
HTTPS-Only: Upgrading all connections
to https in Web Browsers

Christoph Kerschbaumer
Mozilla Corporation

ckerschb@mozilla.com

Julian Gaibler
Mozilla Corporation

jgaibler@mozilla.com

Arthur Edelstein
Mozilla Corporation
arthur@mozilla.com

Thyla van der Merwe†
ETH Zürich

tvdmerwe@ethz.ch

Abstract—The number of websites that support encrypted and
secure https connections has increased rapidly in recent years.
Despite major gains in the proportion of websites supporting
https, the web contains millions of legacy http links that
point to insecure versions of websites. Worse, numerous websites
often use http connections by default, even though they already
support https. Establishing a connection using http rather
than https has the downside that http transfers data in
cleartext, granting an attacker the ability to eavesdrop, or even
tamper with the transmitted data. To date, however, no web
browser has attempted to remedy this problem by favouring
secure connections by default.

We present HTTPS-Only, an approach which first tries to
establish a secure connection to a website using https and
only allows a fallback to http if a secure connection cannot
be established. Our approach also silently upgrades all insecure
http subresource requests (image, stylesheet, script) within
a secure website to use the secure https protocol instead.
Our measurements indicate that our approach can upgrade the
majority of connections to https and therefore suggests that
browser vendors have an opportunity to evolve their current
connection model.

I. INTRODUCTION

The Hypertext Transfer Protocol (generally displayed as
http in a browsers address-bar) [10] is the fundamental pro-
tocol through which web browsers and websites communicate.
However, data transferred by the regular http protocol is
unprotected and transferred in cleartext, such that attackers
are able to view, steal, or even tamper with the transmitted
data. Carrying http over the Transport Layer Security (TLS)
protocol (generally displayed as https in the address-bar of
a browser) [11] fixes this security shortcoming by creating
a secure and encrypted connection between the browser and
the website. More precisely, TLS enables the browser to
authenticate the identity of the web server to the browser, and
ensures that messages sent between the browser and the server
are kept confidential from all other parties. Browsers typically
display the lock icon (µ) in the address-bar to indicate that the
connection is an https connection and therefore encrypted
and secure.

Over the past few years we have witnessed tremendous
progress towards migrating the web to rely on https instead

†Work completed whilst this author was employed by Mozilla.

of the outdated and insecure http protocol. Efforts like HTTP
Strict Transport Security (HSTS) [14] and the vitally important
Let’s Encrypt initiative [21] have helped to accelerate this
migration. HSTS informs the browser that a server prefers
secure connections, and Let’s Encrypt [21] allows web servers
to automatically obtain a browser-trusted certificate, enabling
secure connections over https between browser and server.
Importantly, the majority of websites already support https
connections, and those that do not are increasingly uncommon.
And yet, regrettably, the web contains millions of legacy http
links that point to insecure versions of websites. Additionally,
websites frequently fall back to using the insecure and outdated
http protocol. Web browsers traditionally do not make any
effort to adjust this security drawback by trying to upgrade the
request and establish a secure connection instead.

As of December 2020, all major browsers (Chrome, Fire-
fox, Edge, Safari) do not attempt to upgrade the scheme of
a URL when the user clicks any outdated legacy http link.
Additionally, all browsers default to using http when the
user enters a scheme-less URL, (e.g., typing example.com
into the address-bar). They also do not attempt to upgrade the
scheme of a URL to https when the user enters or pastes an
http URL into the address-bar. This industry-wide browser
preference for http connections has been the status quo since
the inception of the web and has not changed even after the
introduction of https. Browser vendors are understandably
hesitant to upgrade connections when such upgrades could
downgrade a user’s experience in any form.

On the server side, converting all legacy http links to
https in websites is time-consuming and expensive. To
successfully migrate a whole website, it’s necessary to serve
not only top-level documents but also all subresources (such as
images, stylesheets, or scripts) over https, to make sure that
no page content is blocked by web browsers’ Mixed Content
Blocker [36]. Thus it is also not surprising that not all websites
have yet fully migrated to https.

To compensate, we present HTTPS-Only Mode, a new
security feature that tries to upgrade all connections (top-
level and subresource) to rely on the secure https protocol.
The principle idea behind the HTTPS-Only approach is that
resources are increasingly likely to be available over https as
the web progresses towards https. HTTPS-Only first tries to
establish a secure https connection to a website. If and only
if that secure connection cannot be established, our algorithm
presents the end user with an exception page, explaining the
security risk and giving the user an option to either abandon
the connection attempt, or to connect using the insecure and
outdated http protocol. Our approach aims to pave the way
for a reform in industry-wide browser design to make https
the default protocol for the web.

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2021 
25 February 2021, Virtual
ISBN 1-891562-67-3
https://dx.doi.org/10.14722/madweb.2021.23010
www.ndss-symposium.org



The remainder of this paper is structured as follows:

• In Section II we provide background information on
the related mechanisms HTTP Strict Transport Secu-
rity and Mixed Content Blocking.

• In Sections III and IV we present the design and im-
plementation details of HTTPS-Only Mode, a browser
security feature which upgrades all connections from
http to https, implemented in Firefox (v.83.0).

• In Section V we examine the effectiveness of the
proposed HTTPS-Only approach by evaluating real
world data reported by Firefox end users.

• In Section VII we discuss the feasibility of changing
the industry wide default to use https instead of
http in all web browsers.

II. BACKGROUND

Before presenting the design and implementation of
HTTPS-Only Mode, we give an overview of two relevant
security technologies: (a) HTTP Strict Transport Security and
(b) Mixed Content Blocking. Both technologies are essential
to the HTTPS-Only approach and to the objective of making
the web rely on secure connections only.

A. HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS) [14] is a browser
security mechanism that allows a website to signal that the
browser should only interact with a website using secure
https connections and never with insecure http connec-
tions. For HSTS-enabled websites, the browser will require
an https connection to a website even when the URL the
browser is following is a non-secure http URL.

A website implements an HSTS policy by sending
the Strict-Transport-Security response header in
https server responses during https connections. The
presence of the header indicates that the browser should auto-
matically upgrade http links to resources on the website to
the corresponding https links. Because browsers will ignore
the header if it is sent over non-secure http, web servers
utilising HSTS first have to redirect and upgrade the non secure
http request to a secure https request. The header can
further provide a max-age directive specifying how long the
browser should cache the provided HSTS information.

When the browser receives an HSTS header, it caches
the fact that the sending website wishes to be upgraded,
and upgrades future requests to the website. This allows
the browser to automatically turn any non-secure http link
for a website into a secure https link. For example, sup-
pose https://siteA/index.html embeds a script from
http://siteB/widget.js. If siteB deploys HSTS,
and the browser has previously visited siteB and additionally
received an HSTS header, then the browser will load the script
over https despite the http link.

