACM Digital Library, SpringerLink) alongside
screened preprints from arXiv to capture emerging threats not
yet formally published. Searches used keyword combinations
of Al privacy, model inversion, membership inference, privacy
attacks, and threat modeling, with inclusion criteria requiring
that a source (i) described Al-lifecycle-specific privacy risks,
(i1) articulated mitigation, governance, or regulatory impli-
cations (e.g., GDPR, AI Act), and (iii) provided adequate
technical detail for structured threat encoding. After filtering
and deduplication, about 30 unique peer-reviewed and regula-
tory sources remained. Each identified threat was reviewed,
mapped to its closest LINDDUN dimension, and encoded
in a JSON schema capturing its name, description,
attack vector, ATl lifecycle stage, and source
reference, ensuring comprehensive and taxonomy-aligned
coverage. The complete list of reviewed sources and corre-
sponding threat mappings is provided in Appendix-D]

B. DFD Representation of the Al System

To support structured privacy reasoning within the Pri-
Mod4AlI pipeline, the graphical DFD of the target Al system
is first transformed into comprehensive textual and semantic
representation. This process begins with metadata extraction,
where system documentation, component descriptions, and
signal specifications are analyzed to identify functional units,
their interconnections, and the type and sensitivity of data
exchanged between them. The analysis produces a detailed
inventory of: (i) external entities, (ii) processes and processing
functions, (iii) data stores, (iv) data flows, and (v) trust
boundaries delineating privacy-relevant domains.

data_flows": [
{

id": "DF1",

source': E1l",

destination": "P1",

data_type": "camera images/video",

sensitive_info": "visual scene data",

description”: "Transfer of camera data to sensor

fusion.",

lifecycle_stage": "Data Collection to Data

Processing

}
]

Listing 1. JSON representation of Data Flow DF1 (Camera — Sensor Fusion),
illustrating how PriMod4Al encodes data-flow metadata including source,
destination, data type, sensitivity, and lifecycle stage for downstream threat-
analysis prompting and knowledge retrieval.

Each data flow is then formalized into a JSON-based rep-
resentation that captures its source, destination, data type,
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Fig. 2. Architecture of the proposed PriMod4Al framework for automated privacy threat modeling in Al systems. The framework integrates a LINDDUN
+ Al-specific privacy threat knowledge base, DFD representation of Al systems, and open-source LLMs for prompt-based threat identification, producing

structured JSON outputs.

sensitivity classification, functional description, and associated
Al lifecycle stage. An example snippet for Data Flow DF1
(Camera — Sensor Fusion), taken from the Al system used
in our experimentation and illustrated in Figure ] is provided
in Listing [T} These structured representations form the basis
for generating DF-specific prompts and for retrieving relevant
knowledge during later stages of the PriMod4Al pipeline.

C. Retrieval-Augmented Prompt Generation

This phase generates a structured prompt for each data flow
by combining the JSON-encoded DFD metadata with relevant
knowledge retrieved from the LINDDUN knowledge base and
Al_Privacy_KB. A base prompt template is then assembled
with this information, producing DF-specific prompts that
blend system context with taxonomy-grounded and model-
centric threat knowledge.

a) Base Prompt Template: The framework employs a
structured base prompt template that defines the LLM’s ana-
Iytic role, incorporates data-flow metadata, and specifies the re-
quired JSON output schema. An abbreviated version is shown
in Listing [2] the full template is included in Appendix-A]

Analyze the following Data Flow {df_id} and identify
privacy threats using retrieved knowledge from
the LINDDUN_KB and AI_Privacy_KB.

### Data Flow:

{source} -> {destination}, {data_type}, {
sensitive_info}

### Knowledge Context:

{context}

Return a JSON object with: name, justification,

linddun_category,
ai_lifecycle_stage, and source.

Listing 2. Abbreviated base prompt template guiding LLM-driven privacy
threat identification. The template encodes analytic instructions, data-flow
metadata, and output schema constraints.

Serving as the foundation of PriMod4AI’s threat-
identification process, this template standardizes how system
metadata and retrieved knowledge are combined, ensuring
consistent, explainable, and reproducible outputs across all
data flows.

b) Per-DF Prompt Construction: For each data flow
(DF;), a composite prompt (FP;) is instantiated from
the base template by injecting DF-specific metadata
including id, source, destination, data_type,
sensitive_info, and lifecycle_stage into prede-
fined placeholders. This ensures that each prompt is precisely
aligned with the semantics of its corresponding data flow while
preserving a uniform structure across the pipeline.

Formally, given a base prompt Py and metadata set m;, the
composite prompt is defined as:

Pi = f(Po, mi), )

where f denotes the template-filling function.

After instantiation, each P, is enriched with retrieved
knowledge via RAG before being provided to the LLM.
This modular separation between the static template and DF-
specific instantiation improves scalability by allowing new
data flows to be analyzed without redesigning prompts while
also enhancing reproducibility, since each generated prompt
is deterministically constructed from explicit metadata and a
fixed template.

c) Retrieval-Augmented Generation: To provide factual
grounding and reduce hallucination, PriMod4Al integrates a
RAG pipeline that couples semantic retrieval with LLM-based
reasoning. Both the LINDDUN_KB and AI_Privacy_KB are
transformed into structured JSON and embedded as dense vec-
tors using the MiniLM-L6-v2 [28] model from the Sentence
Transformers family. The resulting embeddings are indexed



using FAISS [29] for efficient nearest-neighbor retrieval. To
maintain concept-level granularity, the knowledge bases are
segmented via a recursive text-splitting strategy, ensuring that
each node of the taxonomy remains independently retrievable.

For each instantiated prompt P;, the textual description
of the corresponding data flow denoted as d; and obtained
directly from the DFD metadata, is encoded into a query
vector ¢;. The retriever then selects the top-k (K = 7) most
semantically relevant knowledge fragments:

S; = top-k(R(q;, K)), 2

where K denotes the embedded knowledge corpus and R is
the retrieval function.

The retrieved fragment set S; is inserted into the prompt’s
<context> section, after which the remaining instruction
block of the base template is appended. Formally, the aug-
mented prompt is expressed as:

P, = assemble(P;, S;), 3)

where assemble denotes the template-aware integration of
(i) DF-specific metadata, (ii) retrieved knowledge, and (iii)
task instructions.

