
Detecting Tor Bridge from Sampled Traffic in
Backbone Networks

Hua Wu∗†‡, Shuyi Guo∗†, Guang Cheng∗†, Xiaoyan Hu∗†
∗School of Cyber Science & Engineering, Southeast University, Nanjing, China

†Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Jiangsu Nanjing
‡Purple Mountain Laboratories for Network and Communication Security (Nanjing, Jiangsu)

Email: hwu@seu.edu.cn, shuyguo@seu.edu.cn, gcheng@njnet.edu.cn, xyhu@njnet.edu.cn

as normal traffic. The bridge is used in conjunction with the
obfuscation protocol. Commonly used obfuscation protocols
include meek and obfs4, so there are obfs4 bridge and meek
bridge. When the user connects to the dark web through the
bridge, the traffic is first processed by the obfuscation protocol
and then enters the dark web via the bridge.

Although the bridges and obfuscation protocols are used
only to enhance Tor’s anonymity, such functions are also
exploited by cybercriminals. In order to identify anomalous
behavior in networks that use bridge to access, it is first
necessary to detect the bridges to flag suspicious connections.

The biggest problem faced when performing detections in
real networks is how to handle large-scale network traffic. In
the field of network management such as intrusion detection
and software-defined networks (SDN) measurement, traffic
sampling has been widely used. Due to the large scale of traffic
in the backbone network, we need to study how to detect Tor
bridges after traffic sampling.

The current research on Tor traffic is mainly focused on
traffic identification, and there is a small part of research on
Tor bridge detection. However, these researches have used a
small amount of complete traffic for experiments, which is
collected in chronological order. They did not consider the
large-scale traffic and the low proportion of Tor traffic in the
actual network. These reasons make their method not very
applicable in the real network.

Since the IP address of the meek bridge cannot be obtained
directly from the traffic, we propose a method for the detection
of obfs4 bridges in backbone networks in this paper. To handle
large-scale traffic, we implement a sampling operation on
the traffic to reduce the amount of data to be processed. To
achieve efficient storing of packet statistics, we design the Nest
Count Bloom Filter (NCBF) structure based on Count Bloom
Filter (CBF). Besides, we extract features that can be obtained
from the sampled traffic. Through experiments, we verify the
usability of this method in backbone networks.

Our contributions here include the following three points:

(1) We design the NCBF structure to store the statistics of
the sampled packets in the backbone network. This structure
is based on CBF, which enables fast and efficient record of
packet statistics in backbone networks.

(2) We extract 14 features that are still available in the
post-sampling traffic that can be used for Tor bridge detection.

Abstract—Due to the concealment of the dark web, many 
criminal activities choose to be conducted on it. The use of 
Tor bridges further obfuscates the traffic and enhances the 
concealment. Current researches on Tor bridge detection have 
used a small amount of complete traffic, which makes their 
methods not very practical in the backbone network. In this 
paper, we proposed a method for the detection of obfs4 bridge 
in backbone networks. To solve current limitations, we sample 
traffic to reduce the amount of data and put forward the 
Nested Count Bloom Filter structure to process the sampled 
network traffic. Besides, we extract features that can be used for 
bridge detection after traffic sampling. The experiment uses real 
backbone network traffic mixed with Tor traffic for verification. 
The experimental result shows that when Tor traffic accounts for 
only 0.15% and the sampling ratio is 64:1, the F1 score of the 
detection result is maintained at about 0.9.

I. INTRODUCTION

In recent years, the expansion of the network scale has led 
to an increasing number of threats in the network. Network 
managers need to identify and deal with threats on time. 
Among the many cyber threats, the crimes that occur on the 
dark web undoubtedly cause great harm to the network and 
even society.

An important part of dark web crimes is illegal transactions. 
Criminals trade in guns, drugs, and other illegal goods on the 
dark web. According to the <The Chainalysis 2021 Crypto 
Crime Report> [1] published by Chainalysis, the total amount 
of transaction on the dark web in 2020 is already more than
$900 million, and there were still 37 active darknet markets 
in November. Unlike commonly used networks, the dark web 
requires the use of anonymous communication tools to access. 
Therefore, it is more difficult for network managers to trace 
the criminals on the dark web.

