
Empirical Scanning Analysis of Censys and Shodan
Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot

School of Computer Science, Carleton University, Canada

Abstract—Engines that scan Internet-connected devices allow
for fast retrieval of useful information regarding said devices,
and their running services. Examples of such engines include
Censys and Shodan. We present a snapshot of our in-progress
effort towards the characterization and systematic evaluation
of such engines, herein focusing on results obtained from an
empirical study that sheds light on several aspects. These include:
the freshness of a result obtained from querying Censys and
Shodan, the resources they consume from the scanned devices,
and several interesting operational differences between engines
observed from the network edge. Preliminary results confirm that
the information retrieved from both engines can reflect updates
within 24 hours, which aligns with implicit usage expectations
in recent literature. The results also suggest that the consumed
resources appear insignificant for common Internet applications,
e.g., one full application-layer connection (banner grab) per port,
per day. Results so far highlight the value of such engines to the
research community.

I. INTRODUCTION

website owners to signal to a web search engine (like Google
and Bing) their lack of desire to have their website indexed
(e.g., using the robots.txt file). Both Censys and Shodan
provide a search interface on their websites, where a user may
enter a query and retrieve a list of matching IP addresses; and
both return only a subset of the results for free, and require a
payment for the full set.

Upon conducting a preliminary empirical analysis, we pro-
vide insights into the following questions:
• How fresh are the results obtained from searching Cen-

sys/Shodan (Sec. III)?
• How much resources can we expect to be consumed from

the scanned devices by Censys/Shodan scans (Sec. IV)?
• From the network edge, how does the operation of Censys

and Shodan differ (Sec. V)?
Approaching these question can help validate research re-

lying on these engines. It can also provide insights to: aid
practitioners in deciding whether to opt-out from scans, un-
derstand the context from which results to their search queries
are returned, and spark longer-term discussions regarding the
value (relative to the cost) of such large-scale scans.

We setup virtual machines (VMs) in five locations: San Jose
(California), Tokyo, Montreal, Paris, and Sao Paulo, and ran
four popular services on each VM to receive port scans and
banner grabs. This allows us to receive traffic from Censys
and Shodan, and analyze and compare scanning patterns,
thus approach the above questions. We now detail our data
collection methodology.

II. DATA COLLECTION AND ANALYSIS METHODOLOGY

We used Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) instances to host our VMs. Each EC2 instance
ran Linux 2 Amazon Machine Images (AMI) on top of
Linux kernel 4.14 64bit(x86). VMs were assigned a public
IP address that remained unchanged for the duration of our
experiment. Each VM ran four public-facing services: FTP
(using vsftpd), SSH (using Open SSH), HTTP and HTTPS
(using Apache), thus having four open ports, respectively 21,
22, 80, and 443. We chose these services as they are popular
and both Censys and Shodan scan them. Firewalls were con-
figured with no restrictions, allowing any traffic inbound and
outbound. Data collection lasted 47 days, beginning on March
10, 2020. We used the tcpdump packet capture tool on each
VM to collect all network traffic as pcap (packet capture)
files, which were later searched for Censys and Shodan scans.
We note a potential bias due to using only VMs hosted by
AWS as the engines may put a special focus on big cloud
service providers.

As the Internet evolves, and its usage morphs over time, the
need for systemic search engines that help us understand more
about its connected devices arose. Censys [1] and Shodan [2]
are two prominent such engines, increasingly relied upon
recently by researchers and practitioners alike. Censys was
realized in 2015 [13], and is designed to increase the accessi-
bility of Internet-wide scanning by providing an approximate
real-time view of the Internet as an online, publicly available,
service. Shodan was realized in 2009 as a commercial service,
and was targeted to provide real-time “market intelligence”
about Internet-connected devices [20].

Censys is built upon a suite of technologies
(e.g., ZMap [14], ZGrab [3]) that provide the means to
efficiently enumerate the IPv4 address space and contact
devices therein. It first scans the entire IPv4 address space for
a single port (i.e., horizontal scanning), then further collects
banners (i.e., metadata about a service, or the resources served
by such a service) from responding ports. Shodan, on the
other hand, is less transparent; how it conducts Internet-wide
scans remains unclear to the public.