D. Open-Source LLM Integration

The next stage of the framework processes retrieval-
enhanced prompts using open-source LLMs for automated
privacy threat identification. To ensure transparency and re-
producibility, only openly available models were employed via
the O11lamaLLM interface. Two variants were used: GPT-0SS
(120B)[H optimized for structured reasoning, and LLaMA
3.1 (4 O5B)ﬂ offering enhanced contextual precision. Each
augmented prompt P, containing system metadata and re-
trieved knowledge fragments, is supplied to the selected model
for inference in schema-constrained JSSON mode, ensuring a
uniform output structure (df_id, identified_threats).
Decoding parameters (e.g., temperature, top-p) are fixed across
models to maintain comparability. This setup supports inter-
changeable inference and cross-model evaluation of reasoning
consistency, coverage, and reproducibility.

E. Structured Output Generation

The final stage produces a structured output summarizing all
identified privacy threats per DF. For each DF, the LLM returns
a standardized JSON record with threat names, LINDDUN
categories, Al lifecycle stages, and source references. As
shown in Listing [3} this uniform format supports consistency,
evaluation, and automated visualization, while enabling com-
parison and reproducibility across DFs. this uniform format
supports consistency, evaluation, and automated visualization,
while enabling comparison and reproducibility across DFs.

'0llama, “gpt-0ss,” Ollama Library. [Online]. Available:
https://ollama.com/library/gpt-oss. [Accessed: Dec. 3, 2025].
2A1 at Meta, Jul. 23, 2024. [Online]. Available:

https://ai.meta.com/blog/meta-1lama-3-1/. [Accessed: Dec. 3, 2025].

{

df_id DF5",

identified_threats":[ {
name Unencrypted Data Transfer",
Jjustification Sensitive biometric data

may be exposed if transferred without

encryption. ",
linddun_category

information",
ai_lifecycle_stage

Disclosure of

Inference/Storage",

source LINDDUN" 1},

{

name Model Inversion Attack",
justification Stored embeddings could

be exploited to reconstruct facial

traits.",
linddun_category

information",
ai_lifecycle_stage
source AI_PRIVACY_KB

Disclosure of

Inference",

11}

Listing 3. The structured JSON output for Data Flow 5 (DF5), derived from
Figure 3] is generated by LLaMA 3.1 within PRIMOD4AI and applies the
unified threat-encoding schema to an internal Al system flow.

F. Algorithmic Pipeline for Threat Identification

Algorithm 1 PriMod4Al: Retrieval-Augmented LLM-Based

Privacy Threat Identification

Require: LINDDUN_KB K, AI Privacy_ KB K4, DFD
JSON D, base prompt template P; embedding model
Memp; FAISS index V (initially empty); LLM Miwm;
retriever top-k (here k = 7).

Ensure: Result list R of zero or more JSON
objects of the form {"df_id": ...,
"identified_threats": [...]}.

R < [ ] {Initialize result list}

Build knowledge index:

Split £, and K4 into concept-level text chunks.

for each chunk c in K, UK 4 do

e + Memp(c)
Insert e into FAISS index V

end for

Load inputs:

Parse D into the set of data flows {DF;} and load the

base prompt template P.

10: for each data flow DF} in {DF}} do

11:  Extract DF metadata m; (source, destination, data_type,
sensitive_info, lifecycle_stage) and textual description
d;.

12:  Construct query vector Q; <— Memb(d;).

13:  Retrieve relevant fragments: S; < top-k(R(Q;,V)).

14:  Form composite prompt X; < assemble(P, m;, S;).

15:  Generate JSON output Y; <= Myim(X;).

16:  Validate Y; against the expected schema; optionally
apply repair or re-prompting if invalid.

17. Append Y; to R.

18: end for

19: Store results: Write R to outputs.
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IV. EXPERIMENTAL SETUP

This section describes the implementation setup and exper-
imental procedure used to validate PriMod4Al. Two cross-
domain Al-based systems, a Face Authentication System and
an Autonomous Driving System were selected due to their dis-
tinct privacy sensitivities and heterogeneous data modalities.
The implementation outlines how PriMod4Al was executed
end-to-end, detailing the experimental environment and com-
putational resources used during inference. Table [ summarizes
the complete environment configuration employed across all
experiments.

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION USED FOR IMPLEMENTING
AND EXECUTING PRIMOD4ALI.

Component Specification / Description

Host System Windows 11; Virtual Machine

CPU AMD Ryzen 5 5625U (VM configuration); 16 GB
RAM

GPU Hardware NVIDIA A100 80 GB PCle (MIG profile: 3g.40 GB)

Environment Python 3.11; 011lamaLLM inference interface

Model 1 LLaMA 3.1 (405B), open-source dense decoder
model

Model 2 GPT-OSS (120B), open-source LLM for structured
reasoning

Decoding Parameters  Temperature = 0.7; top-p = 0.9; max tokens = 1024

A. Use Cases

1) Al-based Face Authentication System: The first sys-
tem represents a typical biometric verification pipeline that
processes facial images, embeddings, and identity records.
The dataset and reference architecture were adapted from the
open-source PILLAR repositoryﬂ ensuring compatibility with
standard LINDDUN threat definitions. The DFD of the system
is shown in Figure [3]
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Fig. 3. DFD of the Al-based Face Authentication System, adapted from the
open-source PILLAR repository

The architecture consists of a camera (data source), prepro-
cessing and feature extraction modules, a biometric compari-
son component, and storage units including databases and ML

3PILLAR: LINDDUN Privacy Threat Modeling Using LLMs. [Online].
Available: https://github.com/stfbk/PILLAR (Accessed: Nov. 5, 2025).

models. Each data flow (DF1-DF7) was analyzed to capture
its source, destination, data type, sensitivity, and corresponding
Al lifecycle stage.