As the most widely used and convenient anonymous 
communication system, Tor has more than 2.5 million daily 
active users as of November 2020[2]. To further enhance 
the anonymity of communications, Tor provides bridges and 
obfuscation protocols to disguise traffic accessing the dark web

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2021 
25 February 2021, Virtual
ISBN 1-891562-67-3
https://dx.doi.org/10.14722/madweb.2021.23011
www.ndss-symposium.org



(3) We mix the Tor traffic with real backbone network
traffic in different ratios in our experiments to validate the
usability of our method.

The rest of this article is organized as follows. Section II
describes the related work. In Section III, we introduce the
background information, including information about Tor, the
feasibility of Sampling, and Bloom Filter. Section IV describes
the main parts of the method we use. Section V introduces the
experiment and analyses the results. In Section VI, we compare
our method with others’ and express the limitations and future
work. Finally, Section VII is the conclusion.

II. RELATED WORK

This section presents three types of researches related to
the background knowledge mentioned in this paper.

A. Tor

The widely used Tor [3] is the second-generation onion
routing technology that can be used to anonymize TCP-based
applications and has a large number of users worldwide. The
use of bridge and obfuscation protocols makes the features
of Tor traffic similar to normal traffic, such as the length of
packet. It enhances the anonymity of communication.

B. Research on Tor traffic

Among the existing researches based on Tor traffic, the
researchers mainly focus on traffic identification. Lashkari A H
et al.[4] used up to 67834 packets for Tor traffic identification
and extracted a total of 23 features such as the minimum
flow inter arrival time. Kim M et al.[5] used the ISCXTor
2016 data set for their experiments, parsing the first 54 bytes
of each packet as a feature. Lingyu J et al.[6] conducted
experiments on an 18G backbone traffic data set with four
features based on the length and time of packets, they also
improved the decision tree algorithm. Rao Z et al. [7] extracted
time-dependent features of the packets and used them on 23292
mixed flows to validate their improved clustering algorithm.

Since bridges and obfuscation protocols are used together,
there have been some researches in the identification of these
protocols. Soleimani M H M et al.[8] were able to achieve 99%
accuracy for each obfuscation protocol with machine learning
approach, but did not go further to detect bridges. He Y et
al.[9] used a randomness detection algorithm to identify the
Tor traffic hiding under obfs4 protocol.

Although the experiments of these researches prove that
these identification methods for Tor traffic and obfuscation
protocols can achieve high accuracy, they do not use backbone
network traffic or do not take into account the low ratio of Tor
traffic in the backbone network. Moreover, the experimental
data sets they used are complete traffic and the extracted
features are related to the continuity of the traffic. The volume
of traffic in the backbone network is too large to perform
complete traffic processing.

The above research is only for the identification of Tor
traffic and traffic using obfuscation protocol. While M Yang
et al.[10] conducted research on the detection of Tor bridges.
They suggested that there existed high correlations among the
subscribed tuple of three bridges, so it is possible to expand

the bridge set to get all bridges. However, in the validation
experiments, the online detection of this method can only get
about 86% accuracy.

Similar to the shortcomings of Tor traffic identification
researches, this method processed complete traffic when de-
tecting a bridge. When dealing with large-scale traffic, this
method consumed a lot of resources, which makes it difficult
to apply to backbone networks.

Research [8][9] and [10] are partially related to our re-
search, so we compare their methods with ours.

C. Traffic Sampling

With the growth of network size, sampling has been widely
used in the field of network management. As early as 1993,
research[11] has used packet sampling techniques in network
traffic. In 1996, Cisco proposed that NetFlow[12] techniques
could be used for anomaly traffic detection. In 2003, sFlow[13]
was proposed by InMon. Both techniques can sample traffic
and output flow information for network monitoring.

Traffic sampling is also widely used in the field of network
measurement and network security. In the field of network
security, traffic sampling is the technology that most intrusion
detection systems are equipped with. Mahmood A N et al.[14]
proposed a new two-stage sampling technique, which makes it
possible to avoid wasting too much sampling resources on the
elephant flows when the network is under large-scale traffic
attacks. In the research [15], the focus of the research is to
improve the efficiency of trust computation in a large-scale
network, so the researchers only used systematic sampling and
Random n-out-of-N Sampling techniques.