From the perspective of the scanned devices, both Censys
and Shodan provide means to allow administrators to opt-out
from scans, thus abiding by widely agreed-upon Internet citi-
zenship habits [14]. This is analogous to the means available to

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2021
25 February 2021, Virtual
ISBN 1-891562-67-3
https://dx.doi.org/10.14722/madweb.2021.23009
www.ndss-symposium.org

Identifying Censys’ scans. Censys’ IP address are publicly
known; during our experiment, Censys was scanning from the
subnet 198.108.66.0/23 [4]. We assume that any packet
whose source IP address matches this subnet is from Censys.
We saw 186 IP addresses from this subnet.

Identifying Shodan’s scans. Unlike Censys, Shodan does
not announce its source IP addresses. To identify them, we ran
a DNS history search for the domain *.shodan.io using
SecurityTrails [5]. The SeucrityTrails API allowed us to find
the first time it became aware of a domain (first seen) and
when it became aware of the domain changing (last seen). Any
packet with source IP address belonging to one of Shodan’s
subdomains is assumed to be from Shodan if the timestamp
on the first packet in the TCP session was after the first seen
date and before last seen. If Shodan scans from an IP address
that is not found with our methodology then our experiment
would underestimate the results for Shodan.

Following this methodology, we saw 16 IP addresses with
corresponding names matching *.shodan.io. To confirm
that these belong to independent Shodan scanners, we com-
pared their SHA1 hashes to Shodan’s crawler field—a 40
character hexadecimal string returned upon querying Shodan.
Each of the 16 hashes appeared in the crawler field at least
once, suggesting that a single IP address likely correlates to a
single scanner.

Classifying sessions into Port Scans and Banner Grabs.
We analyze port scans and banner grabs independently. To
do so, some processing needs to be made on the pcap files
because, (1) pcap files are raw, containing one packet per
line, so the representation of a “TCP session” is not directly
available; (2) we need a consistent methodology to classify
several possible cases of the received packets—cases such
as receiving only a TCP SYN packet, only a RST packet,
or a SYN followed by a SYN/ACK and RST; and (3) we
configured four open ports on each VM, but we still received
scans on other (closed) ports. We used the Python library
pcap-splitter [6] to extract and group together packets
that belong to the same TCP session. We then categorized each
session (grouped packets) as follows:
• S : A session of a single packet having the SYN flag set.
• SRE : First packet has SYN flag, second has RST.
• SR : First packet has only SYN flag, second has RST.
• SAR : First packet has only SYN flag, second has only

SYN and ACK flags, last has RST.
• BG : Any TCP session that reaches the TCP ESTAB-

LISHED state [19], contains at least one packet with an
ACK value >1, and ends with a TCP teardown or RST.

• Dangling TCP Handshake: Any TCP session that does not
contain a packet with an ACK value >1, and contains no
packets with RST or FIN flags.

• Dangling TCP Session: Any TCP session that contains a
packet with an ACK value >1, and contains no packets
with RST or FIN flags.

We now formally distinguish a Closed Port Scan from an Open
Port Scan from a Banner Grab as follows:
– Closed Port Scan = SR ∪ SRE

Refresh Span

Read Span Update Span

Token Change Token Read Token Visible

Fig. 1: Variables used to assess the freshness of search results.

– Open Port Scan = SAR ∪ Dangling TCP Handshake
– Banner Grab = BG ∪ Dangling TCP Session

III. FRESHNESS OF SEARCH RESULTS

We analyze the freshness of the results returned upon
running a search query. For example, if a banner search returns
1.2.3.4:80, is this information stale? In other terms, if the
banner is no longer served by this device, how long would
it take Censys/Shodan to capture this? And how long would
it take them to reflect the change in their search results?