HSTS has a vulnerability, however: before a browser has
visited a website and received HSTS information, a request
may still occur using plain http and is therefore still be vul-
nerable to downgrade attacks by tools such as SSLStrip [22].

To decrease the risk of any kind of downgrade attack, modern
browsers introduced the HSTS Preload mechanism - a com-
piled list of HSTS supporting domains which is shipped with
the browser [1], [23]. The browser will only make secure
https connections to websites on the HSTS Preload list.
Unfortunately, the web contains billions of websites [16] and
hence scaling such lists remains challenging. For example, as
of December 2020, the Firefox preload list contains roughly
100,000 entries.1

B. Mixed Content Blocking

The Mixed Content Blocker [36] is a browser security
mechanism that blocks insecure content on pages that are
supposed to be secure. That is, if the top level page is https
then a browser’s Mixed Content Blocker blocks requests for
non-secure subresources within that page. The mixed content
specification distinguishes between active (blockable) and pas-
sive (optionally-blockable) content.

a) Passive Mixed Content: Content, such as images,
audio, and video resources, cannot alter other portions of
a website page. For example, an attacker could replace an
image served over non-secure http with an inappropriate or
deceptive image, but could not otherwise change the behaviour
of the page. According to the mixed content specification [36],
blocking such content is optional and browser vendors may
decide whether to block or allow such content. For a long time
all major browsers followed the suggestion of the specification
and loaded mixed passive content, additionally providing an
indicator in the browser UI signalling that mixed content
had loaded. More recently, the successor specification named
Mixed Content Level 2 suggests that browsers should auto-
upgrade passive mixed content [39].

b) Active Mixed Content: In contrast, blockable con-
tent such as scripts or stylesheets have access to all or parts
of the Document Object Model (DOM) [34]. Loading active
mixed content into an otherwise fully https compatible
website allows an attacker to change the behaviour of, or
even steal sensitive user information from, the https website.
For example, if a script were loaded over non-secure http,
an attacker could inject a modified script that would log the
user’s keystrokes to an attacker’s server. This is why modern
browsers now warn users when a non-secure website page
has a password field, even if the password is submitted over
https [24]. Because of the high risk posed by active content,
the mixed content specification suggests that browsers always
block mixed active content.

We recognise that both of the aforementioned technologies
are critical security enhancements to the browser ecosystem.
Nevertheless, HSTS and Mixed Content Blocking do not fully
solve the problems posed by web connection security. More
precisely, if a website does not get upgraded to https, then
the Mixed Content Blocker has no effect and if a website gets
upgraded to https, then the Mixed Content Blocker might
block relevant resources necessary for the functionality of
the website, therefore potentially downgrading the end user’s
experience.

1https://searchfox.org/mozilla-central/source/
security/manager/ssl/nsSTSPreloadList.inc

2



III. DESIGN

The fundamental security problem of the current browser
practice of defaulting to use insecure http, instead of secure
https, when initially connecting to a website is that attackers
can intercept the initial request. Hijacking the initial request
suffices for an attacker to perform a man-in-the-middle attack
which in turn allows the attacker to downgrade the connection,
eavesdrop or modify data sent between client and server.

Using http as the browser default was sensible when
the bulk of websites supported http. In 2020, however, we
see that the majority of websites support https. Regrettably,
misconfigured websites frequently default to the insecure and
outdated http protocol even though they already support
https. Worse, the web contains millions, if not billions, of
legacy http links that point to insecure versions of websites.
When a user clicks on such a link, a browser traditionally
connects to the website using the insecure http protocol.
To overcome this legacy problem and to establish a secure-
by-default connection mechanism, our proposed approach at-
tempts to silently upgrade connections. More precisely, when
the user clicks an http link or enters an http URL in
the address-bar, HTTPS-Only first tries to establish a secure
connection to the website using https.

foo.com

30X REDIRECT

https://fo
o.com

GEThttp://foo.com

GEThttps://foo.com

2

3

Browser foo.com

400 BAD REQUEST

Error

GEThttps://foo.com

(Optional) GEThttp://foo.com

2

3

Browser

CURRENT DEFAULT: HTTP HTTPS-ONLY DEFAULT: HTTPS

1 1

5

4

200 OK

Strict-Tr
ansport-Security: ...

Fig. 1: Current browser behaviour defaulting to http (left)
vs. HTTPS-Only behaviour defaulting to https (right).

Current best practice to counter the explained man-in-the-
middle security risk primarily relies on HSTS (see Section II).
However, HSTS does not solve the problems associated with
performing the initial request in plain http. As illustrated in
Figure 1 (left), the current browser default is to first connect
to foo.com using http (see 1 ). If the server follows best
practice and implements HSTS, then the server responds with
a redirect to the secure version of the website (see 2 ). After
the next GET request (see 3 ) the server adds the HSTS
response header (see 4 ), signalling that the server prefers
https connections and the browser should always perform
https requests to foo.com (see 5 ) .

In contrast and as illustrated in Figure 1 (right), the
presented HTTPS-Only approach first tries to connect to the
web server using https (see 1 ). Given that most popular
websites currently support https, our upgrading algorithm
commonly establishes a secure connection and starts loading
content. In a minority of cases, connecting to the server using
https fails and the server reports an error (see 2 ). The
proposed HTTPS-Only Mode then prompts the user, explaining
the security risk, to either abandon the request or to connect
using http (see 3 ).

IV. IMPLEMENTATION

In brief, our proposed security-enhancing feature internally
upgrades (a) top-level document loads as well as (b) all
subresource loads (images, stylesheets, scripts) within a secure
website by rewriting the scheme of a URL [8] from http
to https. While this overall approach is simple in principle,
implementing a product-ready version of the presented upgrad-
ing algorithm entails many corner cases and potential pitfalls,
which we describe in detail in this section.

We implement our upgrading mechanism within Fire-
fox (v.83.0) which enforces a Secure by Default [18] loading
mechanism and attaches meta-information to every resource
load. Building on these efforts, we implement HTTPS-Only,
by instrumenting and subsequently encoding additional infor-
mation into the meta object attached to every single request.
This encoding of additional information in a request’s (top-
level or subresource) meta object allows us to silently upgrade
any connection from http to https in Necko, the network
layer in Firefox.