In the field of network measurement, SDN also uses traffic
sampling technology due to its special architecture. In SDN,
the controller is responsible for measuring traffic. Due to the
limited memory of the controller, in research [16], L Huo et al.
proposed a lightweight measurement architecture that can run
in the controller. In this architecture, they used a pull-based
sampling method to measure the flow rate, so that only a small
amount of measurement values are stored in the controller to
achieve coarse-grained measurement.

In addition, a new network measurement framework using
sampling is proposed by R Jang[17]. He designed a new
sampling scheme to handle the bad tradeoff caused by the stan-
dard simple random sampling. The sampling scheme chooses
to sample each flow separately to obtain the most accurate
information of each flow after sampling.

Although traffic sampling has been applied in many aspects
of network management, it has not been studied to use it
for Tor bridge detection in backbone networks. In fact, the
detection of Tor bridges is helpful for network management,
and it is a reasonable choice to sample traffic when conducting
this research.

III. BACKGROUND

In this section, we first introduce the basic architecture of
the Tor network and the architecture after using bridges, fol-
lowed by knowledge of probability theory to demonstrate the
feasibility of sampling. Finally, Bloom Filter and Count Bloom

2



Filter structures are introduced to provide basic information for
the design of NCBF.

A. Tor network

Compared with other anonymous communication systems,
Tor[3] is the most widely used because of its long development
time, good integration, and the ease with which even non-
experts can use the Tor Browser to access the dark web.
Figure 1 shows the basic architecture of the Tor network.

ClientClient

Directory 

Server

Entry Node

Middle Node

Exit Node
Web Server

TLS encrypted

Unencrypted

Onion 

Proxy

Fig. 1: Tor network

When a client needs network access via Tor, it first runs
an onion proxy on the client side which makes a request to
the directory server, then chooses three onion routers as relay
nodes to establish a communication link in which the client-
server communication is encrypted. Each onion router in the
link can only get the information of the two routers before and
after, and the client can only get the information of the onion
router connected to it.

To further enhance the anonymity of communication, Tor
was developed to include optional functions such as bridges
and obfuscation protocols. A bridge serves a similar purpose
as a relay node, except the address of the bridge is not store
publicly in the directory server, but is obtained via https or
email. Obfuscation protocols such as obfs4 and meek are used
to encrypt or obfuscate Tor traffic so that it appears similar
to normal traffic. Bridge and obfuscation protocols are often
used simultaneously.

According to the official website[18], there are more than
6000 normal relay nodes and about 1500 bridges running in
the Tor system every day, and the average number of bridge
users is more than 40000 per day. At the same time, since
any third-party user can configure his client as a bridge, the
network manager can’t get all the bridge addresses in advance.
Therefore, using these functions can effectively improve the
anonymity when accessing the network via Tor.

B. Tor bridge

Since the relay nodes used in building the basic architecture
of the Tor network are public in the directory server, it is
easy for network managers to obtain all these addresses. To
avoid this, the use of bridges in conjunction with obfuscation

protocols has the effect of enhancing the concealment of
communication at multiple levels.

The two common obfuscation protocols used with the
bridge are obfs4[19] and meek[20]. When obfs4 is used for
traffic obfuscation, the client first obtains a bridge by either
applying for it via https and email or by choosing a built-in
bridge in Tor. Then the network traffic is sent to the obfs4
server after obfuscation.

Unlike the obfs4 protocol, which requires a bridge appli-
cation, meek chooses to send Tor traffic to a cloud server first,
and then forward it through the cloud server to a meek bridge
to access the Tor network. By this obfuscation method, the
Tor bridge is hidden under the cloud service provider’s address,
making it more difficult to detect. For network managers, under
the premise that they monitor the traffic sent and received by
the client, they cannot get the address of the meek bridge, and
can only identify the Tor traffic that uses the bridge in the
traffic interacting with the cloud server.

The Tor network structure is shown in Figure 2 when
bridges are used.

Network managers typically analyze network traffic on the
client side when user targeting is required. For Tor bridge
detection, the address of the obfs4 bridge can be obtained
visually in the traffic data as source/destination address, so
we only need to detect the obfuscated Tor traffic using the
obfs4 protocol to further obtain the bridge’s address. While
the address of the meek bridge is not directly available, and
by analyzing the traffic, we can only identify the Tor traffic
that uses the bridge among a large amount of traffic interacting
with the cloud server.

Therefore, the bridge detection method presented in this
paper is mainly for the obfs4 bridge, and the Tor traffic
mentioned below represents the obfuscated Tor traffic using
obfs4.