Herein we only focus on the freshness of banner grabs
on port 80 (HTTP). To analyze this, we generated a unique
64 character string (token henceforth) for each VM everyday,
for the duration of our data collection phase (47 days). We
updated the index.html page everyday at 10pm EST to
serve the new token. We call this the Token Change instance.
We then searched our pcaps for the moment when an HTTP
GET response (with the new token) was returned to a banner
grab from Censys/Shodan—the Token Read instance. Finally,
everyday we used Censys’ and Shodan’s API search interfaces
to find the new token. If found, we call this the Token Visible
instance. We then analyze the time delays between the three
instances, namely: Read Span, Update Span, and Refresh Span
(Fig. 1). The Refresh Span chart is particularly helpful as it
shows the delay between the changed event and the reflection
of this change to the user. Note that because it is a function
of the time when we queried both engines for the token, the
Token Visible instance is an upper bound, i.e., the token could
have become visible sooner. Accordingly, this applies to the
Refresh Span and Update Span delay variables.

By inspecting our pcap files, we found that many tokens
were never captured (i.e., banner grabbed) by Censys and
Shodan. That is, our next token would replace the previous
one before any banner grab occurs on the replaced token. In
fact, we found that out of the 47 (days) × 5 (VMs) = 235
tokens we generated, only 25 were captured by Censys and 19
by Shodan. More surprising is the fact that for the duration of
the 47 days, we received 46 HTTP banner grabs from Censys
(i.e., summing up all five VMs). From Shodan, we received
102 HTTP banner grabs. Neither Shodan nor Censys would
have been able to capture all tokens, even if the banner grabs
were spaced perfectly.

To analyze their efficiency in reflecting updates onto their
search interfaces, we calculate how fast did the 25 Censys-
captured and the 19 Shodan-captured tokens become visible
after they were captured. Figure 2 shows CDFs of the three

2

0 12.5 25
0

1

Read Span

C
D

F

0 25
0

1

5 15.5

Update Span

C
D

F

Shodan Censys

0 12.5 25
0

1

Refresh Span

C
D

F

Fig. 2: CDFs of freshness results, in hours.

delay variables for the captured tokens. The results show that
both engines are fast to refresh their query responses, with
65% of captured tokens becoming visible on their search
interfaces (Update Span) within ∼15 hours of capturing.
Shodan was slightly faster; 20% of its captured tokens became
visible within 5 hours of being captured (15 hours for Censys).
For the Refresh Span, both engines made all captured tokens
visible within 24 hours of generating these tokens.

IV. SCANNING RESOURCE CONSUMPTION

We now switch to resource consumption. In particular, using
our collected pcap files, we measure the number of SYN
scans and banner grabs per time window (Sec. IV-A), and the
duration with which TCP sessions remain open (Sec. IV-B).

A. Number of Scans

Over the course of our data collection phase (47 days),
each VM received ∼27,614 SYN scans, or a little more than
587 scans per day (176 per day from Shodan, 411 from
Censys). We focus on open port scans and banner grabs, as
these generate more traffic than closed port scans. Figures 3
and 4 show heat maps of the number of open port scans and
banner grabs for each service on each VM. For Censys, despite
the darkness of the (vertical) HTTPS bar (e.g., averaging
more than five times that of HTTP), Censys has generated an
average of ∼97 open port scans on each VM, Shodan half that.
According to our results, a server with only ports 443 and 80
open can expect to receive < 40 banner grabs per month from
each engine. These results are relatively consistent across our
five VMs, with the exception of Paris and Tokyo receiving
37% and 24% more HTTPS scans from Censys than other
locations. Sao Paulo received the largest number of HTTP
scans from Shodan.

B. Duration of Scans

A TCP session duration is the time difference between
receiving the first TCP SYN packet (hence, resources allo-
cated) and the event when the session was terminated (hence,
resources released). The latter occurs when a TCP RST is re-
ceived/sent, when the second TCP FIN packet is received/sent,
or when a session times-out and gets terminated by the OS.
This applies to closed/open port scans and banner grabs.

Fig. 3: Number of open port scans for each service per VM.

Fig. 4: Number of banner grabs for each service on each VM.

For closed ports, almost all scans finished in < 1ms. For
open port scans and banner grabs, Fig. 5 shows CDFs of
the session duration. On average, open port scans lasted ∼1s
(139ms Censys and over 2s Shodan). This can be acceptable in
many cases in practice, depending on the available resources
and the number of open ports. Banner grab sessions took
slightly longer, averaging < 3s across all services and VMs.
The longest session lasted ∼248s, which was an HTTPS
banner grab from Shodan running on the Montreal VM; the
banner grab was completed in 42ms, but the final RST1 packet
was delayed over 248s. The fastest closed port scan was from
Shodan on port 10554 (on the San Jose VM), which was
terminated almost instantly.