A. Upgrading Top-Level (HTML Document) Loads

Upgrading a top-level request (that is, the top-level HTML
document [40] of a web page) with HTTPS-Only entails uncer-
tainties about the response that the browser needs to handle.
If everything works optimally, then Firefox using HTTPS-
Only simply connects to a website using https and the
browser proceeds to load the web page securely. If, however,
connecting securely to the web server fails, then HTTPS-
Only prompts the user with an exception page, explaining the
problem and the security risk, and provides an option for the
end user to ‘Accept the Risk’ and connect using http. Our
approach supports this fallback mechanism because at present
not all websites on the Web support https, and simply
blocking any connection to those websites would downgrade
the end user’s experience. To accommodate for websites which
do not yet support secure connections, we distinguish between
the following two error cases:

a) Immediate Errors: If there is an error response,
either from the remote server itself or a firewall, then our
approach can instantly respond to that error. Error responses
can range from a TCP Reset packet to server responses
with some type of TLS error. Therefore, our approach inter-
prets all errors reported by the networking code as an HTTPS-
Only error. If detected, our approach prompts the user with an
exception page that explains the problem and the security risk,
and provides an option to connect to the website using http.

b) Timeouts: A non-responding firewall or a miscon-
figured or outdated server that fails to send a response can
result in long timeouts which ultimately downgrade an end
user’s experience, forcing the user to wait a long time for the
exception page to appear before they can continue browsing.
When testing HTTPS-Only we experienced timeouts taking as
long as 90 seconds. To mitigate this problem, HTTPS-Only first
sends a top-level request for https, and after an N-second
delay, if no response is received, sends an additional http
background request. If the background http connection is
established prior to the https connection, then this signal
is a strong indicator that the https request will result in a
timeout. In this case, the https request is canceled and the
user is shown the HTTPS-Only Mode exception page.

3



1 void PotentiallySendBGRequest(nsIChannel* aOrigChannel) {
2 // if not top-level load, then there is nothing to do
3 nsILoadInfo* loadInfo = aOrigChannel->GetLoadInfo();
4 if (loadinfo->Type() != TYPE_DOCUMENT)){
5 return;
6 }
7

8 // if already https, then there is nothing to do
9 nsIURI* uri = aOrigChannel->GetURI();

10 if (!uri->SchemeIs("http")) {
11 return;
12 }
13 NewTimerWithCallBack(3000, SendBGRequest(aOrigChannel));
14 }
15

16 void SendBGRequest(nsIChannel* aOrigChannel) {
17 nsIURI* uri = aOrigChannel->GetURI();
18 uri->StripPathAndQuery();
19

20 uint32_t loadFlags = LOAD_ANONYMOUS
21 | LOAD_BYPASS_CACHE
22 | LOAD_HTTPS_ONLY_EXEMPT;
23

24 nsIChannel* bgChannel = NewChannel(uri, loadFlags);
25

26 BGListener *bgListener = new BGListener(aOrigChannel);
27 bgChannel->SetNotificationCallBacks(bgListener);
28 bgChannel->AsyncOpen();
29 }
30

31 void BGListener::OnStartRequest() {
32 if (mOrigChannel->IsLoading()) {
33 return;
34 }
35 mOrigChannel->Cancel(POTENTIAL_TIMEOUT);
36 }

Listing 1: HTTPS-Only Mode trying to establish top-level
https connection while simultaneously connecting using
http in the background to avoid long timeouts.

Whenever a user enters an insecure URL into the address-
bar, or clicks a legacy link, our HTTPS-Only approach up-
grades the connection to https, but subsequently calls
the function PotentiallySendBGRequest(), provid-
ing an nsIChannel argument which is Firefox’s internal
representation of a network request in Necko. The func-
tion PotentiallySendBGRequest() determines if our
mechanism should send a background request so that end
users do not have to wait for a connection timeout in case
the website does not respond to the upgraded https request
(thereby improving the user experience of our HTTPS-Only
mechanism).

As illustrated in Listing 1, this function first queries the
nsILoadInfo of the nsIChannel (Line 3), a data struc-
ture which provides varied loading information [18]. Amongst
other things, the nsILoadInfo object conveys the load type.
Since our approach only performs a background request for
top-level loads it can immediately return if the load type of
the request is not TYPE_DOCUMENT (Line 5). Similarly, if
the request is not http (Line 10), meaning the user has
already entered an https scheme, then there is no need to
send a background request and the function can return. If,
however, the checks have not caused the function to return,
then we send a background request by calling the function
SendBGRequest() using an N-second delay (Line 13).
Using a delay is crucial because we need to account for enough
time such that the browser and the web server can negotiate
parameters, perform the TLS handshake, and establish a se-
cure connection. We empirically found that setting N=3000

milliseconds allows for the best results on Desktop and Mobile
(please see Figure 6 in the Evaluation section).

Path and query information is irrelevant in determining
whether a server responds to a connection request, and users
browsing using HTTPS-Only Mode expect the browser to not
leak any user sensitive information. Therefore, in the first
step in the function SendBGRequest(), we strip any path
and query information from the URL (Line 18). While our
approach strips user sensitive information from the background
request so as to not reveal any user data by default, we also
provide an option for cautious users to opt out of sending
the background request.2 The downside is that such cautious
users will have to wait until the request times out before the
exception page appears.

Next, we equip the new background network connection
(Line 20) with three flags: LOAD_ANONYMOUS,
LOAD_BYPASS_CACHE, LOAD_HTTPS_ONLY_EXEMPT.
These three flags ensure that we (a) perform an anonymous
request by not attaching any cookies, (b) ask that the request
does not end up in our cache, and (c) exempt the load from
HTTPS-Only, otherwise our upgrading mechanism would
upgrade the connection to https later in Necko which we
explicitly want to avoid for sending the background request.

Before opening the background channel and connect-
ing to the server (Line 28), we have to create a Listener
(Line 26) and set the Notification callbacks (Line 27). These
two mechanisms allow our code to track progress of the
original, upgraded top-level channel. In particular, within the
function OnStartRequest() on Line 31, we check if the
original channel has already started loading by consulting
mOriginalChannel->IsLoading(). If that function re-
turns true, then we know that the original channel, which was
upgraded to https, is already loading. If that function returns
false, however, meaning that the upgraded channel encounters
a problem, then we cancel the original channel (Line 35). This
causes the exception page to appear and signals to the end user
that the server has not responded to the https request. The
user then can then to choose to connect to the website using
plain http, if desired.

B. Upgrading Subresource (Image, Stylesheet, Script) Loads

Any given web page consists of many different resources
that are fetched by the browser as requested by the top-level
HTML document [40], including images, stylesheets, scripts
and other content linked via URLs [8].

Upgrading the top-level document only to use https
would provide limited security guarantees because an active
network attacker could still eavesdrop and tamper with subre-
sources loaded over http. Additionally, not upgrading sub-
resources to https results in mixed content (see Section II),
and a browser’s implementation of the Mixed Content Blocker
starts blocking active content like scripts, thereby downgrading
an end user’s experience.

Instead of only upgrading top-level requests, our holistic
approach also upgrades subresources by rewriting the scheme
in the URL. However, if loading a subresource over https
fails, then in contrast to the handling of top-level loads, our

2security.https only mode send http background request

4



approach does not provide any kind of fallback mechanism.
Instead HTTPS Only logs a message to the Browser Console
indicating that the upgrade attempt failed but, as previously
mentioned, does not fall back to trying to load the request
using insecure http.

