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are potentially relevant for diversification, second, CROW
enumerates alternative instruction sequences, and third, CROW
checks that the new instruction sequences are functionally
equivalent to the original block. CROW builds on the idea
of superdiversification [25] and extends the concept to the
enumeration of a set of variants instead of synthesizing only
one solution. We also take into account the specificities of
WebAssembly and the details of its execution.

We evaluate the diversification capabilities of CROW in
two ways. First, we diversify 303 small C programs compiled
to WebAssembly. Second, we run CROW to diversify a real-
life cryptographic library that natively supports WebAssem-
bly. In both cases, we measure the diversity among binary
code variants, as well as the diversity of execution traces.
When measuring the diversity in binary code, we compare
the WebAssembly and the machine code variants. This way
we assess the ability of CROW at synthesizing variations in
WebAssembly, as well as the extent to which these variations
are preserved when compiling WebAssembly to machine code.
Our original experiments demonstrate the feasibility of diver-
sifying WebAssembly code. CROW generates diverse variants
for 239/303 (79%) C programs. TurboFan, the optimizing
compiler used in the V8 engine, preserves 99.48% of these
variants. CROW successfully synthesizes variants for the cryp-
tographic library. The variants indeed yield either different
execution traces. This is promising milestone in getting a more
secure Web environment through diversification.

To sum up, our contributions are:

• CROW: the first automated workflow and tool to diver-
sify WebAssembly programs, it generates many diverse
WebAssembly binaries from a single input program.
• A quantitative evaluation over 303 programs showing the

capability of CROW to diversify WebAssembly binaries
and measuring the impact of diversification on execution
traces.
• A feasibility study of the diversification on a real-world

WebAssembly program, demonstrating that CROW can
handle libsodium, a state-of-the-art cryptographic library.

II. BACKGROUND

A. WebAssembly

WebAssembly is a binary instruction format for a stack-
based virtual machine. It is designed to address the problem
of safe, fast, portable and compact low-level code on the
Web. The language was first publicly announced in 2015
and since then, most major web browsers have implemented
support for the standard. Besides the Web, WebAssembly is

Abstract—The adoption of WebAssembly increases rapidly, 
as it provides a fast and safe model for program execution 
in the browser. However, WebAssembly is not exempt from 
vulnerabilities that can be exploited by malicious observers. 
Code diversification can mitigate some of these attacks. In this 
paper, we present the first fully automated workflow for the 
diversification of WebAssembly binaries. We present CROW, an 
open-source tool implementing this workflow through enumera-
tive synthesis of diverse code snippets expressed in the LLVM 
intermediate representation. We evaluate CROW’s capabilities 
on 303 C programs and study its use on a real-life security-
sensitive program: libsodium, a modern cryptographic library. 
Overall, CROW is able to generate diverse variants for 239 out of 
303 (79%) small programs. Furthermore, our experiments show 
that our approach and tool is able to successfully diversify off-
the-shelf cryptographic software (libsodium).

I. INTRODUCTION

WebAssembly is the fourth official language of the Web 
[36]. The language provides low-level constructs enabling 
efficient execution times, much closer to native code than 
JavaScript. It constitutes a fast and safe platform to execute 
programs in the browser and embedded environments [21]. 
Consequently, the adoption of WebAssembly has been rapidly 
growing since its introduction in 2015. Nowadays, languages 
such as Rust and C/C++ can be compiled to WebAssembly using 
mature toolchains and can be executed in all notable browsers.

The WebAssembly execution model is designed to be 
secure and to prevent many memory and control flow attacks. 
Still, as its official documentation admits [11], WebAssembly 
is not exempt from vulnerabilities that could be exploited [30]. 
Code diversification [5], [28] is one additional protection that 
can harden the WebAssembly stack. This consists in synthe-
sizing different variants of an original program that provide 
the same functionalities but exhibit different execution traces. 
In this paper, we investigate the feasibility of diversifying 
WebAssembly code, which is, to the best of our knowledge, 
an unresearched area.

Our contribution is a workflow and a tool, called CROW, 
for automatic diversification of WebAssembly programs. It 
takes as input a C/C++ program and produces a set of diverse 
WebAssembly binaries as output. The workflow is based on 
enumerative code synthesis. First, CROW lists blocks that
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independent of any specific hardware or languages and can run
in a standalone Virtual Machine (VM) or in other environments
such as Arduino [20]. A paper by Haas et al. [21] formalizes
the language and its type system, and explains the design
rationale.

Listing 1 and 2 illustrate WebAssembly. Listing 1 presents
the C code of two functions and Listing 2 shows the result of
compiling these two functions into a WebAssembly module.
The type directives at the top of the module declare the
function: the types of its parameters and the type of the
result. Then, the definitions for the function follow. These
definitions are sequences of stack machine instructions. At the
end, the main function is exported so that it can be called from
outside this WebAssembly module, typically from JavaScript.
WebAssembly has four primitive types: integers (i32 and i64)
and floats (f32 and f64) and it includes structured instructions
such as block, loop and if.

Listing 1: C function that calculates the quantity 2x+ x
int f(int x) { return 2 * x + x; }

int main(void) { return f(10); }

Listing 2: WebAssembly code for Listing 1.
(module

(type (;0;) (func (param i32) (result i32)))
(type (;1;) (func (result i32)))
(func (;0;) (type 0) (param i32) (result i32)

local.get 0
local.get 0
i32.const 2
i32.mul
i32.add)

(func (;1;) (type 1) (result i32)
i32.const 10
call 0)

(export "main" (func 1)))

WebAssembly is characterized by an extensive security
model [11] founded on a sandboxed execution environment
that provides protection against common security issues such
as data corruption, code injection and return oriented program-
ming (ROP). However, WebAssembly is no silver bullet and
is vulnerable under certain conditions [30]. This motivates our
work on software diversification as one possible mitigation
among the wide range of security counter-measures.