V. THEORY OF OPERATION: CENSYS VS SHODAN

We now present a preliminary comparison between Censys
and Shodan, viewing their operation from the network edge.
We again use information extracted from our five VMs and the
pcaps collected. We focus our comparison on: the services
both engines appear interested in (Sec. V-A), their available
resources, particularly their pool of IP addresses (Sec. V-B),
and their scanning configuration (Sec. V-C).

A. Interest in services

Table I shows the five most scanned ports on each VM,
ordered from most (left) to least (right) scanned. Censys and
Shodan were different in the most commonly scanned port:
443 for Censys and 80 for Shodan (with the exception of
Paris, where Shodan scanned 443 a little more than 80). Port

1Most scans were terminated with a RST from Censys/Shodan, not a FIN.

3

102 103 104 105
0

1

Duration (ms)

C
D

F

102 103 104 105
0

1

Duration (ms)
C

D
F

Censys
FTP
SSH

HTTP
HTTPS
Shodan

FTP
SSH

HTTP
HTTPS

Fig. 5: Duration of open port scans (left) and banner grabs
(right) received by all VMs on four services.

443 came second for Shodan. In contrast, ports 21 (FTP)
and 22 (SSH) came second (almost tied) for Censys, with
the exception of Montreal where ports 9200, 2082, 8081, and
8088 were scanned more than ports 21 and 22. In a stark
contrast between both engines, our logs show that Shodan’s
most scanned port (80) came in the ninth position for Censys.
The complete set of ports and services that Censys and Shodan
may have been scanning for, as well as the IANA-registered
service for these ports can be found, respectively, in Tables V
and VI in the appendix.

VM
TCP Port (P) Count (C)

Most Common � Least Common
P C P C P C P C P C

Top five Shodan-scanned ports

San Jose 80 25 443 14 444 12 1177 11 81 10
Tokyo 80 27 443 24 1177 17 7443 14 53 14
Montreal 80 24 443 16 1177 13 81 11 4782 11
Paris 443 32 80 30 81 19 444 16 2086 15
Sao Paulo 80 37 443 9 3460 12 82 11 6666 11

Top five Censys-scanned ports

San Jose 443 52 21 14 5900 14 9200 13 83 13
Tokyo 443 61 22 29 21 23 9200 19 5902 18
Montreal 443 48 9200 13 2082 12 8081 11 8088 11
Paris 443 67 21 21 9200 19 5902 19 8090 18
Sao Paulo 443 47 22 23 9200 13 2083 13 8081 13

TABLE I: Most scanned ports.

B. IP addresses: Pool and Configuration Characteristics

Figure 6 shows the geographic locations of Shodan’s 16
and Censys’ 186 IP addresses that we observed in our pcaps
(Sec. II). WhoisXMLAPI [7] was used for location data.

Shodan’s 16 IP addresses originate from four countries,
whereas Censys’ 186 addresses appear to be only in Michigan,
USA. Figure 7(a) shows the number of TCP sessions initiated
from these locations. In terms of the distribution of scanning
effort on these locations, Fig. 7(b) shows that 40% of Shodan’s
16 scanners contacted all of our five VMs, and about a third
contacted only one VM. This is in contrast to Censys, where
the majority of the 186 scanners contacted all of our VMs.

Fig. 6: Geographic locations of Censys (blue) and Shodan
(red) scanners, and our VMs (stars). Marker size increases
with the number of scans to our VMs. Map generated using
Python Cartopy v0.18.0 [8].

This reflects what appears to be a fundamental difference
between the configuration of both engines’ scanners: Censys
conducting more horizontal scans (each scanner potentially
scanning the entire IPv4 space), whereas for Shodan the
IPv4 space appears divided among its scanners. The latter
arrangement can be more efficient, and can potentially reduce
placement of such IP addresses in globally-coordinated black-
lists. Additionally, Wan et al. [21] found that a single origin
scan will miss 4% of HTTP(S) and 16% of SSH traffic. They
found that scanning from two origins reduces this to 1.7% of
HTTP(S) traffic missed and three origins further reduces the
miss rate to 1%. This appears to provide a coverage advantage
to Shodan over Censys. Nonetheless, Censys’ scanners and
activities are relatively more transparent.