In addition to comprehensively enforcing https for sub-
resources, HTTPS-Only also accounts for WebSockets [13]. A
WebSocket provides full-duplex communication channels over
a single TCP connection and enables interaction between a
web browser (or other client application) and a web server
with lower overhead than half-duplex alternatives such as
http polling. Similar to other subresource loads, HTTPS-Only
upgrades a WebSocket’s scheme from ws: to wss:.

It can happen that a website itself is available over https
but resources within the website page, such as images or
videos, are not available over https. Consequently, such web-
sites may not look right or might malfunction. To compensate,
our implementation provides an option which allows users
to disable HTTPS-Only for a website that has been loaded
with https. For any website that has been upgraded by
HTTPS-Only Mode, Firefox shows a user-interface widget in
the security doorhanger, accessed by clicking the lock icon (µ)
in the address-bar, which allows the user to temporarily or
permanently disable HTTPS-Only for that website.

Beyond these considerations, a practical implementation
of HTTPS-Only also needs full integration with two critical
browser security mechanisms related to subresource loads:
(a) Mixed Content Blocker, and (b) Cross-Origin Resource
Sharing (CORS).

a) Interaction with the Mixed Content Blocker: As
explained in Section II, the Mixed Content Blocker blocks
http subresources within a top-level https page. Since our
approach upgrades resources in Necko, the networking layer
in the Firefox web browser, we have to adjust the Mixed
Content Blocker implementation to not block the potential
mixed content subresource load, relying on Necko to upgrade
the load later.

1 bool BlockMixedContent(
2 nsIURI* aTopLevelURI, nsIChannel* aSubresourceChannel) {
3 if (!aTopLevelURI->SchemeIs("https")) {
4 return false;
5 }
6

7 nsIURI* channelURI = aSubresourceChannel->GetURI();
8 if (!channelURI->SchemeIs("http")) {
9 return false;

10 }
11

12 if (Preferences::HTTPS_ONLY_MODE_ENALBED()) {
13 nsILoadInfo* loadInfo = aSubresourceChannel->LoadInfo();
14 if (loadInfo->HttpsOnlyMode() != HTTPS_ONLY_EXEMPT) {
15 return false;
16 }
17 }
18 // evaluate if subresource is active or passive content
19 return true;
20 }

Listing 2: Interaction of HTTPS-Only with the Mixed Content
Blocker.

For every subresource load within Firefox, the browser
consults the function BlockMixedContent(). As illus-
trated within Listing 2, if a the top-level document load is not
https, then a browser’s Mixed Content Blocker has nothing

to evaluate and can return at this point (see Line 3). Further, if
the subresource load is not http (which is the case when
loading data: [9] or also blob: [38]), then the Mixed
Content Blocker also has nothing to evaluate and can return
(see Line 8). Generally, the actual work for the mixed content
algorithm starts after Line 10, when we know the top-level
load is https and the subresource load is http, indicating
the load is actually mixed.

On Line 12 we have a check for whether the preference for
HTTPS-Only is enabled. If the preference for HTTPS-Only is
not set to true, then the Mixed Content Blocker implementation
works as for every other subresource load despite having a
branch for the presented HTTPS-Only implementation. If the
preference is true, then we have to check the actual mode using
HttpsOnlyMode() stored in the nsILoadInfo (Line 14).
This flag ensures the load is not exempt from upgrading; more
details on Exemptions are given in Section IV-C. If the load
is not exempt from upgrading, then we return at Line 15,
not blocking the subresource load as mixed content with the
knowledge that the subresource request will be upgraded to
https later in Necko before loading any data over the
network.

b) Interaction with CORS: Cross-Origin Resource Sharing
(CORS) [35] is a mechanism that uses additional headers
to tell browsers to give a web application running at one
origin, access to selected resources from a different origin.
A web application executes a cross-origin http request when
it requests a resource that has a different origin (scheme, host
or port) [12] from its own.

Before performing any kind of CORS check, the browser
first evaluates whether the request is same-origin with the
encompassing security context. To illustrate, lets assume a
top-level document of https://www.example.com
performs an XMLHttpRequest (XHR) [41] to
http://www.example.com/foo. In such a case,
the browser has to issue a CORS request because the schemes
of http and https differ, meaning the request is cross
origin and hence requires CORS to succeed. But since
our proposed approach will upgrade the XHR request to
https://www.example.com/foo it will also render the
CORS request obsolete and hence we need to discard it.

1 bool CheckHTTPSOnlyPreventsCORS(
2 nsIURI aTopLevelDocURI, nsIChannel* aSubresourceChannel) {
3

4 nsIURI* channelURI = aSubresourceChannel->GetURI();
5 if (!channelURI->SchemeIs("http")) {
6 return false;
7 }
8

9 nsString topLevelDocHost = aTopLevelDocURI->GetHost();
10 nsString subresourceHost = channelURI->GetHost();
11

12 if (topLevelDocHost.Equals(subresourceHost)) {
13 return true;
14 }
15 return false;
16 }

Listing 3: Interaction of HTTPS-Only with CORS.

Once Firefox’s CORS implementation detects that a request
is cross-origin, it will normally enforce CORS (note that CORS
only applies to http(s): requests and is discarded for
all other schemes). Since our approach potentially upgrades

5



requests from http to https, we have to add a carve-
out to account for that scenario by consulting the function
CheckHTTPSOnlyPreventsCORS().

As illustrated in Listing 3, the newly added helper function,
named CheckHTTPSOnlyPreventsCORS(), first checks
if a request is http (Line 5), as otherwise our approach would
not influence the result of the load. If the load is in fact http,
meaning that it will be upgraded to https later in the loading
cycle, the helper function simply needs to verify that the host of
the top-level document (Line 9) and the host of the subresource
load (Line 10) are equal (Line 12). If they are equal, meaning
that only the scheme differs, then there is no need to issue a
CORS request because our implementation makes the request
to be same-origin by upgrading the subresource scheme from
http to https. If that is not the case, and the hosts differ,
then our approach has no influence on the result and CORS
will be applied to the request, as it would without operating
in HTTPS-Only Mode.