2) Autonomous Driving System: The second system repre-
sents a generalized autonomous driving architecture derived
from the government-funded JUST BETTER DATA (JBData)
research projecﬂ Due to the scale and complexity of the
original system, and to ensure confidentiality, the architecture
has been abstracted and generalized for experimental use.
While specific implementation details are omitted, the core
structural characteristics, sensor modalities, and representative
data flows are preserved to maintain realism and suitability for
privacy analysis.As shown in Figure [] the system integrates
multi-sensor perception, fusion modules, planning and control
components, and cloud-assisted synchronization processes.
The architecture comprises fourteen data flows (DF1-DF14)
spanning multiple Al lifecycle stages, providing a realistic and
comprehensive testbed for evaluating lifecycle-aware privacy
threat identification methods.
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Fig. 4. DFD of the autonomous driving system showing key processes, data
stores, and data flows (DF1-DF14).

V. EVALUATION

The evaluation assesses the performance and reliability
of PriMod4AlI using a two-layer structure, summarized in
Table [} The layered design reflects the dual nature of Pri-
Mod4Al’s outputs, which include both classical LINDDUN
threats and Al-driven, model-centric privacy attacks.

A. Layer A: Classical LINDDUN Threat Identification (Com-
parison with PILLAR)

In this evaluation layer, we assess PriMod4Al, imple-
mented using both the GPT-OSS and LLaMA 3.1 models
within the classical LINDDUN privacy-threat space for both
examined systems. Traditional LINDDUN modeling defines
seven canonical threat categories (Linkability, Identifiability,
Non-repudiation, Detectability, Disclosure of Information, Un-
awareness, and Non-compliance). To understand how Pri-
Mod4ALl aligns with this taxonomy, we compare its category-

4just better DATA: Effiziente und hochgenaue Datenerzeugung fiir
KI-Anwendungen im Bereich autonomes Fahren. [Online]. Available:
https://www.justbetterdata.de/konzept/ (Accessed: Nov. 5, 2025).



TABLE II
OVERVIEW OF EVALUATION LAYERS AND ASSOCIATED METRICS.

Layer Metrics Used

Layer A: Classical
LINDDUN Space

1) Category Coverage
2) PILLAR-Recall
3) Jaccard Similarity

Layer B: Cross-Model

Agreement (LINDDUN 1) Cohen’s k
+ AD . P,
« PABAK

2) Robustness Coefficient

level outputs against those produced by PILLAR, an LLM-
based tool that automates the original LINDDUN workflow.
PILLAR is not treated as a ground-truth baseline, but rather
as a point of comparison for classical LINDDUN reasoning.
The tool systematically generates analysis across all seven
LINDDUN categories for each data flow for LINDDUN Pro
method.

a) Experimental Setup for PILLAR: We executed PIL-
LAR using its official Streamlit web applicatiorE] with the
GPT-4 Turbo model (OpenAl API), temperature 0.7. The
application requires structured input describing the system,
data types, data transformations, actors, and data gover-
nance properties. For questions relating to data retention and
deletion, we used a standardized organizational data policy.
PILLAR then generated threats for all seven LINDDUN
categories for each data flow (DF), after which a human
analyst performed the relevance filtering step described above.
PriMod4AI (LLaMA 3.1) and PriMod4Al (GPT-OSS) were
evaluated against the filtered PILLAR results using the clas-
sical LINDDUN framework and the following metrics:

o Category Coverage (%) [30]:

Measures how many of the seven LINDDUN categories

are detected by a threat-identification model m (PILLAR

or PriMod4Al) for a specific data flow d in the system’s

DFD.

Let £ = {¢y,...,¢;} denote the LINDDUN category set.

The coverage is defined as:

Z[eg llhreal(& m, d)
L]

Covgg) = 4)
Here, liyea(¢,m,d) equals 1 if model m identifies at
least one threat in category ¢ for data flow d, and 0
otherwise.

o PILLAR-Recall (Category-Based) [31]], [32]]: Assesses
backward compatibility by computing the fraction of
(data-flow, category) pairs identified by PILLAR that are
also identified by PriMod4Al. A recall of 1.0 indicates
perfect reproduction of PILLAR’s LINDDUN coverage.

o Jaccard Similarity (Per DF) [33]:

Shttps://pillar-ptm.streamlit.app/, (Accessed: Nov. 5, 2025)

Measures set-similarity between PriMod4 Al and PILLAR

on a per-data-flow basis:

_ 1Cn(d) N CpiLar(d)|
|Cn(d) U CpiLLar(d)|

We report both per-DF scores and the average across all
DFs.

T (d) (5)

B. Layer B: Overall Privacy Threat Space and Cross-Model
Agreement Analysis

PriMod4ALl identifies both classical LINDDUN threats and
Al-driven, model-centric privacy attacks, forming an extended
privacy threat space for which no benchmarks or expert-
annotated ground truth exist. As direct accuracy-based eval-
uation is therefore infeasible. Layer B assesses the reliability
and factual consistency of PriMod4AI’s outputs by measuring
the agreement between two LLMs (GPT-OSS and LLaMA3.1)
across both evaluation systems and across all identified threat
types. To ensure consistent agreement computation across
models, threat names extracted from the structured JSON
outputs are normalized using a preprocessing pipeline com-
prising: (i) lowercasing and lemmatization, (ii) stopword and
punctuation removal, and (iii) token-set normalization. After
preprocessing, semantically similar labels are merged using
token-set Jaccard similarity, clustering two threat names when
their similarity exceeds 7 = 0.20, a commonly used thresh-
old balancing precision and recall for near-duplicate textual
concepts.

Three complementary statistical measures are then applied:

1) Observed Agreement (FP,) [34]: Represents the raw
proportion of semantic threat clusters on which both
models (GPT-OSS and LLaMA3.1) agree, either by
jointly predicting the presence or the absence of a threat.
It serves as the foundational quantity from which the
other agreement metrics are derived.

2) Cohen’s x [34]: A chance-corrected measure of agree-
ment that quantifies how consistently the two models
identify the same semantic threat clusters beyond what
would be expected by random coincidence. For observed
agreement P, and expected agreement P,, Cohen’s & is
defined as:

P, - P,

- 1-P.° ©

Values above 0.75 are typically interpreted as indicating
substantial to near-perfect agreement.