B. Motivation for Moving Target Defense in the Web

The distribution model for web computing is as follows:
build one binary and distribute millions of copies, all over the
world, which run on browsers. In this model an attacker has
two key advantages over the developers: she has a runtime
environment that she fully controls and observes in any possi-
ble way. Consequently, when she finds a flaw in this virtually
transparent environment, knowing that this flaw is present in
the millions of copies that have been distributed over the world,
she can exploit the flaw at scale.

The developers can never assume that they can control the
web browser. Yet, they can challenge the second advantage
of the attacker, known as the break-once-break-everywhere
advantage. The developers can stop distributing clones of the
binary and distribute diverse versions instead, as suggested by
the pioneering software diversification works of Cohen [12]
and Forrest et al. [19].

In the context of diversification, moving target defense [40]
means distributing diverse variants constantly. In the context of
the web, it means distributing a different variant at each HTTP
request. Moving target defense is appropriate for mitigating
yet unknown vulnerabilities. The diversification technique does
not always remove the potential flaws, yet the vulnerabilities
in the diversified binaries can be located in different places.
With moving target defense, a successful attack on one browser
cannot be performed on another browser with the same ef-
fectiveness. The diversified binaries that CROW outputs can
be used interchangeably over the network, in a moving target
defence choreographed over the web.

To sum up, by combining moving target defense deploy-
ment to diversification, we reduce the information asymmetry
between the Web attacker and the defender, increasing the
uncertainty and complexity of successful attacks over all client
browsers [16], [42].

III. CROW’S DIVERSIFICATION TECHNIQUE

In this section we describe the workflow of CROW for
diversifying WebAssembly programs. First we introduce the
main concepts behind CROW. Then, we describe each stage
of the workflow and we discuss the key implementation details.

A. Definitions

In this subsection we define the key concepts for CROW.

Definition 1: Block (based on Aho et al. [2]): Let P be
a program. A block B is a grouping of declarations and
statements in P inside a function F .

Definition 2: Program state (based on Mangpo et al. [35]):
At any point in time, the program state S is defined as the
collection of local and global variables, and, the program
counter pointing to the next instruction.

Definition 3: Pure block: A block B is said to be pure if
and only if, given the program state Si, every execution of B
produces the same state So.

Definition 4: Functional equivalence modulo program
state (based on Le et al. [29]): Let B1 and B2 be two blocks.
We consider the program state before the execution of the
block, Si, as the input and the program state after the execution
of the block, So, as the output. B1 and B2 are functionally
equivalent if given the same input Si both codes produce the
same output So.

Definition 5: Code replacement: Let P be a program and T
a pair of blocks (B1, B2). T is a candidate code replacement
if B1 and B2 are both pure as defined in Definition 3 and
functionally equivalent as defined in Definition 4. Applying
T to P means replacing B1 by B2. The application of T
to P produces a program variant P ′ which consequently is
functionally equivalent to P .

CROW generates new program variants by finding and
applying code replacements as defined in Definition 5. A
program variant could be produced by applying more than one
candidate code replacement. For example, the tuple, composed
by the code blocks in Listing 3 and Listing 4, is a code
replacement for Listing 2.
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Listing 3: WebAssembly
pure code block from List-
ing 2.
local.get 0
i32.const 2
i32.mul ; 2 * x ;

Listing 4: Code block that
is functionally equivalent to
Listing 3
local.get 0
i32.const 1
i32.shl ; x << 1 ;

B. Overview

CROW synthesizes variants for WebAssembly programs.
We assume that the programs are generated through the
LLVM compilation pipeline. This assumption is motivated as
follows: first, LLVM-based compilers are the most popular
compilers to build WebAssembly programs [30]; second, the
availability of source code (typically C/C++ for WebAssembly)
provides a structure to perform code analysis and produce code
replacements that is richer than the binary code.

CROW takes as input a C/C++ program and produces a
set of unique, diversified WebAssembly binaries. Figure 1
shows the stages of this workflow. The workflow starts with
compiling the input program into LLVM bitcode using clang.
Then, CROW analyzes the bitcode to identify all pure blocks
and to synthesize a set of candidate replacements for each
pure block. This is what we call the exploration stage. In
the generation stage, CROW combines the candidate code
replacements to generate different LLVM bitcode variants.
Finally, those bitcode variants are compiled to WebAssembly
binaries that can be sent to web browsers.

Challenges. The concept of diversifying WebAssembly
programs is novel and it is arguably hard for the following
reasons. First, WebAssembly is a structured binary format,
without goto-like instructions. This prevents the direct ap-
plication of a wide range of diversification operators based
on goto [41]. Second, the existing transformation and di-
versification tools target instruction sets larger than the one
of WebAssembly [39]. This limits the efficiency of diversi-
fication, and the possibility of searching for a large num-
ber of equivalent code replacements. We address the former
challenge using the LLVM intermediate representation as the
target for diversification. We address the latter challenge by
tailoring a superoptimizer for LLVM, using its subset of the
LLVM intermediate representation. In particular, we prevent
the superoptimizer from synthesizing instructions that have
no correspondence in WebAssembly (for example, freeze
instructions), which is an essential step to get executable
diversified WebAssembly code.

C. Exploration stage

Given a program P for which we want to generate Web-
Assembly variants, the exploration stage of CROW identifies
all pure blocks in the LLVM bitcode of P . CROW considers
every directed acyclic graph contained in one function as a
pure block. Then, CROW searches for code replacements for
each one of them.

The generation of a code replacement consists of two steps.
First, the synthesis of the new block, and, second, equivalence
checking. Every variant block that passes the equivalence
check is stored for use in diversification. The synthesis of block
variants consists of enumerating all possible blocks that can
be built as a combination of a given number of instructions,
bounded by a maximum value to keep a tractable synthesis
space.

There are two parameters to control the size of the search
space and hence the time required to traverse it. On one hand,
one can limit the size of the variants. In our experiments we
limit the block variants to a maximum of 50 instructions. On
the other hand, one can limit the set of instructions that are
used for the synthesis. In our experiments, we use between 1
instruction (only additions) and 60 instructions (all supported
instructions in the synthesizer). This configuration allows the
user to find a trade-off between the amount of variants that are
synthesized and the time taken to produce them.