103 104

USA

NL

IS

UK

Number of TCP sessions

Shodan Censys

(a) Scanning origins.

1 2 3 4 5

0

1

Number of VMs contacted

Pr
op

or
tio

n
of

sc
an

ne
rs

(b) Distinctly contacted VMs

Fig. 7: Geographic targets and origins of scanners.

To test whether Shodan configures its geographically-
scattered scanners to scan nearby devices, we calculate the
average of the actual distances between Shodan’s scanners and
our VMs, ADv , and the average of the distances between the
endpoints of observed TCP session, ODv , as follows:

ADv =
∑
s∈S

distance(s, v)
|S|

, ODv =
∑
k∈Kv

distance(F (k), v)
|Kv|

where S is the set of Shodan scanners, Kv is the set of TCP
sessions involving VM v, F (k) is the scanner that initiated

4

TCP session k, and distance(x,y) is the big circle geographic
distance between points x and y. A ratio of ADv to ODv close
to 1 refutes the hypothesis that the geographic distance is a
parameter in matching scanned devices with scanners. A ratio
� 1 suggests that devices are contacted by nearby scanners,
and� 1 suggests otherwise. Table II shows the results, which
generally show no evidence of geographic bias, except for
Montreal. Upon investigating further, we found that this is
due a nearby scanner being responsible for generating more
Shodan traffic to all VMs than other Shodan scanners (some
scanners only scan a subset of ports; see Sec. V-C below).

VM ADvm (km) ODvm (km) ADvm
ODvm

San Jose 4210 3645 1.15
Tokyo 9108 9950 0.9154
Montreal 4547 2009 2.2633
Paris 5304 5880 0.902
Sao Paulo 9769 8725 1.1197

TABLE II: Ratio of the average distance between Shodan
scanners and each VM (ADvm) to the average between the
endpoints of observed TCP session (ODvm).

C. Scanning Configuration

We shed light on several configuration parameters that we
analyzed during our experiment. Specifically, analogous to
the previous analysis regarding whether each scanner was
responsible for scanning a dedicated subset of the IPv4 address
space, we investigate whether every scanner has a dedicated
set of port numbers (services) to scan on each target host. We
also look at the means by which each engine is configured to
request resources. Finally, we analyze and compare the timing
consistency of the engines’ scanning scripts.

Port distribution across scanners. We count the number
of ports scanned by each scanner. For example, if a scanner
made 1000 HTTP port scans, 1 HTTPS, and 10 SSH over the
entire 47 days, then it has scanned three ports (namely, 443,
80, and 22). Figure 8 shows a histogram of the results. The
majority of Censys scanners are focused on 20 or fewer ports,
and very few scanners are assigned hundreds of ports to scan.
Shodan appears to operate differently yet again, where each
scanner is assigned a different number of ports, but generally
in larger numbers than Censys. For example, only two of
Shodan’s scanners were assigned fewer than 200 ports; the
rest were assigned between 200 and 1000 ports. For banner
grabs, the chart on the right (Fig. 8) suggests that banner
grabbing might be the responsibility of few Censys scanners—
only 13 (out of 186) conducted banner grabbing. In contrast,
most of Shodan’s scanners conducted banner grabbing, with
seven scanners (i.e., half of Shodan’s) banner-grabbed from
all four open ports.

Configuration of requesting resources. We examine the
HTTP GET requests in the banner grabs of Censys and Shodan
to see what resources are being requested from our HTTP
service, and how. Combing all five VMs, Censys used one
user agent in all 46 HTTP banner grabs, and always requested

100 101 102 103
0

40

of ports

#
of

sc
an

ne
rs

Censys

100 101 102 103

1

3

5

7

of ports

Shodan

1 2 3 4

1

3

5

7

of open ports

Shodan

Censys

Fig. 8: Per scanner: number of ports scanned by Censys (left)
and Shodan (middle), and the number of ports banner grabbed
by both (right).

the root path. Shodan on the other hand used several user
agents (see Table III in the appendix for a complete list)
and requested multiple paths (Table IV in the appendix).
Using different user agents can provide a higher likelihood of
bypassing traffic filters on the application layer. Configuring
the scans to look as if they are coming from a browser can
further enhance the accessibility of content; e.g., many sites
require a browser to have javascript enabled. The browser of
choice was different across both engines, with Censys using
“Mozilla/5.0 zgrab/0.x”, and Shodan claiming to be a Google
Chrome running on a Windows machine.