3) PABAK (Prevalence-Adjusted Bias-Adjusted Kappa)
[35]: A modified form of Cohen’s x designed for imbal-
anced binary data, where most threat clusters are absent.
To correct the instability of x under low-prevalence con-
ditions, PABAK adjusts the estimate using only observed
agreement:

PABAK = 2P, — 1. 7)

This yields a more robust agreement measure in sparse
threat-identification settings.



VI. RESULTS AND DISCUSSION
A. Layer A: Classical LINDDUN Threat Space

Layer A evaluates PriMod4Al within the classical LIND-
DUN threat space by comparing its outputs to the PILLAR
output as shown in Table Across both Al systems, Pri-
Mod4AI achieves moderate and acceptable agreement with
PILLAR, as reflected by its PILLAR-Recall scores and Jaccard
overlaps. The GPT-OSS variant consistently shows the closest
alignment with PILLAR, achieving higher recall and broader
category coverage, whereas the LLaMA3.1 variant provides
a more compact and selective set of categories, resulting
in slightly lower coverage but still maintaining reasonable
overlap. The results also suggest that both PriMod4Al vari-
ants remain stable across heterogeneous system architectures,
including the more complex multi-flow Autonomous Driving
system. Overall, Layer A shows that PriMod4Al remains
compatible with classical LINDDUN reasoning while enabling
structured, lifecycle-aware threat assessment. Appendix [B]
details per-flow LINDDUN analyses, reporting category cov-
erage and identified threats for PILLAR, PriMod4Al (GPT-
0OSS), and PriMod4AI (LLaMA 3.1).

B. Layer B: Combined Threat Space and Model-Centric Anal-
ysis

Layer B evaluates the consistency of PriMod4Al across
different LLM variants by assessing cross-model agreement
within the combined (LINDDUN + Al-specific) threat space.
Since no ground-truth dataset exists for this domain, reliability
is examined through inter-model metrics reported in Table
Across both systems, the agreement scores between Pri-
Mod4AI (GPT-OSS) and PriMod4Al (LLaMA3.1) fall within
a moderate to substantial range, indicating that the two models
produce broadly comparable threat sets despite differences
in wording or granularity. The observed agreement (F,) and
PABAK values suggest that both variants follow similar deci-
sion patterns rather than diverging arbitrarily, while Cohen’s s
show that the overlap between their outputs is meaningful
but not identical. To summarize stability across system ar-
chitectures, the normalized robustness coefficient R indicates
that PriMod4AlI achieves moderate and consistent cross-model
reliability, with R = 0.7018 for the face authentication system
and R = 0.6117 for the autonomous driving system, reflecting
stable but not exceptionally high robustness.Model-centric
privacy risks are detailed in Appendix |-C| including their threat
families and canonical categorization.

VII. CONCLUSION AND FUTURE WORK

This work introduced PriMod4Al, a lifecycle-aware pri-
vacy threat-modeling framework that unifies structured privacy
knowledge with retrieval-augmented LLM reasoning for auto-
mated, explainable privacy risk analysis in Al systems.

RQ1 examined whether PriMod4AlI can extend traditional
privacy threat modeling by identifying both LINDDUN threats
and Al-specific, model-centric risks. The results indicate that
PriMod4 Al maintains compatibility with classical LINDDUN
outputs while additionally detecting a range of Al-driven

threats not captured by PILLAR. This suggests that the
framework can broaden the assessed privacy threat space in
a structured manner.

RQ2 investigated whether retrieval-augmented and
knowledge-grounded prompting supports consistent and
reliable threat identification. The cross-model agreement
metrics reported in our evaluation show moderate to
substantial alignment between the GPT-OSS and LLaMA3.1
variants, indicating that PriMod4AlI produces generally stable
and repeatable threat assessments across heterogeneous
system architectures.

These findings demonstrate that structured knowledge inte-
gration and RAG-based prompting provide a practical way
to enhance coverage and reproducibility in privacy threat
modeling for Al systems.PriMod4Al thus demonstrates that
structured knowledge integration and RAG-based prompting
can significantly enhance the rigor, coverage, and reproducibil-
ity of privacy threat modeling for the AI systems. Future
work will focus on several practical extensions. First, the
current evaluation is limited by the absence of expert-validated
ground truth for Al-driven, model centric privacy threats so
incorporating expert feedback loops could strengthen external
validity. Second, the static knowledge bases may be expanded
into lightweight, updateable knowledge repository to better
track emerging privacy risks and regulatory changes. Third,
integrating simple mitigation guidance for the identified threats
would improve the framework’s usability in real development
settings. Additionally, extending the pipeline to support in-
cremental updates or domain-specific modules may further
enhance adaptability across diverse Al architectures.
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APPENDIX
A. Base Prompt Template

The PriMod4Al framework relies on a structured and
retrieval-augmented prompt design that standardizes how
LLMs perform privacy threat analysis, as reflected in the
complete base prompt template shown in Listing ] ensuring
uniform incorporation of retrieved context, lifecycle stages,
and DFD attributes, thereby enabling systematic and well-
grounded threat identification across Al systems.

The prompt template is intentionally modular and role-
based, enabling the LLM to combine system-level metadata,
lifecycle context, and domain knowledge from both the LIND-
DUN taxonomy and the Al-specific privacy threat knowledge
base. The template enforces a controlled reasoning process by
(1) explicitly describing the data flow under analysis, (ii) inject-
ing only the relevant subset of the knowledge bases retrieved
for that flow, The template also operationalizes dual-mode
reasoning. First, it directs the LLM to apply the seven LIND-
DUN categories (Linkability, Identifiability, Non-repudiation,
Detectability, Disclosure of Information, Unawareness, and
Non-compliance) to the given data flow. Second, it supple-
ments this with Al-specific, model-centric threat reasoning
(e.g., membership inference, model inversion, model extrac-
tion, training-data leakage) sourced from the AI Privacy KB.

When an Al threat does not directly map onto a LINDDUN
category, the template requires the model to provide a justified
mapping, thereby aligning emerging Al privacy risks with
classical taxonomic structures.

You are an expert privacy threat analyst
specializing in AI systems. Your task is to
analyze the provided Data Flow (DF) and identify

all relevant privacy threats.