Listing 5: Listing 1 in LLVM’s intermediate representation.

define i32 @f(i32) {
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

ret i32 %3
}

define i32 @main() {
%1 = tail call i32 @f(i32 10)
ret i32 %1
}

Block A
%2 = mul nsw i32 %0,2

Block B
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

In Listing 5 we illustrate the LLVM bitcode representation
of Listing 1. In this bitcode, CROW identifies two pure
blocks in function f(), which are displayed on the right
part of the listing, in gray and green. The first pure block
is composed of one single instruction (line 2) that performs
the 2*x multiplication. The second block has two instructions,
one multiplication and one addition.

Using CROW, it is possible to diversify both blocks. For
example, using a maximum of 1 instruction per replacement
and searching over the complete bitcode instruction set, a
potential replacement for Block A is: %2 = shl nsw i32
%0,1 %. This replacement calculates the same expression
2*x, using a shift left operation.

To determine the equivalence between a pure block and a
candidate replacement, we use an equivalence checker based
on SMT [17]. In our example, the checker would prove that
there cannot be a value of x such that 2 ∗ x 6= x � 1. In
general, if no such counter-example exists, then the functional
equivalence is assumed. On the other hand, if there exists an
input resulting in different outputs for a block and a variant,
then they are proven not equivalent and the variant is discarded.

D. Generation stage

In this stage, we select and combine code replacements that
have been synthesized during the exploration stage, in order to
generate WebAssembly binary variants. We apply each code
replacement to the original program to produce a LLVM IR
variant. Then, this IR is compiled into a WebAssembly binary.
CROW generates WebAssembly binaries from all possible
combinations of code replacements as the power set over all
code replacements.

After the exploration phase, it is possible that two subsets
of code replacements overlap, i.e., they produce the same
WebAssembly binary. The overlap between blocks is explained
as follows: Let S = {(B1, R1), (B1, R2), · · · , (Bn, Rm)} be
a set of candidate replacements over a program P . If two
blocks from the original program Bi, Bj , j 6= i, overlap, i.e.,
the intersection of CFG(Bi)

1 and CFG(Bj) is not empty,

1CFG(A) refers to backward Control Flow Graph starting at inst. A.
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Fig. 1: CROW’s workflow for diversifying WebAssembly programs.

then only the replacements of the largest original block are
preserved when combining blocks.

In this example, the exploration stage synthesizes 6 + 1
bitcode variants for the considered blocks respectively, which
results in 14 module variants (the power set combination size).
Yet, the generation stage would eventually generate 7 variants
from the original WebAssembly binary. This gap between the
number of potential and the actual number of variants is a
consequence of the redundancy among the bitcode variants
when composing several variants into one.

E. Implementation

The majority of the WebAssembly applications are built
from C/C++ source code using the LLVM toolchain. Conse-
quently, the implementation of CROW is based on LVVM/
Furthermore, CROW extends Souper [38], a superoptimizer
for LLVM that aims to reduce the size of binary code. Souper
has its own intermediate representation, which is a subset of
the LLVM IR.

To extract code blocks, we scan LLVM modules, looking
for instructions that return integer-typed values. Each such
instruction is considered as the exit of a code block. Souper’s
representation of a code block is built as a backward traversal
process through the dependencies of the detected instruction.
If memory loads or function calls are found, the backward
traversal process is stopped and the current instruction is
considered as an input variable for the code block. Notice
that, by construction, Souper’s translation is oblivious to the
memory model, thus, it cannot infer string data types or
other abstract data types. The translation from Souper IR to a
BitVector SMT theory is done on the fly. Souper uses the z32

solver to check the equivalence between a code block original
and a potential replacement for it.

We now summarize the main changes that we implement
in Souper and in the LLVM backend in order to support
diversification. Souper, as a superoptimizer, aims at gener-
ating a single variant that is smaller than the original, yet
we want to obtain as many blocks as possible. To achieve
automatic diversification, we modify Souper to disable the
key cost restriction functions, data-flow pruning and peephole
optimizations, all being detrimental for diversification. In order
to increase the number of variants that CROW can generate,
CROW parallelizes the process of replacement synthesis.

2https://github.com/Z3Prover/z3

In addition, CROW orchestrates a series of Souper execu-
tions with various configurations (in particular the size of the
replaced expression). Finally, we carefully fine-tune a set of
19 Souper options to ensure that the search is effective for
diversification in feasible time.

In the generation stage of CROW, we also modify Souper
to amplify the generation of WebAssembly binary diversity.
Initially, Souper generates a single bitcode variant, inserting
all replacements at once. We modify it so that we can obtain
a combination of code replacements. Finally, on the LLVM
side, we disable all peephole optimizations in the WebAssem-
bly backend, in particular instructions merging and constant
folding. This aims to preserve the variations introduced in the
LLVM bitcode during the generation of binaries.

The implementation of CROW is publicly available for
sake of open science and can be reviewed at https://github.
com/KTH/slumps/tree/master/crow.

IV. EVALUATION PROTOCOL

To evaluate the capabilities of CROW to diversify Web-
Assembly programs, we formulate the following research
questions:

RQ1: To what extent are the program variants generated
by CROW statically different? We check whether
the WebAssembly binary variants produced by CROW
are different from the original WebAssembly binary.
Then, we assess whether the generation of x86 machine
code performed by V8’s WebAssembly engine preserves
CROW’s transformations.

RQ2: To what extent are the program variants gener-
ated by CROW dynamically different? It is known
that not all diversified programs produce distinguishable
executions [15], sometimes it is impossible to observe
different behaviors between variants. We check for the
presence of different behaviors with a custom Web-
Assembly interpreter, characterizing the behavior of a
WebAssembly program by its stack operation trace.

RQ3: To what extent can CROW be applied to diversify
real-world security-sensitive software? We assess the
ability of CROW to diversify a state-of-the-art crypto-
graphic library for WebAssembly, libsodium [18].