Scanning consistency. We examine and compare the con-
sistency, in terms of the time of day, across both engines.
Figures 9 and 10 show the standard deviation of hours between
the start of each SYN scan and banner grab respectively. We
require at least two events to calculate the time between them
(hence, the standard deviation). The empty cells in Fig. 9
and 10 are due to having a single corresponding event. Overall,
Shodan appears slightly more consistent than Censys.

Fig. 9: The standard deviation (σ) of the number of hours
between the start of each SYN scan.

VI. RELATED WORK

Identifying Internet-wide scanners. Analogous to our
methodology, Chen et al. [12] deployed six honeypots and
collected three months worth of network traffic. They used
machine learning on the scanning patterns, which found 16
scanners similar to Shodan but did not belong to Shodan. Upon
analyzing patterns of other scanners (10 belong to Censys
and 6 to PLCscan), and the services they most commonly

5

Fig. 10: The standard deviation (σ) of the number of hours
between the start of each banner grab.

targeted, Durumeric et al. [18] found that many focus on
services commonly associated with vulnerabilities. Heo et
al. [17] study network scanning trends from a 31-day-long
connection log they obtained from two firewalls of a campus
network. They analyzed over 21 billion combined TCP and
UDP connections to determine the characteristics of network
scans targeting the campus. They created heuristics to identify
scanners (scanners were identified by their IP addresses, as we
do herein), and to classify the type of scanning as horizontal
or vertical.

Evaluating search engine functionality. In 2014, Boden-
heim et al. [11] investigated the functionality of Shodan.
They deployed, in one subnet, four Internet-connected
Allen-Bradley ControlLogix Programmable Logic Controllers
(PLCs) with a static IP address publicly reachable via the
Internet. Each PLC exposed two services: HTTP (port 80) and
a common industrial control service (port 44818). Two PLCs
were left with the default configuration, one had its banner
obfuscated, and one had its banner changed to claim it was an
Allen-Bradly ControlLogix. All four PLCs received at least
one port scan from Shodan in fewer than 4 days. (Shodan
does not index port 44818.) The HTTP banners were grabbed
from all four PLCs within 14 days. Using keywords only, the
authors [11] searched Shodan for the PLCs; each PLC was
found within 19 days of the initial deployment. In 2020, Zhao
et al. [22] evaluated five popular search engines, including
Censys and Shodan, measuring their searching ability (how
many devices each engine returns), raw data accuracy (ratio
of valid data), response time (how long until a new device is
indexed) and the scanning period (time difference between two
contiguous scans). They found that Censys and Shodan had
similar searching ability, and both are appropriate for users
who wish to find newly exposed devices. The authors [22]
recommended users who conduct research on recent data to
use Shodan.

Search engines’ output processing. Genge et al. [16]
developed ShoVAT, a tool which processes the output of
Shodan queries and compares it with the National Vulner-
ability Database [9] to detect vulnerable devices on the In-
ternet. They found 3,922 known vulnerabilities across 1,501
services [16]. Ercolani et al. [15] used the data Shodan collects
about devices to create visual models used to attempt to

identify what the devices are.