### Data Flow Context

- ID: {df_id}

— Source: {source}

— Destination: {destination}

— Data Type: {data_type}

— Sensitive: {sensitive}

Sensitive Info: {sensitive_info}

AI Lifecycle Stage: {lifecycle_stage}

### Knowledge Base (retrieved context)

{context}

### Threat Identification Rules

1. Use BOTH:

— your own expertise in privacy,
specific threats, AND

— the retrieved context text above.

The context is guidance, not a mandatory
constraint.

(IMPORTANT)

LINDDUN, and AI-

10

2. Identify only those threats that are xxlogically
possiblexx for THIS DF,

based strictly on:

- source and destination,

- data_type,

- sensitivity,

- sensitive_info,

- lifecycle_stage.

Do NOT invent threats or include threats that
contradict the DF.

3. LINDDUN threats:

— Include a LINDDUN threat ONLY if it genuinely
applies.

— If ‘sensitive' = true, at least one LINDDUN
threat is expected unless the DF truly poses
no risk.

4. Al-specific threats:
Include an AI-specific threat #*xonly if this DF
involves. Do NOT include an AI-specific threat
if none logically apply.
5. Avoid repeating identical threats across DFs
unless the same threat clearly applies
to the same scenario.
6. For each identified threat, include:

- "name a clear and specific threat name.

- "justification explain why this threat applies
, referencing DF-specific fields

(source, destination, data_type, sensitive_info,
lifecycle_stage) .

— "linddun_category LINDDUN category.

- "ai_lifecycle_stage the lifecycle stage where
the threat occurs

- "source LINDDUN" for traditional privacy
threats,

AI_PRIVACY_KB" for AlI-specific threats.
Listing 4. Base prompt template used for automated privacy threat

identification. The prompt integrates LINDDUN knowledge, Al-specific
privacy risks, and structured system metadata to elicit grounded and machine-
readable reasoning.

By integrating structured retrieval, explicit lifecycle ground-
ing, and strict output constraints, this template enables repro-
ducible, explainable, and cross-model-consistent privacy threat
identification. It prevents unconstrained generative behavior,
reduces hallucinations, and ensures that every reported threat
is explicitly tied to a knowledge source and a lifecycle stage.




It prevents unconstrained generative behavior, reduces hallu-
cinations, and ensures that every reported threat is explicitly
tied to a knowledge source and a lifecycle stage.

B. Layer A: Classical LINDDUN Threat Space (LINDDUN
Category Coverage Across Data Flows)

To evaluate the breadth of classical privacy threat identifi-
cation, Tables [[V] and [V| summarize, for each data flow in the
studied systems, the set of LINDDUN categories detected by
the evaluated methods. Rather than listing each category in a
dedicated column, the tables present the activated category set
together with its overall count. This compact representation
enables a clear, flow-by-flow comparison among the three
approaches: PILLAR, as an automated LINDDUN analysis
tool, and the two PriMod4AlI variants powered by GPT-OSS
and LLaMA-3.1.

The results illustrate characteristic patterns in how each
method engages with the LINDDUN taxonomy. The Pri-
Mod4Al models frequently identify a broad range of cat-
egories for individual data flows, reflecting their capacity
to generate diverse, context-sensitive threat hypotheses. PIL-
LAR, in turn, produces outputs that reflect its structured
analytical process, providing consistent detection aligned with
its underlying LINDDUN mapping logic. These differences
do not indicate superiority of one approach over another;
rather, they highlight the methodological distinctions between
a deterministic LINDDUN engine and LLM-driven reasoning
processes that are capable of exploring a wider interpretation
space.

Taken together, the tables provide a unified view of
category-level activation across the evaluated systems and
methods. This presentation supports an assessment of how
comprehensively each approach engages with the classical
LINDDUN framework, without presupposing which style of
analysis is preferable.

C. Layer B: Combined Threat Space and Model-Centric
Analysis

Unlike classical LINDDUN threats, model-centric privacy
risks originate from the behaviour of trained models and do not
correspond to specific data flows or system components. These
risks typically arise from interactions with model parameters,
training distributions, latent representations, or generative ca-
pabilities, and therefore require an analysis framework that
extends beyond the structural boundaries of a DFD. To account
for these phenomena, PriMod4Al extracts Al-specific threat
descriptions generated by the LLMs and consolidates them
into a set of canonical model-centric threat categories through
clustering.

Because GPT-OSS and LLaMA-3.1 often describe con-
ceptually similar attacks using different surface forms, for
example “Al-Generated Misinformation Using Location Data”
and “Al-Fabricated Location Misinformation”, so clustering
step is essential for producing a unified taxonomy. This
process ensures that semantically equivalent threats across
systems (face authentication and autonomous driving) and

across model variants are represented consistently, even when
the LLMs use divergent wording.

The resulting canonical categories capture well-established
families of model-centric privacy risks, such as membership
inference attacks, model inversion attacks, reconstruction and
leakage mechanisms, embedding or template exposure, dataset
replication, and model-generated misleading outputs. In the
subsequent analysis, we report how many such canonical
categories each PriMod4Al variant identifies in each system
and examine their overlap.

Table reports the number of distinct threat expressions
and their clustered canonical categories identified for each
system. PriMod4Al (GPT-OSS) consistently identifies a wider
range of model-centric threats, whereas the LLaMA variant
returns more compact but semantically aligned sets. The anal-
ysis demonstrates that PriMod4Al extends privacy reasoning
beyond traditional design-time taxonomies by uncovering be-
havioural vulnerabilities specific to machine learning models.

D. Al Model-Centric Privacy Attack Knowledge Base
(Al_Privacy_KB)

The AI_Privacy_KB presented in this appendix provides
the complete catalogue of Al-specific, model-centric privacy
threats derived from the systematic literature review described
in the main paper. The review covered 30 peer-reviewed
publications, standards, and authoritative reports published
between 2016 and 2025, each offering documented evidence
of privacy attacks or vulnerabilities in modern Al systems.

A simplified example of the encoding format is shown
below Listing5}

{

threatId": 6",

privacyThreatName": "Inference Attacks on Model
Outputs",

flowType": "Output flow",

ailifecycleStage": "Inference",

shortDescription": "Attackers infer sensitive

data from the model’s predictions or outputs.