A. Corpus

We answer RQ1 and RQ2 with a corpus of programs appro-
priate for our experiments. We take programs from the Rosetta
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Code project3. This website hosts a curated set of solutions for
specific programming tasks in various programming languages.
It contains a wide range of tasks, from simple ones, such as
adding two numbers, to complex algorithms like a compiler
lexer. We first collect all C programs from Rosetta Code, which
represents 989 programs as of 01/26/2020. Next, we apply a
number of filters. We discard 1) all programs that do not com-
pile with clang, 2) all interactive programs requiring input
from users i.e., invoking functions like scanf, 3) all programs
that contain more than 100 blocks, 4) all programs without
termination, 5) all programs with non-deterministic operations,
for example, programs working with time or random functions.
This filter produces a final set of 303 programs.

The result is a corpus of 303 C programs. These programs
range from 7 to 150 lines of code and solve a variety of prob-
lems, from the Babbage problem to Convex Hull calculation.

B. Protocol for RQ1

With RQ1, we assess the ability of CROW to generate
WebAssembly binaries that are different from the original
program. For this, we compute a distance metric between the
original WebAssembly binary and each binary generated by
CROW. Since WebAssembly binaries are further transformed
into machine code before they execute, we also check that this
additional transformation preserves the difference introduces
by CROW in the WebAssembly binary. We use the Turbofan
ahead-of-time compiler of V8, with all its possible optimiza-
tions, to generate a x86 binary for each WebAssembly binary.
Then, we compare the x86 version of each variant against the
x86 binary corresponding to the original WebAssembly binary.

We compare the WebAssembly and machine code of each
program and its variant using Dynamic Time Warping (DTW)
[31]. DTW computes the global alignment between two se-
quences. It returns a value capturing the cost of this alignment,
which is actually a distance metric, called DTW. The larger the
DTW distance, the more different the two sequences are. In our
case, we compare the sequence of instructions of each variant
with the initial program and the other variants. We obtain two
DTW distance values for each program-variant pair: one at the
level of WebAssembly code and the another one at the level
of x86 code. Metric 1 below defines these metrics.

Metric 1: dt static: Given two programs PX and VX

written in X code, dt static(PX , VX ), computes the DTW
distance between the corresponding program instructions for
representation X (X ∈ {Wasm, x86}). A dt static(PX ,
VX ) of 0 means that the code of both the original program
and the variant is the same, i.e., they are statically identical
in the representation X . The higher the value of dt static,
the more different the programs are in representation X.

We run CROW on our corpus of 303 programs. We
configure CROW to run with a diversification timeout of 6
hours per program. For each program, we collect the set of
generated variants. For all pairs program, variant that are
different, we compute both dt static for WebAssembly and
x86 representations.

The key property we consider is as follows: if
dt static(PWasm, P ′

Wasm) > 0 and dt static(Px86, P ′
x86)

> 0, this means that both programs are still different when
compiled to machine code, and we conclude that V8’s compiler
does not remove the transformations made by CROW. Notice

3http://www.rosettacode.org/wiki/Rosetta Code

that, this property only makes sense between variants of the
same program (including the original).

C. Protocol for RQ2

For RQ2, we compare the executions of a program and its
variants for a given input. In this experiment, we characterize
the execution of a WebAssembly binary according to its trace
of stack operations.

This method of tracing allows us to evaluate CROW’s
effect on program execution according to the WebAssembly
specification, independently of any specific engine.

For each execution of a WebAssembly program, we collect
a trace of stack operations. These traces are composed of stack-
type instructions: push <value> and pop <value>. All
traces are ordered with respect to the timestamp of the events.
We compare the traces of the original program against those of
the variants with DTW. DTW computes the global alignment
between two traces and provides a value for the cost of this
alignment.

Metric 2: dt dyn: Given a program P and a CROW gen-
erated variant P’, dt dyn(P,P’), computes the DTW distance
between the corresponding stack operation traces collected
during their execution. A dt dyn of 0 means that both traces
are identical. The higher the value, the more different the stack
operation traces.

To answer RQ2 we compute Metric 2 for a study subject
program and all the unique program variants generated by
CROW in a pairwise comparison. The pairwise comparison
allows us to compare the diversity between variants as well.
We use SWAM4 to collect the stack operation traces. SWAM
is a WebAssembly interpreter that provides functionalities to
capture the dynamic information of WebAssembly program
executions including the stack operations. We compute the
DTW distances with STRAC [10].

The builtin WebAssembly API for JavaScript is usually
mutable, thus, the same model for traces collection can be
implemented on top of V8. In other words, a custom interpreter
can be implemented in order to collect the traces in the browser
or standalone JavaScript engines. This validates the usage of
SWAM to study the traces diversity.

D. Protocol for RQ3

In RQ3, we assess the ability of CROW to diversify
a mature and complex software library related to security.
We choose the libsodium [18] cryptographic library, which
natively compiles to WebAssembly. With 3752 commits con-
tributed by 96 developers, its API provides the basic blocks for
encryption, decryption, signatures and password hashing. We
experiment with code revision 2b5f8f2b, which contains 45232
lines of C code. Libsodium has 102 separate WebAssembly
modules that we use as input for CROW. Each module
corresponds to one C file that encompasses a set of related
functions.

To answer RQ3, we run CROW on the libsodium bitcodes,
generating a set of WebAssembly variants. Then, we assess
both binary code diversity and behavioural diversity between
the variants and the original libsodium, using the same tech-
niques as in RQ1 and RQ2.

4https://github.com/satabin/swam
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Fig. 2: Cumulative distribution for all pairwise comparisons
between a program and its variants. Each line corresponds to
a different program representation.

Collecting traces The libsodium repository includes an
extensive test suite of 77 tests, where one test is one usage
scenario. We use this test suite to measure the trace diversity
among program variants. Since some test traces are larger than
1 GB each, we focus on reasonably sized tests: we select the
41/77 test cases that produce a trace containing less than 50
million events each.