C. Upgrading Exemptions

Generally, and as previously mentioned, we designed
HTTPS-Only Mode following the principle of Secure by De-
fault which means that by default, our approach will upgrade
all outgoing connections from http to https. Following
this principle allows us to provide a future-proof product
implementation where exceptions to the rule require explicit
annotation, such as in the following two illustrative examples:

a) OCSP Requests: The Online Certificate Status Pro-
tocol (OCSP) [29] allows the browser to validate or determine
the revocation status of an X. 509 certificate by sending an
OCSP request to the OCSP server listed in the certificate.
OCSP commonly works under the soft-fail principle, which
means that if the server cannot be reached, then it is assumed
that the certificate is still valid. Unsuccessfully upgrading such
a request would carry a higher risk for users than allowing it to
be sent over http. Internally, when creating the meta object
named nsILoadInfo [18] for an OCSP request, we annotate
the request by setting the flag HTTPS_ONLY_EXEMPT, which
instructs our algorithm to exempt that request from being
upgraded to https. We are mindful that having to rely on
http is not optimal for preserving the user’s privacy. While
Firefox still supports OCSP, this privacy drawback is one of
the many reasons Firefox will soon switch to CRLite [20] to
determine certificate revocation status.

b) Captive Portal Requests: Captive portals are special
websites that users need to visit to access a public network,
commonly at hotel lobbies, airports or coffee shops, before
access to the network and internet is granted. A common
method to implement such captive portals is to intercept all
web traffic to a web server and return an http redirect to a
captive portal. To determine whether a user has access to the
internet, Firefox sends a network request in the background
to a specific website. If the website responds as expected,
then Firefox can assume the user is connected to the internet.
Since https requests cannot be modified by the network to
redirect to the captive portal, this background request needs to
remain a plain http request. Hence, we explicitly annotate
these requests by setting the flag HTTPS_ONLY_EXEMPT on
the nsILoadInfo-object, so that our HTTPS-Only algorithm
does not upgrade them.

V. EVALUATION

We break down the evaluation of our approach into four
segments. We start out by first providing statistics, gathered
over recent years, showcasing the percentage increase of
websites relying on https (Section V-A). Second, we lay out
fundamentals about our data-gathering process including the
time frame and participating users of our study (Section V-B).
Third, we provide detailed numbers on the effectiveness of our
approach by showing how many top-level (document) loads
our mechanism is able to upgrade (Section V-C), and finally,
we present similar details for subresource loads (Section V-D).

A. State of the Internet - Websites loaded using https

201
4

201
5

201
6

201
7

201
8

201
9

202
0

202
1

0%

20%

40%

60%

80%

100%

Fig. 2: Evolution of websites relying on https for the years
2014 to 2020. (Note: Mozilla also reports this evolvement of
websites relying on https to Let’s Encrypt [21]).

In 2015, a mere six years ago, not even 40% (Figure 2)
of web pages were loaded using https, leaving more than
half of the websites vulnerable to man-in-the-middle attacks,
thereby jeopardising an end user’s security and privacy.

In 2016, Let’s Encrypt was launched, and likely had a large
impact on increasing the number of websites relying on https
by making it possible for website owners to automatically ob-
tain a free browser-trusted certificate. As illustrated in Figure 2,
the graph shows a doubling of https use between the years
2016 and 2019.

By 2020, around 84% (Figure 2) of web pages were loaded
using https. While the exact usage rate varies by region, we
note that in the United States, for example, the number of
websites loading over https is as high as 92%. Taking a
closer look at the development between the years 2019 and
2020, however, reveals that the increase of websites loading
over https flattens. This flattening of the curve signals
that we have entered a new phase. We hypothesize that new
approaches, such as HTTPS-Only Mode, can help to close the
gap and allow more websites to load using https, ultimately
delivering a fully secure web with a 100% of connections being
over https.

6



B. Background on Data-Gathering

We examine the capabilities and potential limitations of
our approach by inspecting real world data from Firefox
end users. HTTPS-Only Mode was launched as an opt-in
security feature in Firefox 83, which was released on Novem-
ber 17th, 2020. Users can enable the feature by visiting
about:preferences#privacy and flipping the radio
button to enable HTTPS-Only Mode.

The Mozilla Telemetry Portal [26] allows us to present
information which we gathered during one full Firefox release
cycle, from November 17th to December 17th, 2020. Please
note that our telemetry mechanisms measure and collect non-
personal information, such as performance, usage and customi-
sations and sends this information to Mozilla on a daily basis.
All of the collected information used for analysis is subject
to Mozilla’s Data Privacy Principles which are covered in the
Firefox Data Documentation [25].

During our collection period of one month we were able
to collect real world data of 103,431 Firefox users who
participated in our study and agreed to report information
back to Mozilla. Evaluating real-world browsing behaviour
of Firefox release users allows us to quantitatively examine
HTTPS-Only, as presented in the following two subsections.

C. Upgrading Top-Level (HTML Document) Loads

To give a detailed picture of the potential of HTTPS-
Only on top-level (document) loads, we report the results of
four measurements: (1) the fraction of successful upgrades
to https from legacy addresses, where browsers would
traditionally connect using the outdated and insecure http
protocol, (2) the fraction of secure page loads in general,
(3) the rate at which users see an HTTPS-Only exception page
due to the fact that the navigated site does not currently support
https, and (4) the time required to establish a secure https
(TLS) connection with a remote website.

1) Success rate of top-level (document) upgrades of
legacy addresses: Our approach specifically aims to ensure
connections use the secure https protocol, where browsers
traditionally would connect using the http protocol. To target
this data set, our telemetry logs a success when our mechanism
is able to upgrade a connection by rewriting the scheme of a
URL from http to https and a load succeeds.

successfull upgrade

to https:

displayed

exception page

73.19%

26.81%

Fig. 3: Attempts to upgrade top-level (document) legacy ad-
dresses from http to https via HTTPS-Only.

As illustrated in Figure 3, the HTTPS-Only mechanism
successfully upgrades top-level (document) loads from http
to https for more than 73% of legacy address. These 73%
of successful upgrades originate from the user clicking legacy
http links, or entering http (or even scheme-less) URLs in
the address-bar, where the target website, fortunately, supports
https.

Our observation that HTTPS-Only can successfully upgrade
seven out of ten of top-level loads from http to https
reflects a general migration of websites supporting https. At
the same time, this fraction of successful upgrades of legacy
addresses also confirms that web pages still contain a multitude
of http-based URLs where browsers would traditionally
establish an insecure connection.

2) Rate of secure web page loads: In addition to measuring
the upgrade ratio of our approach, we further examine the
impact of HTTPS-Only on a browser’s security by measuring
the overall fraction of pages that load using https. Our
telemetry allows us to compute and report the fraction of http
to https connections for all top-level (document) loads.

3.7%

3.5%

already https:

http: pages allowed by user

successfull upgrade to https:

92.8%

Fig. 4: Use of https for top-level (document) loads when
HTTPS-Only is enabled.

As illustrated in Figure 4, telemetry from participating
users in our study reports that in 92.8% of cases the top-level
URL is already https without any need to upgrade. This
rate is higher than the reported 84% of websites relying on
https which we described in Section State of the Internet
(see Section 2). We attribute the higher intrinsic https rate
to the browsing behaviour of participating users. If a secure
connection cannot be established, HTTPS-Only Mode shows
an exception page, where users are then free to choose to
abandon the connection attempt and not to visit a site that
doesn’t support https.