’
privacyThreatJustification": "Can reveal personal

information, even if the data was anonymized
or protected during training.",
reference": {
type": "article",
title": "Membership Inference Attacks Against

Machine Learning Models",
authors": ["R. Shokri",
Marco Stronati',
Congzheng Song",
Vitaly Shmatikov'"],

journal 2017IEEE Symposium on Security and
Privacy (SP)",
year": 201e6",
pages 3-18",
url https://api.semanticscholar.org/CorpusID
:10488675
}
}
Listing 5. Example entry from the AI_Privacy_KB illustrating the

standardized JSON schema used for all model-centric privacy threats.

While the main text outlines the construction methodology
and the integration of this knowledge base within PriMod4Al,




TABLE IV
LAYER-A LINDDUN THREATS IDENTIFIED FOR EACH DATA FLOW (DF0-DF7) IN THE FACE AUTHENTICATION SYSTEM, COMPARING PRIMOD4AI
(GPT-OSS AND LLAMA VARIANTS) WITH PILLAR. EACH CELL LISTS THE THREATS FOLLOWED BY THE NUMBER OF LINDDUN CATEGORIES
IDENTIFIED (IN BRACKETS). THREAT ABBREVIATIONS: L = LINKABILITY, I = IDENTIFIABILITY, DI = DISCLOSURE OF INFORMATION, DT =
DETECTABILITY, U = UNAWARENESS, NR/NR = NON-REPUDIATION, NC/NC = NON-COMPLIANCE.

Data Flow  PriMod4AI (GPT-OSS) PriModAI(Llama3.1) PILLAR
DFO L, I D, DD, U, Nc [6] L, I, D, DD, U, Nc [6] L, L DD [3]
DF1 L, I, D, DD, U, Nc [6] L, I, D, DD, Nr, U, Nc [7] L, L D, DD [4]
DF2 L, L U, Nc [4] L, I, DD, U, Nc [5] L, L, D, DD, Nr, Nc [6]
DF3 L, I, D, Nr, DD, U, Nc [7] L, I, D, DD, Nr, U, Nc [7] L, L, D, DD, Nr, Nc [6]
DF4 L, I, Nr, U, Nc [5] L, I, D, DD, Nr, U, Nc [7] L, I, D, DD, Nr, Nc [6]
DF5 L, I, DD, Nr, U, Nc [6] L, I, DD, Nr, U, Nc [6] L, L, D, DD, Nr, Nc [6]
DF6 L, I, DD, Nc [4] L, I, DD, U, Nc [5] L, I, D, DD, Nc [5]
DF7 D, DD, Nr [3] D, Nr, U [3] L, I, D, Nr [4]

TABLE V

LINDDUN THREATS IDENTIFIED FOR EACH DATA FLOW (DF1-DF14) IN THE AUTONOMOUS DRIVING SYSTEM, COMPARING PRIMOD4AI (GPT-OSS
AND LLAMA VARIANTS) WITH PILLAR. EACH CELL LISTS THE THREATS FOLLOWED BY THE NUMBER OF LINDDUN CATEGORIES IDENTIFIED (IN
BRACKETS). THREAT ABBREVIATIONS: L = LINKABILITY, I = IDENTIFIABILITY, DI = DISCLOSURE OF INFORMATION, DT = DETECTABILITY, U =
UNAWARENESS, NR = NON-REPUDIATION, NC = NON-COMPLIANCE.

Data Flow PriMod4Al (GPT-OSS) PriMod4Al (LLaMA3.1) PILLAR
DF1 L, I, NC, DI, U, NR [6] U, I, DI, NC, L, NR [6] L, I, DI, U, NR [5]
DF2 L, DT, DI, U, NC [5] DI, L, DT, U, NC [5] L, I, DI, U, NR [5]
DF3 L, DT, DI, U, NC [5] U, DT, L, DI, NC [5] L, I, DI, U, NR [5]
DF4 L, I, NR, DT, DI, U, NC [7] L, I, DT, DI, U, NC [6] L, I, DI, U, NR [5]
DF5 L, DT, DI, U, NC [5] U, DT, NC, DI, L [5] L, I, DI, U, NR [5]
DF6 L, I, NR, DT, DI, U, NC [7] I, L, NR, DI, U, DT, NC [7] L, I, NR, U, NC, DI, DT [7]
DF7 L, I, DT, DI, U [5] I, L, DI [3] L, I, DI, U, NR [5]
DF8 L, I, NR, DT, DI, U, NC [7] DI, L, NC, I, DT [5] L, I, NR, U, NC, DI [6]
DF9 L, I, DT, DI, U, NC [6] DI I, NC, L, DT, U [6] L, I, NR, U, NC, DI [6]
DF10 L, I, DT, DI, U [5] U, DT, L, DI [4] L, I, NR, U, NC, DI [6]
DF11 L, I, DT, DI, U, NC [6] DI, NC, L, DT, I [5] L, I, NR, U, NC, DI, DT [7]
DF12 L, NR, DT, DI, U, NC [6] L, DI, U, NR, DT [5] L, I, NR, U, NC, DI, DT [7]
DF13 L, I, NC, DI, U [5] DI, L, U, I, NC [5] L, I, NR, U, NC, DI [6]
DF14 L, I, NC, DI, DT, U [6] DI L, U, I, NC [5] L, I, DI, U, NR [5]

TABLE VI tion, deduplication, and harmonization of lifecycle and flow

MODEL-CENTRIC THREAT COVERAGE ACROSS SYSTEMS. CANONICAL
CATEGORIES REPRESENT CLUSTERS OF SEMANTICALLY RELATED
AI-SPECIFIC PRIVACY THREATS IDENTIFIED BY EACH MODEL.

System Model Canonical
Categories
PriMod4AI (GPT-OSS) 11
Autonomous Driving PriMod4Al (LLaMA) 7
PriMod4AI (GPT-OSS) 9
Face Authentication PriMod4Al (LLaMA) 5

this appendix presents the final, structured representation of
all identified threats.