C. Sampling theory

The bandwidth of the backbone network is usually about
10Gbps, so the collection and analysis methods of complete
traffic cannot handle such a large amount of data. In order to
reduce the amount of data to be processed, traffic sampling
technology is widely used in the management of the backbone
network.

In actual networks, the volume of traffic is extremely large
and there are mouse flows and elephant flows [21]. Mouse
flows are small, containing few data packets but the amount
is very large. On the contrary, the amount of elephant flows is
small but each flow contains much more packets.

Tor traffic accounts for only a small portion of the network
and consists mainly of mouse flows. When using Tor for a
long time, the number of the packets of the same quintuple
increases, and some of the mouse flows will shift to elephant
flows.

Probability theory has proved that the sampled traffic can
be used for the detection. According to the central limit theo-
rem, when we randomly sample n samples from a population
with overall mean µ and standard deviation σ, the mean of the
distribution of the sample mean equals to µ, and the standard

3



Client

obfs4 Client

Directory 

Server

obfs4 Server

(Entry Node)

Middle Node

Exit Node
Web Server

TLS encrypted

Unencrypted

obfs4 processing

(a) Tor network with obfs4

Client

meek client

Directory 

Server

meek Server

(Entry Node)

Middle Node

Exit Node
Web Server

TLS encrypted

Unencrypted

HTTP encrypted

Cloud 

Server

(b) Tor network with meek

Fig. 2: Tor network architecture with bridge

deviation equals to σ√
n

. As n → ∞, the distribution is close
to normal distribution.

In the case of a large sample size, the sampling distribution
of the sample proportion p̂ also approximately conforms to
normal distribution. Assuming that the population proportion
is p, then Formula 1 can be used to calculate the confidence
interval for a population proportion.

p̂− z
√
p̂(1− p̂)

n
≤ p ≤ p̂+ z

√
p̂(1− p̂)

n
(1)

Where n represents the sample size, z is the z-score for
the confidence level α you want.

When we want the difference between the overall propor-
tion and the sample proportion to be no more than k%, we
can use Formula 2 for calculation.

n ≥

⌈
p(1− p) z2

(0.01× k × p)2

⌉
(2)

In the actual network, the proportion of Tor traffic is very
small, that means the value of p is small, and when the
confidence level is set to 95% and the difference is limited
to about 10%, the sample size n can be calculated. Sampling
the traffic according to n ensures the sample proportion of Tor
traffic.

Based on the theorems mentioned above, we can know that
the sampled traffic can represent the overall traffic.

The packets obtained after sampling are mainly derived
from elephant flows. Although the number of packets in the
mouse flow is much smaller than that of the elephant flow,
it is still possible to sample packets from the mouse flow by
adjusting the sampling rate in the actual network.

Actually, the sampled packets are not directly used to
calculate the eigenvalues. To ensure the consistency of the
eigenvalue calculation, a threshold value needs to be specified,
and when the number of packets with the same quintuple
reaches the threshold, the stored statistics are then used for
calculation.

Since the number of packets originating from the mouse
flow in the sample is small, the packets of these quintuples

may not reach the threshold to calculate the eigenvalue. The
calculation of eigenvalues relies heavily on elephant flows.

D. Bloom Filter

To store the statistics of sampled traffic, we propose the
NCBF structure based on Count Bloom Filter (CBF). And CBF
was designed based on Bloom Filter (BF).

BF[22] is a stochastic storage structure that uses vector
space to represent a set and this structure favors the efficiency
of queries to quickly determine whether an element belongs
to the set.

As shown in Figure 3, the BF structure requires the use of
k hash functions h1, h2, . . . , hk to perform insertion and query
operations. In its initial state, BF is an m-bit array, and each bit
is set to 0. Supposing the set S = {x1, x2, . . . , xr} is inserted,
k independent hash functions will map elements of the set to
the 1, 2, . . . ,m bit. For any element x,k hash functions will
map it to the hashi(x), i ∈ 1, 2, . . . , k bit of the array and set
the bit to 1. If one bit is mapped more than once, only the first
mapping will result in a set to 1.