We further see that HTTPS-Only users experienced a suc-
cessful upgrade from http to https in 3.5% of the loads,
such that, overall, 96.3% of page loads are secure.

The remaining 3.7% of page loads are insecure, on websites
for which the user has explicitly opted to allow insecure
connections. Note that the total number of insecure top-level
loads observed depends on how many pages a user visited on
the website or websites they had exempted from HTTPS-Only.

7



3) Rate at which users see an exception page: We think
that users are likely to perceive frequent exception pages as
a degradation of their browsing experience. Hence we believe
that the biggest impact to a user’s experience when browsing
the web using HTTPS-Only is the rate at which they will
see an exception page. Our recording mechanism allows us
to observe how often the user encounters an exception page
as a result of HTTPS-Only trying to establish a secure https
connection, but the remote website does not respond positively
to the https request.

0 25 50 75 100 125 150 175 200
Exception pages per 1000 web page visits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y,
 c
um

ul
at
iv
e

Fig. 5: Cumulative probability distribution of the rate at which
users see exception pages as they browse.

We compute the frequency of exception pages seen by users
per 1,000 web page visits. When users browse the web using
HTTPS-Only they experience a range of error page frequencies,
depending on the locale of the visited pages and their browsing
preferences, hence we audit and examine the distribution.

In summary, the error page distribution, as illustrated in
Figure 5, shows:

• The median user experienced 4.3 exception pages per
1,000 page visits

• 34% of users saw no exception pages at all when
visiting 1,000 pages, and

• 95% of users saw fewer than 48 exception pages per
1,000 visits.

Our measurements show that across the population, the vast
majority of attempts to visit a page securely succeed, and only
a small minority of visit attempts result in an error page.

4) Time to successfully establish an https connection:
We further record the time it takes the browser to successfully
establish an https connection to a website. This information
allows us to empirically determine after how many millisec-
onds it is unlikely to be able to connect securely to a website.
As explained in Section III, and in particular in Listing 1, we
use this information to mitigate connection timeouts and in
turn improve the user experience of HTTPS-Only.

0 50 68 93 12
7
17
3
23
6
32
2
43
9
59
9
81
7
1,1
15
1,5
21
2,0
76
2,8
33
3,8
66
5,2
75
7,1
98
9,8
22
13
,40
3
18
,28
9
24
,95
6
34
,05
4
46
,46
9
63
,41
0
86
,52
7

11
8,0
71

16
1,1
15

21
9,8
51

30
0,0
00

milliseconds

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

~3
00

0m
s

Fig. 6: Time in milliseconds for establishing a top-level
(document) https connection.

As illustrated in Figure 6, we observe that in more than
96% of cases we are able to establish a secure https
connection to a top-level page in less than 3,000 milliseconds.
Therefore, after 3,000 milliseconds, we launch a background
http request. If the server-client round-trip time of the
background http request still manages to establish an http
connection faster than the upgraded top-level request, then our
algorithm cancels the top-level https request and shows the
user an exception page giving them the option to connect using
http.

Our approach aims to change the default connection mech-
anism within a browser and first tries to connect using https.
Any feasible implementation of HTTPS-Only, however, needs
to provide some kind of fallback to http, even if only as
an interim solution. Again, our approach aims to upgrade as
many connections to rely on https as possible but does not
try to eliminate the reachability of legacy websites which do
not (yet) support https.

D. Upgrading Subresource (Image, Stylesheet, Script) Loads

Similar to what is reported in Figure 4, showing that 93%
of top-level loads already rely on https, the vast majority of
subresource loads also already rely on https.

ima
ge

styl
esh

eet scri
pt

vide
o

aud
io font fetc

h

xml
http

requ
est

sub
doc

ume
nt

obje
ct

othe
r

agg
reg

ate
0%

20%

40%

60%

80%

100%

82.04%

92.26%

80.85%

31.36%
27.43%

84.25%

59.14%
63.19%

74.64%

62.89%

73.61%
66.51%

Fig. 7: Successful subresource upgrades of legacy addresses
from http to https via HTTPS-Only.

Here, however, we focus on the success rate of HTTPS-
Only for the minority of links using legacy http URLs,
where browsers traditionally would carry out the subresource
load using the insecure http protocol. Our recording logs
a successful upgrade when HTTPS-Only is able to rewrite
the scheme of a legacy URL from http to https and the
subresource load succeeds.

8



Image, Stylesheet, Script: As illustrated in Figure 7 our ap-
proach is able to upgrade the majority of the three fundamental
subresources for legacy addresses, namely resources of type
image in 82% of cases, stylesheet in 92% of cases, and script
in 80% of cases. In practice, website maintainers sometimes
focus on securing the top-level document by making it avail-
able over https but do not update hyperlinks for subresources
correspondingly. We believe that the high success rate reported
is due to the fact that legacy image, style and script tags are
mostly same-origin with the top-level document and therefore
mostly have a secure version available.

Audio, Video, Font: Insecurely linked subresources of type
video, audio or font appear much less often on websites than
images, stylesheets or scripts. Our logging shows that on an
average day we record 3,906 insecure video requests, 2,073
insecure audio requests and 3,079 insecure font-face requests.
In contrast, on an average day we record 1,189,977 insecure
image requests. As illustrated, we record successful upgrades
for insecure video in 31% of cases, insecure audio in 27%
of cases and insecure font-face in 84% of cases. We think
that respective tags for audio and video gained popularity only
recently - during the same time websites increasingly started
to rely on https - in practice most video is streamed from
services like youtube.com which all rely on https to
begin with, meaning that our upgrading mechanism does not
kick in.

Fetch and XMLHttprequest: Although fetch and XML-
HttpRequest provide similar functionality, our recording shows
that users encounter insecure XMLHttpRequests more than
three times as often as insecure fetch requests. Most likely
because the fetch specification gained popularity recently and
developers were already aware of the security drawbacks of
not using https. We see that both perform similarly in terms
of upgrade success - almost 60% of fetch upgrades and more
than 63% of XMLHttpRequests upgrades succeed.

Subdocument and Object: Loading a subdocument is in
fact very similar to loading a top-level document, with the
important difference being that the subdocument load appears
in a frame or iframe. Hence the success ratio mirrors what we
report in Figure 3: our approach is able to upgrade 74% of
insecure subdocument loads from http to https.

Other: Firefox internally distinguishes between over 50
different content types for loading resources. We explicitly list
the success ratio of the the most popular types above, and
label the remaining types, such as download or web-manifest,
as “other.” Our measurements indicate a success rate of around
73% for all the types assigned to this bucket.