To measure the relative trace diversification for each test,
we normalize the dt dyn used in RQ2 by dividing it with
the length of the original trace. This allows us to compare the
relative success of CROW’s diversification technique across
different tests.

Since libsodium uses a pseudo-number generator, we set
a static seed when executing libsodium, so that the diversity
observed in traces is only due to CROW’s diversification.
In WebAssembly, libsodium generates random numbers using
the ChaCha20 [8] cipher through the arc4random API. To
quantify the effectiveness of our diversification technique, we
compare the trace distance produced by our technique with the
trace distance that occurs when the seed is changed (baseline).

V. EXPERIMENTAL RESULTS

In this section we present the results for the research
questions formulated in section IV.

A. To what extent are the program variants generated by
CROW statically different?

We run CROW on 303 C programs compiled to WebAs-
sembly. CROW produces at least one unique program variant
for 239/303 programs. For the rest of the programs (64/303),
the timeout is reached before CROW can find any valid variant.

We subsequently perform a manual analysis of the pro-
grams that yield more than 100 unique WebAssembly variants.
This reveals one key reason that favors a large number of
unique WebAssembly variants: the programs include bounded
loops. In these cases CROW synthesizes variants for the loops
by unrolling them. Every time a loop is unrolled, the loop body
is copied and moved as part of the outer scope of the loop.
This creates a new, statically different, program. The number
of programs grows exponentially with nested loops.

A second key factor for the synthesis of many variants
relates to the presence of arithmetic. Souper, the synthesis
engine used by CROW, is effective in replacing arithmetic
instructions by equivalent instructions that lead to the same

result. For example, CROW generates unique variants by re-
placing multiplications with additions or shift left instructions
(Listing 8). Also, logical comparisons are replaced, inverting
the operation and the operands (Listing 9).

Listing 8: Diversification
through arithmetic expression
replacement.

local.get 0
i32.const 2
i32.mul

local.get 0
i32.const 1
i32.shl

Listing 9: Diversification
through inversion of
comparison operations.

local.get 0
i32.const 10
i32.gt_s

i32.const 11
local.get 0
i32.le_s

Listing 10: Excerpt of WebAssembly program p74: CROW
replaces a loop by a constant.

local.set 1
loop ;; label = @1
...

end
...
i32.store

local.get 0
i32.const 25264

i32.store

We now discuss the prevalence of the transformations made
by CROW when the WebAssembly binaries are transformed to
machine code, specifically with the V8’s engine. In Figure 2
we plot the cumulative distribution of dt static, comparing
WebAssembly binaries (in blue) and x86 binaries (in orange).
The figure plots a total of 103003 dt static values for each
representation, two values for each variant pair comparison
(including original) for the 239 program. The value on the
y-axis shows which percentage of the total comparisons lie
below the corresponding dt static value on the x-axis. Since
we measure the distances between original programs and
WebAssembly variants, then 100% of these binaries have
dt static > 0. Let us consider the x86 variants: dt static is
strictly positive for 99.48% of variants. In all these cases, the
V8 compilation phase does not undo the CROW diversification
transformations. Also, we see that there is a gap between
both distributions, the main reason is the natural inflation
of machine code. For example, two variants that differ by
one single instruction in WebAssembly, can be translated to
machine code where the difference is increased by more than
one machine code instruction.

The zoomed subplot focuses on the beginning of the
distribution, it shows that the dt static is zero for 0.52% of
the x86 binaries. In these cases the V8 TurboFan compiler
from WebAssembly to x86 reverts the CROW transformations.
We find that CROW produces at least one of these reversible
transformations for 34/239 programs. Listing 11 shows one
of the most common transformations that is reversed by
TurboFan, according to our experiments.

Listing 11: Replacement in WebAssembly that is trans-
lated to the same x86 code by V8-TurboFan.

i32.const -<n>
i32.sub

i32.const <n>
i32.add
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We look at the cases that yield a small number of variants.
There is no direct correlation between the number of identified
blocks and the number of unique variants. We manually
analyze programs that include a significant number of pure
blocks, for which CROW generates few variants. We identify
two main challenges for diversification.

1) Constant computation We have observed that Souper
searches for a constant replacement for more than 45% of
the blocks of each program while constant values cannot be
inferred. For instance, constant values cannot be inferred for
memory load operations because CROW is oblivious to a
memory model.

2) Combination computation The overlap between code
replacements, discussed in subsection III-D, is a second factor
that limits the number of unique variants. CROW can generate
a high number of variants, but not all replacement combina-
tions are necessarily unique.

Regarding the potential size overhead of the generated
variants, we have compared the WebAssembly binary size of
the 239 programs with their variants. The ratio of size change
between the original program and the variants ranges from
82% (variants are smaller) to 125% (variants are larger) for
all Rosetta programs. This limited impact on the binary size
of the variants is good news because they are meant to be
distributed to browsers over the network.

Answer to RQ1

CROW is able to generate diverse variants of Web-
Assembly programs for 239/303 (79%) programs in
our corpus. We observe that programs that include
bounded loops and arithmetic expressions are highly
prone to diversification. V8’s TurboFan compilation
to x86 code preserves 99.48% of the transformations
performed by CROW. To our knowledge, this is the
first ever realization of automated diversification for
WebAssembly.

B. To what extent are the program variants generated by
CROW dynamically different?

Now, we focus on the 41 programs that have at least 9
unique WebAssembly variants in order to study the diversity
of execution traces. We apply the protocol described in sub-
section IV-C by executing the WebAssembly programs and
their unique variants in order to collect the stack operation
traces. Then, we compare the traces of each pair of original
program and a variant. We run 1906 program executions and
we perform 98774 trace pair comparisons.