Each entry in the AI_Privacy_KB corresponds to a single
threat extracted from the reviewed sources. To ensure con-
sistency and reproducibility, all threats were encoded using
a unified JSON schema that captures (i) a unique threat
identifier, (ii) the normalized threat name, (iii) the associated
Al lifecycle stage, (iv) the relevant flow type used in Pri-
Mod4AT’s reasoning, (v) a concise short description of the
attack mechanism, (vi) a justification of its privacy relevance,
and (vii) the full bibliographic reference of the originating
publication.

All threats in this appendix were processed through a
unified pipeline including extraction, terminology normaliza-

12

annotations, ensuring coherent and comparable representations
across diverse privacy attack types. This standardized rep-
resentation also enables direct integration of the knowledge
base into automated reasoning workflows and LLM based
analysis components within PriMod4Al. Moreover, maintain-
ing a consistent schema simplifies auditing and validation of
the collected threats and supports incremental updates as new
research emerges.

Tables and present the complete AI_Privacy_ KB
in its final tabular form, consolidating threats from all 30 re-
viewed publications. This appendix serves as the authoritative
source for Al specific threats used in PriMod4AI and supports
transparency, reproducibility, auditing, and future extension
of the knowledge base. Each threat is normalized into a
consistent representation that includes a concise description
and traceable references to the original literature, ensuring
that the mapping process remains verifiable. The structured
format also enables systematic integration of additional threats
in future revisions and facilitates automated processing within
the proposed framework. Furthermore, presenting the threats
in a unified schema helps ensure comparability across different
Al lifecycle stages and strengthens the interpretability of the
resulting threat analysis.



TABLE VII

THIS TABLE LISTS AI-SPECIFIC PRIVACY THREATS EXTRACTED FROM REVIEWED AND STANDARDIZED SOURCES, PRESENTED IN THEIR SIMPLIFIED

AI_PRIVACY_KB FORMAT.

ID

Threat

Short description

Reference

10

11

12

13

15

Data Quality Compromise

Label Tampering

Inference Attacks on Model
Outputs

Adversarial Attacks

Model Inversion Attacks

Data Poisoning Attacks

Membership Inference At-
tacks

Risk of Non-Compliance

Al-Assisted Hacking

Deep Leakage from Gradi-
ents

Model Extraction via Pre-

diction APIs

Training Data Extraction
from LLMs

Side-Channel Attacks

Reconstruction Attacks

Exfiltration  via
Means

Cyber

In processing flows during data cleaning and preprocessing,
accidental or intentional degradation of data quality leads
to unreliable models that mishandle sensitive data.

In processing flows during data labeling, malicious modi-
fication of labels causes misclassification that can leak or
misrepresent sensitive attributes.

In output flows during inference, attackers analyze model
predictions to infer sensitive data that may have been used
for training.

In model-related flows during training and inference, care-
fully crafted perturbations cause misclassification and can
enable privacy and security violations.

In model-related flows during inference, adversaries exploit
model outputs to reconstruct sensitive features or entire
training records.

In data collection and model-related flows during data
collection and training, adversaries tamper with data to
introduce backdoors or targeted errors.

In model-related and output flows during training and
inference, attackers test whether specific records were part
of the training dataset.

Across data collection, processing, and deployment flows,
Al systems fail to meet privacy regulations such as the
GDPR, leading to legal and trust risks.

In processing flows during inference, Al tools generate or
support cyberattacks, lowering the barrier to sophisticated
intrusions.

In model-related flows during centralized or federated train-
ing, shared gradients leak enough information to recon-
struct training examples.

In output flows during deployment and inference, black-
box querying of prediction APIs is used to clone models
and their behavior.

In output flows during inference and deployment, adver-
saries craft prompts that cause LLMs to reveal training data.

In model-related flows during deployment, adversaries ex-
ploit timing, power, or other side channels to infer secrets
without direct access to model data.

In model-related and output flows during data processing
and deployment, attackers reconstruct private datasets using
model outputs and auxiliary information.

In data collection, training, and deployment flows, attackers
use network or physical compromise to steal datasets and
model weights

C. Sillaber, C. Sauerwein, A. Mussmann, and R. Breu,
“Data Quality Challenges and Future Research Di-
rections in Threat Intelligence Sharing Practice,” in
Proc. 2016 ACM Workshop on Information Sharing
and Collaborative Security (WISCS ’16), 2016, pp. 65—
70.

R. Sharma, G. K. Sharma, and M. Pattanaik, “Adver-
sarial Label Flipping Attack on Supervised Machine
Learning-Based HT Detection Systems,” in Proc. 2024
IEEE Int. Symp. Circuits and Systems (ISCAS), 2024,
pp. 1-5.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
“Membership Inference Attacks Against Machine
Learning Models,” in Proc. 2017 IEEE Symp. Security
and Privacy (SP), 2017, pp. 3-18.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial
Attacks and Defenses in Deep Learning,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 9, pp. 2805—
2824, 2019.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model
Inversion Attacks that Exploit Confidence Information
and Basic Countermeasures,” in Proc. ACM Conf.
Computer and Communications Security (CCS), 2015.
E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and
V. Shmatikov, “How To Backdoor Federated Learn-
ing,” in Proc. Int. Conf. Artificial Intelligence and
Statistics (AISTATS), 2020, pp. 2938-2948.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
“Membership Inference Attacks Against Machine
Learning Models,” in Proc. 2017 IEEE Symp. Security
and Privacy (SP), 2017, pp. 3—18.

S. Shahriar, S. Allana, S. M. Hazratifard, and R. Dara,
“A Survey of Privacy Risks and Mitigation Strategies
in the Artificial Intelligence Life Cycle,” IEEE Access,
vol. 11, pp. 61829-61854, 2023.

“From ChatGPT to ThreatGPT: Impact of Generative
Al in Cybersecurity and Privacy,” IEEE Access, 2023.

L. Zhu, Z. Liu, and S. Han, “Deep Leakage from
Gradients,” in Proc. 33rd Int. Conf. Neural Information
Processing Systems (NeurIPS), 2019.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and
T. Ristenpart, “Stealing Machine Learning Models via
Prediction APIs,” in Proc. USENIX Security Symp.,
2016.