VII. DISCUSSION AND CONCLUDING REMARKS

Our empirical analysis provides evidence that both Censys
and Shodan have the technical capability of reflecting updates
from their banner grabs onto their search interfaces in a
timely manner. Our analysis on HTTP banner grabs shows
that despite not capturing ∼90% of our daily-changed banners,
remaining (captured) banners were made visible on Censys
and Shodan search interfaces within a day of generating
them. Shodan was slightly faster than Censys in grabbing
new banners, and in making them visible through its search
interface. Based on our experiment, both engines can benefit
from an increased banner grabbing rate, which complement
their efficiency in making new banners visible. Upon analyzing
resource consumption, one can expect to receive < 40 banner
grabs per month from each engine. Port scan sessions for
open ports typically lasted less than a second, with Censys
generally being faster than Shodan to close a session, espe-
cially for HTTP and HTTPS sessions. Banner grabs were
slower, with many sessions lasting longer than 3 seconds.
Finally, we noticed several differences in the operation of
Censys and Shodan. For example, Shodan’s scanners appear to
be geographically scattered around the world, unlike Censys
whose IP addresses are all in Michigan, USA; Censys appears
more focused on HTTP/HTTPS than Shodan, and it appears
to dedicate a specific port to certain scanners, and have other
scanners probe many ports (e.g., several hundred ports for a
single scanner). Shodan’s distribution of ports among scanners
appears less skewed. Possibly a consequence of the previous
point, the time of receiving Shodan’s scanning traffic every
day is slightly more consistent than Censys.

There are several avenues to expand upon the empirical
work presented herein. For example, Censys/Shodan maybe
scanning Amazon’s AWS VMs different from non-Amazon
devices. Additionally, our packet captures can be analyzed
to understand how each engine addresses diurnal effects,
i.e., variations in scans to account for change in results based
on the time of day [14]. Our HTTPS banner-grab freshness
analysis can be extended to other services. In general, the
data collection and analysis methodology used herein can
also be applied to analyze non-TCP traffic from Censys and
Shodan, like ICMP or UDP. Finally, we believe that more
work is needed towards devising a systemic methodology for
identifying traffic and source IP addresses of Internet-wide
scanners that do not make this information publicly available.

Acknowledgements. The second author acknowledges fund-
ing from the Natural Sciences and Engineering Research
Council of Canada (NSERC) through a Discovery Grant. The
third author acknowledges funding from NSERC for both his
Canada Research Chair and a Discovery Grant.

REFERENCES

[1] Censys https://censys.io/.
[2] Shodan https://shodan.io/.
[3] The ZMap Project https://zmap.io/.

6

https://censys.io/
https://shodan.io/
https://zmap.io/

[4] Censys Contact Us https://web.archive.org/web/20190629110633/https:
//censys.io/contact Accessed June 2019.

[5] SecurityTrails https://securitytrails.com/.
[6] Pcap-splitter 1.0.0 https://pypi.org/project/pcap-splitter.
[7] WhoisXMLAPI https://ip-geolocation.whoisxmlapi.com/.
[8] Cartopy 0.18.0 https://pypi.org/project/Cartopy/.
[9] National Vulnerability Database (NIST) https://nvd.nist.gov/.

[10] Internet Assigned Numbers Authority https://www.iana.org/.
[11] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, “Evaluation of the

Ability of the Shodan Search Engine to Identify Internet-facing Indus-
trial Control Devices,” International Journal of Critical Infrastructure
Protection, vol. 7, no. 2, pp. 114–123, 2014.

[12] Y. Chen, X. Lian, D. Yu, S. Lv, S. Hao, and Y. Ma, “Exploring Shodan
From the Perspective of Industrial Control Systems,” in IEEE Access 8:
75359-75369, 2020.

[13] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A Search Engine Backed by Internet-wide Scanning,” in ACM CCS,
2015.

[14] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide Scanning and its Security Applications,” in USENIX Security
Symposium, 2013, pp. 605–620.

[15] V. J. Ercolani, M. W. Patton, and H. Chen, “Shodan Visualized,” in
IEEE Conference on Intelligence and Security Informatics (ISI), 2016.

[16] B. Genge and C. Enăchescu, “ShoVAT: Shodan-based Vulnerability
Assessment Tool for Internet-facing Services,” Security and Commu-
nication Networks, vol. 9, no. 15, pp. 2696–2714, 2016.

[17] H. Heo and S. Shin, “Who is Knocking on the Telnet Port: A Large-
Scale Empirical Study of Network Scanning,” in ACM AsiaCCS, 2018.

[18] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yardley,
R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey,
“An Internet-wide View of ICS Devices,” in IEEE PST, 2016.

[19] J. Postel, “Transmission Control Protocol,” IETF RFC 793, September
1981.