0 0 0 0 0 0 0 0 0 Initial BF

1 0 0 1 0 1 0 0 0

x
hash1(x)

hash2(x)
hash3(x)

Insertion

1 0 0 1 0 1 0 0 0

y
hash1(y)

hash2(y) hash3(y)

Query

Fig. 3: Bloom Filter

When performing a query, the queried element is processed
using hash functions to map it to the corresponding bits. If each
bit mapped to has been set to 1, it is assumed that this element
has been recorded in the BF. In the query operation shown in

4



Figure 3, the hash2(y) bit is not set to 1, which means y is
not an element in the set.

BF also has shortcomings. It may misjudge elements that
not in the set as elements in the set. In other words, the newly
input element may be mapped to the bit of an existing element,
causing a hash collision. The probability of misjudgment is
called the false positive rate (FPR). This probability is shown
in Formula 3.

ε = (1− (1− 1

m
)kr)k ≈ (1− e

−kr
m )k (3)

Where m indicates the number of bits. r indicates the
number of elements. And k indicates the number of hash
functions.

The classic BF is a simple storage structure that supports
only insertion and query operations, but not deletion opera-
tions, and cannot record the existence of a changed set.

To address the shortcomings of the classic BF, Fan L et
al.[23] proposed the concept of Count Bloom Filter (CBF).
CBF expands every bit to a counting cell. During the insertion
operation, when any element x of the set is mapped to the
hashi(x), i ∈ 1, 2, . . . , k cell, the counting value increases
by 1. If other elements are mapped to the same cell, the
counting value continues to increase, so that CBF can support
the deletion of elements. When the element x is deleted
from CBF, if the counting value in the cells to which it is
mapped is greater than 0, all are reduced by 1. CBF can
therefore implement the three operations of insertion, query,
and deletion.

However, it is not appropriate to use only BF or CBF
when storing traffic statistics. A data packet contains a variety
of statistics. Using BF can only determine whether the data
packet or specific statistic exists, and CBF can only store one
statistic of data packets. If multiple CBFs are used for storing,
then each CBF needs to perform hash functions. And this will
increase the memory and time consumption of the calculation.

IV. METHODOLOGY

In this section, we introduce the detection method. The
architecture of this method is shown in Figure 4.

First, we perform feature engineering to filter out the
features that can be obtained in the sampled traffic that can
be used for bridge detection. This is followed by the training
of the machine learning model used for detection.

Next, we perform a traffic sampling operation on the
backbone network and use NCBF to record the statistics of
the sampled packets. Then we calculate the eigenvalues.

Finally, we use the training model to make the detection,
get the list of bridge addresses, and complete the bridge
detection.

A. Feature engineering

To implement Tor bridge detection in backbone networks,
we sample the traffic to reduce the amount of data to be
processed, as in large-scale network management. So we need
to choose stable features that can be used for detection after

traffic sampling. The detailed process of feature engineering
is provided in Appendix A. Finally, we chose 14 features and
12 statistics that needed to be stored.

When traffic is sampled in backbone networks, a huge
number of packets still exist after sampling. Although each
packet only needs to record 12 statistics, due to the huge
number, it still requires many resources to record the statistics,
so we need to choose a suitable traffic sampling technique and
use an efficient storage structure.

B. Traffic sampling

In the large-scale backbone network, processing the com-
plete traffic is difficult and will consume a lot of resources.
So traffic sampling has been used in many aspects of network
management.

Traffic sampling is widely used in the field of intrusion
detection[14][15] and SDN measurement[16]. And the sam-
pling techniques can be classified into two types, including
packet-based sampling and flow-based sampling. Three basic
packet-based sampling techniques are mentioned in the re-
search [24], including Systematic Sampling, Random n-out-of-
N Sampling and Uniform Probabilistic Sampling. And Figure
5 illustrates these methods.

Compared with the other two sampling techniques, the sys-
tematic sampling technique has the smaller time and memory
overhead. Therefore, we use the systematic sampling technique
when conducting Tor bridge detection. The usability of this
technique will be demonstrated in the following experiments.

Since we use systematic sampling, when inputting data
packets, it is only necessary to store data packets according
to the sampling interval.

C. Nested Count Bloom Filter

Although CBF achieves an increase in the counting value
of the same counting cell, it cannot complete the recording of
elements that contain more than one statistic.

Therefore, in this paper, we put forward the NCBF struc-
ture. It is used to implement the recording of packet statistics
for computing the eigenvectors. The structure is shown in
Figure 6.