N. Carlini et al., “Extracting Training Data from Large
Language Models,” in Proc. 30th USENIX Security
Symp., 2021.

B. I Priya, P V. R. D. P Rao, and
D. V. L. Parameswari, “Shielding secrets: developing
an enigmatic defense system with deep learning
against side channel attacks,” Discov. Sustain., vol. 5,
art. 249, 2024, doi: 10.1007/s43621-024-00455-4.

S. Shahriar, S. Allana, S. M. Hazratifard, and R. Dara,
“A Survey of Privacy Risks and Mitigation Strategies
in the Artificial Intelligence Life Cycle,” IEEE Access,
vol. 11, pp. 61829-61854, 2023, doi: 10.1109/AC-
CESS.2023.3287195.

“A Survey on Privacy Attacks Against Digital Twin
Systems in Al-Robotics,” arXiv, 2024. [Online]. Avail-
able: https://arxiv.org/abs/2406.18812
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TABLE VIII

THIS TABLE LISTS AI-SPECIFIC PRIVACY THREATS EXTRACTED FROM REVIEWED AND STANDARDIZED SOURCES, PRESENTED IN THEIR SIMPLIFIED

AI_PRIVACY_KB FORMAT.

ID

Threat

Short description

Reference

16

17

19

20

21

22

23

24

25

26

27

28

29

30

Al-Generated Misinforma-
tion

Al-Enabled Social
neering

Engi-

Critical Data Removal

Biased Data Processing

Data Leakage During Pre-
processing

Privacy Leakage During

Monitoring

Poisoning Attacks

Data Extraction Attacks

Ethical and Societal Risks

LLM Data Leakage

Synthetic Data Inference

Unauthorized AI Tool Us-
age

API-Based Model Stealing

Re-identification of

Anonymized Data

Malicious Code Generation

During output flows at deployment and inference, Al sys-
tems generate false or misleading content that can harm
reputations and privacy.

During output flows at deployment and inference, Al gener-
ates highly personalized phishing or manipulation messages
that increase the risk of disclosing sensitive data.

In processing flows during data cleaning and preprocessing,
selective removal of critical data points distorts model
behavior and may indirectly expose personal information.
In processing flows during data preprocessing, biased trans-
formations amplify unfairness and can result in discrimi-
natory handling of personal data.

In processing and model-related flows across preprocess-
ing, training, and testing, poor handling of notebooks and
pipelines causes unintended exposure of sensitive informa-
tion.

In output flows during monitoring, logs, metrics, or traces
recorded for performance tracking inadvertently expose
sensitive data.

In model-related flows during training, attackers inject
malicious samples into datasets to corrupt models and
enable privacy-relevant misbehavior.

In model-related and output flows during inference, adver-
saries design queries to extract sensitive training data from
model outputs.

In model-related flows during deployment and inference, Al
systems may impact societal norms, autonomy, and rights,
creating systemic privacy harms.

In output flows during inference, large language models
inadvertently reveal private, proprietary, or training data in
generated responses.

In data collection and model-related flows during process-
ing and inference, attackers use synthetic data statistics to
re-identify individuals from the original dataset.

Across all flows and stages, employees use unapproved Al
tools, bypassing security controls and data governance.

In output flows during deployment, repeated queries to
model APIs are used to reconstruct or approximate pro-
prietary models containing privacy-sensitive patterns.

In processing and inference stages, Al techniques re-link
anonymized data with external sources, re-identifying indi-
viduals.

In output flows during inference, Al systems generate
malware, ransomware, or exploit scripts that can be used
to compromise privacy.

H.-P. Lee, Y.-J. Yang, T. S. von Davier, J. Forlizzi,
and S. Das, “Deepfakes, Phrenology, Surveillance,
and More! A Taxonomy of AI Privacy Risks,” arXiv
preprint arXiv:2310.07879, 2023. [Online]. Available:
https://arxiv.org/abs/2310.07879

H.-P. Lee et al., same as ID 1 above.

V. Bazarevsky et al., “BlazeFace: Sub-millisecond
Neural Face Detection on Mobile GPUs,” arXiv
preprint arXiv:1907.05047, 2019.

L. E. Celis, V. Keswani, and N. K. Vishnoi, “Data
preprocessing to mitigate bias: A maximum entropy
based approach,” arXiv preprint arXiv:1906.02164,
2020.

C. Yang et al, “Data Leakage in Notebooks:
Static Detection and Better Processes,” arXiv preprint
arXiv:2209.03345, 2022.

M. Jegorova et al., “Survey: Leakage and Privacy
at Inference Time,” arXiv preprint arXiv:2107.01614,
2022.

C. Sitawarin et al., “A Survey on Data Poison-
ing Attacks in Machine Learning,” arXiv preprint
arXiv:2301.05412, 2023.

N. Carlini et al., “Extracting Training Data from Large
Language Models,” arXiv preprint arXiv:2012.07805,
2021.

“Privacy Risks of General Purpose AI Systems: A
Foundation for Investigation Practitioner Perspectives,”
arXiv preprint arXiv:2407.02027, 2024.

“A Survey on Privacy Attacks Against Digi-
tal Twin Systems in AI-Robotics,” arXiv preprint
arXiv:2406.18812, 2024.

C. Zhang, “State-of-the-Art Approaches to Enhancing
Privacy Preservation of Machine Learning Datasets: A
Survey,” arXiv preprint arXiv:2404.16847, 2025.
Forbes Technology Council, “Emerging AI Threats
To Navigate In 2025 And Beyond,” Forbes,
Feb. 2025. [Online]. Available: https://www.
forbes.com/councils/forbestechcouncil/2025/02/12/
emerging-ai-threats-to-navigate-in-2025-and-beyond/

SecureSustain, “International AI Safety Report
2025 - Security &  Sustainability,”  2025.
[Online]. Available: |https://securesustain.org/report/

international-ai-safety-report-2025/

“Artificial Intelligence and Privacy: Examining the
Risks and Potential Solutions,” Artificial Intelligence,
2024. [Online]. Available: https://www.researchgate.
net/publication/378545816,

“From ChatGPT to ThreatGPT: Impact of Generative
Al in Cybersecurity and Privacy,” IEEE Access, 2023,
doi: 10.1109/ACCESS.2023.3300381.
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