[20] S. Pritchard, “Shodan Founder John Matherly on IoT Security,
Dual-Purpose Hacking Tools, and Information Overload,”
https://portswigger.net/daily-swig/shodan-founder-john-matherly-
on-iot-security-dual-purpose-hacking-tools-and-information-overload
Accessed Oct 2020.

[21] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow,
and Z. Durumeric, “On the Origin of Scanning: The Impact of Location
on Internet-wide Scans,” in ACM IMC, 2020.

[22] B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng, J. Wu, P. Zhou, L. Fang,
and R. Beyah, “A Large-scale Empirical Study on the Vulnerability of
Deployed IoT Devices,” IEEE Transactions on Dependable and Secure
Computing (TDSC), 2020 (early access).

APPENDIX

In Sec. IV, we analyze HTTP GET requests (banner grabs)
from Censys and Shodan. Table III shows the user agents used
by Shodan scanners, and Table IV shows the paths Shodan
scanners requested. Censys scanners always used user agent
“Mozilla/5.0 zgrab/0.x” and the path “/”.

Shodan User Agents Count

No User Agent 58
Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36 20
python-requests/2.23.0 2
python-requests/2.10.0 9
python-requests/2.11.1 1
python-requests/2.19.1 5
python-requests/2.22.0 2

TABLE III: Shodan user agents when requesting a resource
from the HTTP service.

In Table I, Sec. V-A, we listed the ports most commonly
scanned by Censys and Shodan. In Table V (Censys) and
Table VI (Shodan) we list the IANA [10] registered service for

Shodan Paths Count

/ 20
/robots.txt 20
/sitemap.xml 19
/.well-known/security.txt 19
/favicon.ico 19

TABLE IV: Shodan HTTP resources requested.

these ports, as well as which service a search on the respective
engine returns when queried for the given port.

Port IANA Registry Censys Search Result

25 SMTP SMTP
81 - -
83 MIT ML Device -
88 Kerberos -

2082 HTTP -
2083 HTTP -
4567 TRAM
5900 Remote Frame Buffer VNC
5901 - VNC
5902 - VNC
8080 http-alt HTTP
8081 sunproxyadmin -
8088 radan-http -
8090 opsmessaging -
9200 wap-wsp Elasticsearch
16993 Intel(R) AMT SOAP/HTTPS HTTPS

TABLE V: List of Censys-scanned ports, and their IANA-
associated services.

Port IANA Registry Shodan Search Result

25 SMTP SMTP
53 DNS -
81 - HTTP
82 xfer XtremeRAT

102 iso-tsap multiple
444 Simple Network Paging Protocol SonicWALL
1177 DKMessenger Protocol FileZilla Server
1604 icabrowser OpenSSH
1723 pptp OpenSSH
2086 GNUnet HTTP
2222 EtherNet-IP-1 HTTP
3460 EDM Manger Unreal ircd
4782 - OpenSSH
5555 Dual Stack MIPv6 NAT Traversal OpenSSH
5800 - RealVNC
6666 - OpenSSH
7443 Oracle Application Server HTTPS SonicWALL

51235 - rippled

TABLE VI: List of Shodan-scanned ports, and their IANA-
associated services.

7

https://web.archive.org/web/20190629110633/https://censys.io/contact
https://web.archive.org/web/20190629110633/https://censys.io/contact
https://securitytrails.com/
https://pypi.org/project/pcap-splitter
https://ip-geolocation.whoisxmlapi.com/
https://pypi.org/project/Cartopy/
https://nvd.nist.gov/
https://www.iana.org/
https://portswigger.net/daily-swig/shodan-founder-john-matherly-on-iot-security-dual-purpose-hacking-tools-and-information-overload
https://portswigger.net/daily-swig/shodan-founder-john-matherly-on-iot-security-dual-purpose-hacking-tools-and-information-overload

	Introduction
	Data Collection and Analysis Methodology
	Freshness of Search Results
	Scanning Resource Consumption
	Number of Scans
	Duration of Scans

	Theory of Operation: Censys vs Shodan
	Interest in services
	IP addresses: Pool and Configuration Characteristics
	Scanning Configuration

	Related Work
	Discussion and Concluding Remarks
	References
	Appendix