Based on CBF, NCBF expands each counting cell to a
counting block. Each counting block is one CBF.

In the initial state, NCBF is a structure containing m
empty CBFs. During the insertion process, each x in set
S = {x1, x2, . . . , xr} contains more than one statistic, which
means x = {I1, I2, . . . , Iq}, we use part of the statistics as the
input of k independent hash functions. The hash functions can
map x to k different counting blocks, then the statistics of x
is recorded in these blocks by increasing the value of counting
cells.

The query process is similar to the classic BF. If the queried
element y is processed by hash functions, and each block it
mapped to has recorded statistics, then y is considered to be
in NCBF.

Compared with CBF, if we need to store multiple statistcs
of a packet, we only need to perform the hash function once.

5



Extracting

Features
Normal 

Feature

Normal 

Feature

F1

F2

Selecting

Features 
F1

F2

 Machine Learning

Machine 

Learning 

Model

 Deployment in backbone networks 

ISP
Capturing 

Traffic
Sampling

Packets

Using 

NCBF 

Supervised 

Learning

Putting 

into the 

Model

A

Training 

Set

Records with 

Features

Detection 

Samples

Bridge 

List

B C
 Obtaining 

bridge list 

Fig. 4: The architecture of the detection method

Systematic Sampling

N N

Random n-out-of-N Sampling

Uniform Probabilistic Sampling

Fig. 5: Schematic figure of the basic sampling methods

... ...

... ...

...

+1

+1
+1

...

+1

+1

+1

+1

+1

+1

...

+1

+1
+1

NCBF...

...

+1

+1

+1

+1

+1

+1

Fig. 6: The architecture of NCBF

Like Bloom Filter, NCBF also has false positive probabil-
ity, that is, a hash collision occurs and the element is mapped
to the wrong counting block.

The formula for calculating the false positive rate of NCBF
is consistent with Formula 3. The difference lies in the meaning
of the parameters. In NCBF, m represents the number of
counting blocks, and r represents the number of different
tuples entered.

Because the memory occupied by NCBF is limited, we
cannot store elements in it without limitation. Once there are
too many elements input, hash collisions may occur, resulting
in a decrease in the storage efficiency and accuracy of the
entire structure. Therefore, we need to determine the memory
of NCBF through the above parameters.

When we storing the packet statistics using NCBF, the ar-
riving packet’s quintuple is used as the input of hash functions.
Then the corresponding packet will be mapped to k different
counting blocks and the statistics are stored in each block.

The ultimate purpose of using NCBF is to get the Record
and calculate corresponding eigenvectors. Because there are
so many packets with the same quintuple in the real network,
we cannot classify all packets of the same quintuples into one
Record. If we group all the packets of the same quintuple into
one Record, we need to extract a lot of statistics when calcu-
lating the eigenvectors, which will consume a lot of memory
of NCBF. That’s why we set a threshold to get Records. This
threshold is judged based on the value of a certain counting cell
in the counting block. Because of hash collisions, we choose
the minimum value of this certain counting cell. Then we use
the statistics stored in the corresponding block to calculate the
eigenvectors.

To improve the accuracy of eigenvectors calculation, we
need to set a proper memory for the NCBF used for processing
traffic to minimize the impact of hash collisions on the result
of the calculation.

Considering the low ratio of Tor traffic in backbone net-
works, we need an NCBF structure that can process traffic for
a long time to ensure that the statistics of Tor traffic packets
stored in NCBF can reach the threshold and the Record can be
extracted. At the same time, FPR of NCBF is also considered
to prevent excessive hash collisions of the elephant flow and
cause NCBF to be cleared. This means that we need to allocate
a reasonable amount of memory to NCBF and get the traffic
duration that can be processed by NCBF before being emptied.
The NCBF parameters we need to consider include the number
of counting blocks m, a reasonable value of FPR, and the
number of hash functions k. The value of these parameters is
related to the data scale and hardware environment, so we give
the details of parameter setting in section V.

V. EXPERIMENT & RESULTS

In this section, we describe how to adjust the parameters
before the validation experiment, and the exact procedures of
the validation experiment. Finally we analyze the sampling
results and the detection results separately.

A. Parameter adjustment before validation

In the validation experiment, we use two types of parame-
ters, one is the adjustable sampling ratio, and the other is the
relevant parameters of NCBF structure. Both can be adjusted
through the same preparation experiment.