Table I summarizes the observed trace diversity, as captured
by dt dyn (Metric 2), among each program and their variants.
The table is structured as follows: the first, second and third
columns contain the program id, the number of unique variants
and the overall sum of all blocks replacements respectively.
The table summarizes the distribution of distances between
stack operation trace pairs: the minimum value, the maximum
value, the median value, the percentage of values equal to zero
and the percentage of values greater than zero. The programs
are sorted with respect to the number of unique variants. The
green highlight color in > 0% columns represents more than
50% of non-zero comparisons, i.e., high diversification. For
instance, the first row shows the trace diversity for p96, where
99.70% of the pairwise comparisons between all collected
traces have a different dt dyn .

Listing 12: Statically different WebAssembly replacements
with the same behavior, gray for the original code, green for
the replacement.

(1) i32.lt_u
(2) i32.le_s

i32.lt_s
i32.lt_u

(3) i32.ne
(4) local.get 6

i32.lt_u
local.get 4

For the stack operation traces, all programs have at least
one variant that produces a trace different from the original.
All but one (p81) programs have the majority of variants
producing a different stack operation trace. This shows the
real effectiveness of CROW for diversifying stack operation
traces.

We manually analyze variants with high and low trace
diversity. We observe that constant inferring is effective at
changing the stack operation trace. For instance, for program
p74 shown in Listing 10, CROW removes a loop by replacing
it with a constant assignment. The execution of this variant
produces traces that are different because the loop pattern is
not visible anymore in the trace, and consequently, the distance
between the original and the variant traces is large.

We note that there is no relation between the trace distance
and the number of block replacements. A high trace distance
does not necessarily imply a high number of replacements.
For instance, program p135 has only 4 possible replacements
overall its 5 identified blocks yet a median dt dyn of 20163.

We subsequently analyze the cases where diversification is
not reflected in stack operation traces. For example, more than
40% of the pairwise dt dyn distances for p166, p91 and
p81 are equal to zero. This indicates a lower diversity among
the population of variants, than for all the other programs.
This happens because some variants have two different bitcode
instructions (original and replacement) that trigger the same
stack operations. The instructions in Listing 12 are concrete
cases of such kind of replacements. The four cases in List-
ing 12 leave the same value in the stack operation trace.
For each case, the original instruction and the replacement
are semantically equal in the program domain. The fourth
case is a local variable index reallocation, this replacement
only changes the index of the local variable but not the event
in the stack operation trace. These replacements are sound,
produce statically diverse code, but they are not useful to
dynamically diversify the original program. This confirms the
complementary of using static and dynamic metrics to assess
diversification.

The effectiveness of CROW on diversifying stack operation
traces is significant. In a security context, such diverse stack
operation traces are likely to mitigate potential side-channel
attacks [30]. Notably, the attacks based on code profiling are
affected when the executed opcodes and the corresponding
profiles are different [37].

Answer to RQ2

CROW is successful at generating diverse WebAssem-
bly variant programs, for which we are able to observe
different stack operation traces. In other words, CROW
generates dynamically different binaries, and ensures
that variants of a given program yield different stack
operation traces.
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NAME #var Σ Min Max Median 0 % > 0 %

1 p96 220 15 0 24062 820 0.30 99.70

2 p56 192 36 0 45420 1416 1.84 98.16

3 p78 159 35 0 20501 759 1.52 98.48

4 p111 144 45 0 2114 520 3.74 96.26

5 p166 101 152 0 44538 66 45.80 54.20

6 p122 91 34 0 46026 6434 0.24 99.76

7 p67 89 77 0 94036 85692 0.29 99.71

8 p68 85 10 0 10554 260 3.64 96.36

9 p80 78 9 0 17238 618 3.92 96.08

10 p204 77 42 0 36428 3356 0.33 99.67

11 p183 76 9 0 90628 84402 0.57 99.43

12 p136 62 70 0 62953 58028 0.60 99.40

13 p167 46 232 8 888 724 0.00 100.00

14 p226 42 13 0 90736 74476 8.26 91.74

15 p99 38 74 16 9936 5037 0.00 100.00

16 p18 36 7 0 15620 145 1.10 98.90

17 p140 29 17 0 13280 172 6.59 93.41

18 p59 27 6 0 85390 40 1.43 98.57

19 p199 21 87 0 27482 728 4.68 95.32

20 p91 21 21 0 50002 228 43.81 56.19

21 p223 21 115 16 40911 632 0.00 100.00

NAME #var Σ Min Max Median 0 % > 0 %

22 p168 20 6 0 22200 18896 2.20 97.80

23 p174 18 40 6 6566 6395 0.00 100.00

24 p81 17 86 0 4419 0 84.62 15.38

25 p141 17 6 8 2894 132 0.00 100.00

26 p108 16 6 0 85168 79903 8.97 91.03

27 p98 15 4 0 33 25 6.06 93.94

28 p89 14 45 10 15952 89 0.00 100.00

29 p36 14 52 312 33266 30298 0.00 100.00

30 p135 13 5 0 20288 20163 3.57 96.43

31 p161 12 91 240 9792 1056 0.00 100.00

32 p147 12 32 0 54071 21274 7.14 92.86

33 p11 10 38 29798 51846 35119 0.00 100.00

34 p125 10 51 0 4399 4368 7.14 92.86

35 p131 9 4 140 1454 685 0.00 100.00

36 p69 9 48 28 29243 28956 0.00 100.00

37 p134 9 20 4 514 186 0.00 100.00

38 p74 9 19 126 8332 6727 0.00 100.00

39 p79 9 97 4 29 16 0.00 100.00

40 p33 9 52 4 2342 15 0.00 100.00

41 p157 9 64 36 242 166 0.00 100.00

TABLE I: Dynamic diversity for 41 diversified WASM programs. The dynamic diversity is captured by dt dyn between traces.
The rows are sorted by the number of unique variants per program. The table is structured as follows: the first, second and
third columns contain the program id, the number of unique variants and the overall sum of all blocks replacements respectively.
Following, the stats for the dt dyn metric. The colorized cells in the > 0% column represent high diversification.