Summary of upgrades in aggregate: As mentioned above,
we observe that the majority of subresources within an https
document are already https in the first place. For the
remaining legacy-linked subresources, which would load using
http in a traditional browser setting, our approach is able to
upgrade 66% in aggregate. Again, these 66% of successful
upgrades originate from our approach being able to upgrade
legacy http URLs, where browsers traditionally would carry
out the subresource load using the insecure http protocol.

VI. RELATED WORK

Relying on https is key to providing protection for
any traffic between a web browser and the server. Studies
conducted by Sivakorn et al. [30], [31], Drakonakis et al. [3]
and Englehardt et al. [5] confirm the problematic situation
of websites not properly deploying https. These studies
conclude that websites which do not, or only partially, deploy
https expose private information to attackers. Our approach
mitigates the risk of exposing private user information by
always encrypting and delivering content using https.

In 2008, Jackson and Barth proposed a mechanism [17]
that allows web servers to force browsers to interact with a
website only using secure https connections. This mech-
anism built the foundation for the HSTS specification [14]
which, if properly deployed [19], allows websites to protect
themselves against protocol downgrade attacks. However, the
initial request remains unprotected from active attacks. To
mitigate this risk, all major browsers deploy HSTS Preload
lists which contain known websites supporting HSTS, thereby
allowing a browser to perform the initial request over https.
Unfortunately, HSTS Preload lists do not scale to the size
of the internet and therefore leave the majority of websites
unprotected against downgrade attacks. Further, HSTS has the
downside that it opens up an additional tracking vector [28],
[33]. Our proposed HTTPS-Only mechanism overcomes these
limitations and automatically updates all requests so that
websites can rely on https, starting with the initial request.

Statistics gathered by Porter Felt et al. [6] show that by
2017 over 50% of web browsing took place over https.
In 2020, Let’s Encrypt reported that their free, automated,
and open Certificate Authority issued more than 1.5 million
certificates daily. These numbers confirm that https is on
the rise, and hence different approaches are being launched
to try to deliver more content over https. For example,
the Content-Security-Policy [32] (CSP) hosts the directive
upgrade-insecure-requests [37], which provides a
mechanism for websites to upgrade all of their requests from
http to https. While this opt-in directive provides a mech-
anism for sites to upgrade legacy content within their own host
range, it requires active deployment by the website maintainer.

The famous browser extension HTTPS Everywhere [4],
and related mechanisms Smart HTTPS [15] and HTTPZ [2]
allow browsers to fully encrypt communications with many
major websites. The downside of any extension approach is
that browsers typically block active mixed content before the
extension gets the opportunity to upgrade a request.

Finally, the World Wide Web Consortium (W3C) is work-
ing on a specification for auto-upgrading mixed content [39]
and the Chrome browser recently announced that it would
ship this behaviour [7]. Ultimately, all upgrading mechanisms
have to acknowledge that web architecture permits resource
requests to return different content when queried using http
or https. As discussed by Paracha et al. [27] the number of
sites that exhibit such behaviour is small and we argue that
this problem will vanish over time once https becomes the
norm. While auto-upgrading mixed content only upgrades sub-
resources of type image and media, our HTTPS-Only approach
upgrades all subresources, and additionally attempts to upgrade
top-level (document) connections to rely on https.

9



VII. DISCUSSION

Currently, all major browsers (Chrome, Firefox, Edge,
Safari) default to using http when the user enters a scheme-
less URL into the address-bar. Similarly, all web browsers, by
default, do not try to upgrade the scheme of the URL to https
when the user clicks an outdated legacy http link or enters
an http URL into the address-bar. We attribute this industry-
wide behaviour of relying on the insecure http protocol rather
than its secure successor to the desire of browser vendors to
avoid downgrading a user’s experience. Unfortunately, relying
on a processing model which sends the initial request to a
website in cleartext jeopardises the security and privacy of
end users because it allows attackers to prevent subsequent
upgrades to a secure connection.

Currently, it seems that browsers rely in on web-
sites following best practice and redirecting an initial re-
quest to https. To illustrate the severity of this secu-
rity shortcoming we note that the web application secu-
rity community has been focussing on exactly this prob-
lem by introducing new mechanisms including HSTS and
CSP’s upgrade-insecure-requests. Both of these ap-
proaches require considerable effort from the website, however.
For example, it is almost impossible for the developer of
a website that uses HSTS to tell whether a given browser
accessing the website has received HSTS information for the
website. Getting a domain on a browser’s HSTS Preload list, so
that the browser only uses secure connections to interact with a
website, presents an additional burden for website developers.
Given the billions of websites, it is questionable whether HSTS
Preload lists can ever scale to accommodate most of the web.

We argue that a better approach for user agents is to first
try to establish a secure connection. This approach reduces the
burden for website authors, and puts the security back under
the control of user agents, operating in the best interests of the
user. Requiring an explicit user opt-in to insecure http con-
nections provides further protection against active downgrade
attacks. Thus we believe that browser vendors should consider
integrating some kind of native support similar to our proposed
HTTPS-Only Mode, which first tries to establish a secure
connection to a website and only falls back to an insecure
connection in the case where the website is not reachable using
the https protocol.

To summarize: a large majority of web connections already
support https. Because the percentage of web pages loaded
using https currently exceeds 84%, as reported by Let’s
Encrypt [21], we believe that we are entering a final phase
of securing the web, where we anticipate that, ultimately,
almost every website will be available over https. We think
that the time has come for browser vendors to reconsider
the default protocol used for establishing a connection to a
website. Additionally, the presented upgrading mechanism has
the ability to compensate for legacy http links, incorrectly
entered URLs in the address-bar or incorrectly linked resources
in websites, and therefore provides a mechanism to silently fix
security compatibility issues. We think that the extra protection
provided by explicitly prompting users to opt-in before they
connect insecurely to a website is becoming more feasible now
that such prompts need be shown only occasionally.

VIII. CONCLUSION

We have presented HTTPS-Only, a new browser connection
model which first tries to establish a secure connection to a
website using https and only allows a fall back to http if
a secure connection cannot be established. Additionally, our
approach silently upgrades all insecure http subresources
(image, stylesheet, script) within a secure website to use
https.

Evaluating real-world browsing behaviour of over 100,000
Firefox release users shows that our approach is capable of
upgrading over 70% of top-level (document) loads to rely on
https, where browsers traditionally would connect using the
insecure and outdated http protocol. The success of HTTPS-
Only in upgrading legacy links, together with our observation
that the median user can successfully connect to a website
using https 995 times when visiting 1,000 sites, suggests that
our approach is useful and practical. We believe that HTTPS-
Only highlights the path to achieving a fully secure web, and
that now is a good time for browser vendors to begin re-
evaluating their current connection model.