C. To what extent can CROW be applied to diversify real-
world security-sensitive software?

We run CROW on each of the 102 modules of libsodium
with a 6-hour timeout. We find 45/102 modules that do not
contain any pure block, so they are not amenable to our
diversification technique. CROW produces at least one valid
WebAssembly module variant for 15 of the remaining 57
modules.

Table II presents the key results for these 15 successfully
diversified modules. The first two columns contain the name
and description of the diversified module, and, the number
of unique static variants. The other columns show the total
number of functions inside the module, the names of the
diversified functions and the number of calls to each function
in the considered tests.

Generation of WebAssembly library variants from WebAs-
sembly module variants. The successfully diversified modules
can be combined to obtain a large pool of different versions of
the packaged libsodium WebAssembly library. The Cartesian
product of all module variants produces in theory 1.66E+15
unique libsodium variants. Yet, it is unpractical to store and
execute this large number of variants. Thus, we sample the
pool of possible variants to evaluate our generated variants.
First, for each of the 256 modules, we rank each module
variant with respect to the number of lines changed in the
final WebAssembly textual format. Then, to produce the i-th
library variant, we combine the i-th variant for each module
of libsodium, in order to produce maximally diversified library
variants first. If a module has less than i variants, we use the
original, non-diversified module. According to Table II, the
maximum number of unique variants for a single module is
79 (codecs module). Thus, we sample 79 unique libsodium

variants, ordered by the amount of diversification (the first
variant contains the most changes, and so on). For each variant
we execute the complete test suite to validate its correctness.
All test cases successfully pass for all diversified library
binaries.

Dynamic evaluation of libsodium variants. We compare
the dynamic behaviour of the original libsodium and the
79 library variants. Figure 3 illustrates the distribution of
dt dyn of all collected traces for each libsodium test. The
dt dyn distance is calculated between each diversified trace
and the corresponding original trace for the same test. Each
horizontal bar gives the distribution of dt dyn over the 79
diversified libraries per test. The black triangles show the
dt dyn distance between two different executions of the same
test with different random seeds. They serve as a baseline to
compare the artificial diversity introduced by CROW, against
the natural trace diversity that appears because of random
number generation.

For 18/19 tests, we observe that CROW’s diversified
modules produce a different trace than the original. The wider
violin plots that reach the right-hand side of the figure include
variants that significantly diversify the test execution. We
observe that 4/18 tests stand out as they include variants with
at least 0.8 normalized dt dyn distance. For 6/18 tests, there
is a medium trace diversity as their dt dyn distributions lie in
the mid/left side of the plot. For the rest 8/18 tests we observe
a significantly smaller dt dyn distance.

This means that, in the context of this cryptographic library,
CROW is able to find variants that have a huge impact on the
dynamic stack behaviour of the program. Meanwhile, some
other replacements can have only a marginal impact during the
operation of the program. One factor that can affect this is the
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Module & Description #var #func Diversified Functions #calls
argon2-core
Core functions for the implementation of the Argon2 key
derivation (hash) function [9].

17 6 argon2_finalize
argon2_free_instance
argon2_initialize

0
0
0

argon2-encoding
Functions for encoding and decoding (including salting) Ar-
gon2 [9] hash strings.

11 2 argon2_decode_string
argon2_encode_string

0
0

blake2b-ref
Reference implementation for the BLAKE2 [4] hash function.

7 11 blake2b
blake2b_salt_personal
blake2b_update

0
1.46E+04
2.04E+04

chacha20_ref
Reference implementation of the ChaCha20 stream cipher [6].

7 5 chacha20_encrypt_bytes
stream_ietf_ext_ref_xor_ic
stream_ref
stream_ref_xor_ic

3.51E+06
7.62E+03
1.14E+04
1.14E+05

codecs
Implementations of commonly used codecs for conversions
between binary formats like Base64 [26].

79 5 sodium_base642bin
sodium_base64_encoded_len
sodium_bin2base64
sodium_bin2hex
sodium_hex2bin

0
0
0

2.57E+05
0

core_ed25519
Implementation of the Edwards-curve Digital Signature Algo-
rithm [8].

2 19 crypto_core_ed25519_is_valid_point 0

crypto_scrypt-common
Utility and low-level API functions for the scrypt key deriva-
tion (hash) function [34].

5 5 escrypt_gensalt_r 0

pbkdf2-sha256
Implementation of the Password-Based Key Derivation Func-
tion 2 (PBKDF2) [27].

14 1 escrypt_PBKDF2_SHA256 0

pwhash_scryptsalsa208sha256
High-level API for the scrypt key derivation function [34].

8 19 crypto_pwhash_scryptsalsa208sha256 0

pwhash_scryptsalsa208sha256_nosse
Same as above, but does not use Streaming SIMD Extensions
(SSE).

32 3 escrypt_kdf_nosse
salsa20_8

0
0

randombytes
Pseudorandom number generators.

1 11 randombytes_uniform 5.61E+02

salsa20_ref
Contains a reference implementation of the Salsa20 stream
cipher [7].

12 2 stream_ref
stream_ref_xor_ic

1.14E+04
1.14E+05

scalarmult_ristretto255_ref10
Implementation of the Ristretto255 prime order elliptic curve
group [22].

29 4 scalarmult_ristretto255
scalarmult_ristretto255_base
scalarmult_ristretto255_scalarbytes

0
0
0

stream_chacha20
High-level API for the ChaCha20 stream cipher [8].

2 15 crypto_stream_chacha20
crypto_stream_chacha20_ietf
crypto_stream_chacha20_ietf_ext
crypto_stream_chacha20_ietf_ext_xor_ic
crypto_stream_chacha20_ietf_xor
crypto_stream_chacha20_ietf_xor_ic
crypto_stream_chacha20_xor
crypto_stream_chacha20_xor_ic

6.65E+02
3.19E+03
2.66E+03
1.68E+02
1.68E+02
2.32E+03

0
1.68E+02

verify
Functions used to compare secrets in constant time to avoid
timing attacks.