ACKNOWLEDGMENTS

We would like to thank everyone in Security Engineering at
Mozilla for their feedback, reviews, and insightful comments.
In particular we are grateful to following Mozillians for
making HTTPS-Only Mode possible: Meridel Walkington, Eric
Pang, Martin Thomson, Steven Englehardt, Alice Fleischmann,
Angela Lazar, Mikal Lewis, Wennie Leung, Frederik Braun,
Tom Ritter, June Wilde, Sebastian Streich, Leli Schiestl, Daniel
Veditz, Prangya Basu, Dragana Damjanovic, Valentin Gosu,
Chris Lonnen, Andrew Overholt, and Selena Deckelmann.

REFERENCES

[1] Chromium Project. Check HSTS preload status and eligibility. https:
//hstspreload.org/, 2012. (checked: January, 2021).

[2] claustromaniac. HTTPZ. https://github.com/claustromaniac/httpz, 2020.
(checked: January, 2021).

[3] K. Drakonakis, S. Ioannidis, and J. Polakis. The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws. In Proceedings of the Conference on Computer and Communi-
cations Security, 2020.

[4] EFF. HTTPS:// Everywhere. https://www.eff.org/https-everywhere,
2014. (checked: January, 2021).

[5] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,
A. Narayanan, and E. W. Felten. Cookies that give you away: The
surveillance implications of web tracking. In Proceedings of the
International Conference on World Wide Web, 2015.

[6] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz.
Measuring HTTPS Adoption on the Web. In USENIX Security Sympo-
sium, 2017.

[7] Google. No More Mixed Messages About HTTPS. https://blog.
chromium.org/2019/10/no-more-mixed-messages-about-https.html,
2020. (checked: January, 2021).

[8] IETF. Uniform Resource Locators (URL)). https://tools.ietf.org/html/
rfc1738, 1994. (checked: January, 2021).

[9] IETF. The ”data” URL scheme. https://tools.ietf.org/html/rfc2397,
1998. (checked: January, 2021).

[10] IETF. Hypertext Transfer Protocol – HTTP/1.1). https://tools.ietf.org/
html/rfc2616, 1999. (checked: January, 2021).

[11] IETF. HTTP Over TLS. https://tools.ietf.org/html/rfc2818, 2000.
(checked: January, 2021).

10



[12] IETF. The Web Origin Concept. https://tools.ietf.org/html/rfc6454,
2011. (checked: January, 2021).

[13] IETF. The WebSocket Protocol. https://tools.ietf.org/html/rfc6455,
2011. (checked: January, 2021).

[14] IETF. HTTP Strict Transport Security (HSTS). https://tools.ietf.org/
html/rfc6797, 2012. (checked: January, 2021).

[15] ilGur. Smart HTTPS. https://mybrowseraddon.com/smart-https.html,
2020. (checked: January, 2021).

[16] Internet Live Stats. Total number of Websites. http://www.
internetlivestats.com/total-number-of-websites/, 2014. (checked: Jan-
uary, 2021).

[17] C. Jackson and A. Barth. Forcehttps: protecting high-security web sites
from network attacks. In Proceedings of the International Conference
on World Wide Web, 2008.

[18] C. Kerschbaumer. Enforcing Content Security by default within Web
Browsers. In Proceedings of Cybersecurity Development Conference,
2016.

[19] M. Kranch and J. Bonneau. Upgrading https in mid-air: An empirical
study of strict transport security and key pinning. In NDSS, 2015.

[20] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson. Crlite: A scalable system for pushing all tls revocations
to all browsers. In Symposium on Security and Privacy, 2017.

[21] Let’s Encrypt. Let’s Encrypt Stats. https://letsencrypt.org/stats/, 2020.
(checked: January, 2021).

[22] Moxie Marlinspike. New Tricks For Defeating SSL In Prac-
tice. https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/
BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf, 2009. (checked:
January, 2021).

[23] Mozilla. Preloading HSTS. https://blog.mozilla.org/security/2012/11/
01/preloading-hsts/, 2012. (checked: January, 2021).

[24] Mozilla. Insecure password warning in Firefox. https://support.mozilla.
org/en-US/kb/insecure-password-warning-firefox, 2017. (checked: Jan-
uary, 2021).

[25] Mozilla. Mozilla Data Documentation. https://docs.telemetry.mozilla.
org/, 2020. (checked: January, 2021).

[26] Mozilla. Telemetry Portal. https://telemetry.mozilla.org/, 2020.
(checked: January, 2021).

[27] M. T. Paracha, B. Chandrasekaran, D. R. Choffnes, and D. Levin.
A Deeper Look at Web Content Availability and Consistency over
HTTP/S. 2020.

[28] Paul Syverson and Matthew Traudt. HSTS supports targeted surveil-
lance. In USENIX Security Symposium, 2018.

[29] B. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 Internet Public Key Infrastructure - Online Certifi-
cate Status Protocol - OCSP. https://tools.ietf.org/html/rfc6960, 2013.
(checked: January, 2021).

[30] S. Sivakorn, A. D. Keromytis, and J. Polakis. That’s the way the cookie
crumbles: Evaluating https enforcing mechanisms. In Proceedings of
the Workshop on Privacy in the Electronic Society, 2016.

[31] S. Sivakorn, I. Polakis, and A. D. Keromytis. The cracked cookie jar:
HTTP cookie hijacking and the exposure of private information. In
Symposium on Security and Privacy, 2016.

[32] S. Stamm, B. Sterne, and G. Markham. Reining in the Web with Content
Security Policy. In World Wide Web, 2010.

[33] M. Traudt and P. Syverson. Does Pushing Security on Clients Make
Them Safer? https://petsymposium.org/2019/files/hotpets/proposals/
pushing-insecurity-hotpets19.pdf, 2019.

[34] W3C. Document Object Model (DOM). http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf, 2004. (checked:
January, 2021).

[35] W3C. Cross-Origin Resource Sharing (CORS). http://www.w3.org/TR/
cors, 2010. (checked: January, 2021).

[36] W3C. Mixed Content. https://www.w3.org/TR/mixed-content/, 2014.
(checked: January, 2021).

[37] W3C. Upgrade Insecure Requests. https://www.w3.org/TR/
upgrade-insecure-requests/, 2015. (checked: January, 2021).

[38] W3C. File API - The Blob Interface and Binary Data. https://w3c.
github.io/FileAPI/#blob-section, 2020. (checked: January, 2021).

[39] W3C. Mixed Content Level 2. https://w3c.github.io/
webappsec-mixed-content/, 2020. (checked: January, 2021).

[40] WHATWG. HTML. https://html.spec.whatwg.org/, 2020. (checked:
January, 2021).

[41] WHATWG. XMLHttpRequest - Living Standard. https://xhr.spec.
whatwg.org/, 2020. (checked: January, 2021).

11