7 6 crypto_verify_16
crypto_verify_32
crypto_verify_64

2.69E+05
3.40E+03

0

Total 256 114 40 functions

TABLE II: Libsodium modules with at least one variant generated by CROW. The columns on the left include the facts about each
module. The first column contains the name and the functional description of the modules. The second column, #var (highlighted)
gives the number of unique variants generated by CROW. The third column, #func, lists the total amount of functions in each
module. The remaining columns include a list of functions that CROW has successfully diversified and the number of calls per
function in the test suite.

“centrality” of the code that is being replaced. Diversified code
that is called often, potentially inside loops, will have a greater
impact on the stack trace of a program compared to code that
is only called, for example, only during the initialization of
the program.

When we compare the trace diversity against the diversity
due to pseudo-number generation (black triangles in Figure 3),
we observe that: for 2/18 tests CROW trace diversification is
always larger than the one due to random number generation,
for 11/18 tests there exist some variants that exhibit larger
trace diversification than random number generation and for
5/18 tests CROW trace diversification is always smaller than
the one due to random number generation.

Answer to RQ3

We have successfully applied CROW to libsodium, one
of the leading WebAssembly cryptography libraries.
We have shown that CROW is able to create statically

different variants of this real-world library, all of which
being distributable to users. Our original experiments
to measure the trace diversity of libsodium have proven
that the generated variants exhibit significantly differ-
ent execution traces compared to the original non-
diversified libsodium binary. The take-away of this
experiment is that CROW works on complex code.

VI. THREATS TO VALIDITY

Internal: The timeout in the exploration stage is a determi-
nant factor to generate unique variants. It is required to bound
the experimental time. If the timeout is increased, the number
of variants and unique variants might increase.

External: The 303 programs in our Rosetta corpus may not
reflect the constructs used in the WebAssembly programs in the
wild. Yet our experiment on libsodium shows that the results
on the Rosetta corpus hold on real code. To increase external
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Fig. 3: Distribution of normalized dt dyn distances over the
set of libsodium variants covered by each test. The left Y axis
lists the name of each test. The number of unique variants used
per test is listed on the right Y axis. The black triangles point
to the dt dyn distance between two different stack operation
traces of the original test with different random seeds.

validity, we hope to see more benchmarks of WebAssembly
programs published by the research community.

Scale: We measure behavioral diversity with DTW. We are
aware that this behavioral diversity metric does not scale in-
finitely. To make comparisons between large execution traces,
it may be necessary to use a more scalable metric. To mitigate
this scale problem in future work, one option is to compare
software traces using entropy analysis, as proposed by Miran-
skyy et al. [33].

VII. RELATED WORK

Program diversification approaches can be applied at dif-
ferent stages of the development pipeline.

Static diversification: This kind of diversification consists
in synthesizing, building and distributing different, functionally
equivalent, binaries to end users. This aims at increasing the
complexity and applicability of an attack against a large popu-
lation of users [12]. Jackson et al. [24] argue that the compiler
can be placed at the heart of the solution for software diversi-
fication; they propose the use of multiple semantic-preserving
transformations to implement massive-scale software diversity
in which each user gets their own diversified variant. Dealing
with code-reuse attacks, Homescu et al. [23] propose inserting
NOP instruction directly in LLVM IR to generate a variant
with different code layout at each compilation. In this area,
Coppens et al. [13] use compiler transformations to iteratively
diversify software. The aim of their work is to prevent reverse
engineering of security patches for attackers targeting vulner-
able programs. Their approach, continuously applies a random
selection of predefined transformations using a binary diffing

tool as feedback. A downside of their method is that attackers
are, in theory, able to identify the type of transformations
applied and find a way to ignore or reverse them. Our work
can be extended to address this issue, providing a synthesizing
solution which is more general than specific transformations.

The work closest to ours is that by Jacob et al. [25].
These authors propose the use of a “superdiversification”
technique, inspired by superoptimization [32], to synthesize
individualized versions of programs. In the work of Massalin,
a superoptimizer aims to synthesize the shortest instruction
sequence that is equivalent to the original given sequence. On
the contrary, the tool developed by Jacob et al. does not output
only the shortest instruction sequence, but any sequences that
implement the input function. This work focuses on a specific
subset of X86 instructions. Meanwhile, our approach works
directly with LLVM IR, enabling it to generalize to more
languages and CPU architectures. Specifically, we apply our
tool on WebAssembly, something not possible with the X86-
specific approach of that paper.

Runtime diversification: Previous works have attempted to
generate diversified variants that are alternated during execu-
tion. It has been shown to drastically increase the number of
execution traces that a side-channel attack requires to succeed.
Amarilli et al. [3] are the first to propose generation of code
variants against side-channel attacks. Agosta et al. [1] and
Crane et al. [15] modify the LLVM toolchain to compile
multiple functionally equivalent variants to randomize the
control flow of software, while Couroussé et al. [14] implement
an assembly-like DSL to generate equivalent code at runtime
in order to increase protection against side-channel attacks.
CROW focuses on static diversification of software. However,
because of the specificities of code execution in the browser,
this is not far from being a dynamic approach. Since WebAs-
sembly is served at each page refreshment, every time a user
asks for a WebAssembly binary, she can be served a different
variant provided by CROW.

VIII. CONCLUSION

Security has been a major driver for the design of WebAs-
sembly. Diversification is one additional protection mechanism
that has been not yet realized for it. In this paper, we have
presented CROW, the first code diversification approach for
WebAssembly. We have shown that CROW is able to generate
variants for a large variety of programs, including a real-
world cryptographic library. Our original experiments have
comprehensively assessed the generated diversity: we have
shown that CROW generates diversity both among the binary
code variants as well as in the execution traces collected when
executing the variants. Also, we have successfully observed di-
verse execution traces for the considered cryptographic library,
which can protect it against a range of side channel attacks.

Future work includes increasing the number of unique
variants that are generated, by working on block replacement
overlapping detection. Also, the exploration stage and the
identification of code replacements is a highly parallelizable
process, this would increase diversification performance in
order to meet the demands of the internet scale.
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