6



We use the 15-minute backbone traffic
collected by the MAWI working group[25]
(https://mawi.wide.ad.jp/mawi/ditl/ditl2019-
G/201904090000.html) as a large-scale data set for calculating
the parameters.

When performing NCBF processing, we use SHA1 as the
hash function, which outputs a 20 byte (160 bit) hash value.
Supposing there are 2n counting blocks in NCBF, n bits are
needed to store the serial number of the counting block. k is
the number of hash functions, so we need to calculate k hash
values, each is n-bit. The method for obtaining the hash value
of NCBF is to sequentially split the 160-bit hash value into k
parts. If the value of k is large, the hash value of one output
of SHA1 may not be enough to divide.

When we employ 4 hash functions, the hash value output
by one SHA1 can obtain 4 hash values. At this time, the
corresponding NCBF has 240 counting blocks. According to
the later experiment, 240 counting blocks takes up enough
memory.

Next, we obtain different numbers of quintuples by chang-
ing the sampling ratio, the quintuples are all obtained based
on the 15-min backbone network traffic. And we use NQP
to represent the Number of Quintuples from the Public traffic
data set.

Compared with other traffic in the public traffic data set,
Tor traffic mainly consists of mouse flows, which are more
difficult to make hash collisions. So what we need to pay
attention to is the hash collision that occurs when recording
the elephant flow. In other words, we need to consider the FPR
of the NCBF structure. Based on Formula 3, we can obtain the
relationship between FPR and NQDM (the maximum Number
of Quintuples that can be inserted when FPR is less than
the threshold under Different Memories) when the number of
counting blocks is different. As shown in Formula 4.

FPR ≈ (1− e
−k∗NQDM

m )k (4)

Where m indicates the number of counting blocks. k
indicates the number of hash functions.

In the NCBF structure, k is generally a fixed value greater
than 1, and will not be discussed here. In the case of the same
memory, when NQDM increases, FPR will increase. When the
FPR increases to a certain extent, the packets with the same
quintuple input to NCBF will be mapped to the wrong counting
block with probability, causing errors in the recording of packet
statistics, and further affecting the calculation of eigenvectors.
When using NCBF to process elephant flow, NQDM will
increase, and FPR will increase accordingly. Therefore, we
need to allocate appropriate memory for the NCBF structure
during the design stage to keep FPR within a reasonable
range and reduce the impact of hash collisions on eigenvectors
calculations.

When we set the value of FPR to 1/100, it means that
when 100 different quintuples in the traffic have been inserted
in NCBF, there may already be packet statistics in the block
where the next packet from different quintuples should be
mapped to. In this case, hash collisions have almost no effect
on the result.

TABLE I: NQP with different sampling ratios

Sampling ratio NQP

16:1 450344

64:1 178930

256:1 71204

What’s more, based on Table III in Appendix A, we only
need 12 counting cells for each block. So we set the memory
of each block to 12 bytes to calculate the total memory NCBF
occupies. The memory of NCBF can be calculated by Formula
5.

Me = m ∗ 12 bytes (5)

Where Me indicates the memory of NCBF.

By changing the sampling ratio, we get different NQP.
When the sampling ratio is different, the number of packets
we extract from the public traffic data set is different, which
causes some quintuples to not be in the sampling results and
NQP will change. The results calculated using the public data
set are shown in Table I.

Based on the above preparation, we can use Formula 6 to
get the traffic duration that can be processed by NCBF before
being emptied under different memory conditions.

T ≈ NQDM

NQP
∗ 15 min (6)

Where T indicates the time NCBF required to be cleared.
NQDM indicates the maximum number of quintuples that can
be inserted when FPR is less than the threshold under different
memories. And NQP indicates the number of quintuples that
can be obtained from the public traffic data set.

However, these NQPs are all obtained from the same public
traffic data set, so the value does not change. We adjust the
value of m, to get different Me and T under different memory
of NCBF. The results are shown in Table II.

TABLE II: Traffic duration that can be processed by NCBF

Sampling
ratio

m Me NQDM T

16:1

220 12.0MB 1.00e+05 3.32min
222 48.0MB 4.00e+05 13.28min
225 384.0MB 3.00e+06 1.77hr
228 3072.0MB 3.00e+07 14.16hr
230 12288.0MB 1.00e+08 2.36d

64:1

220 12.0MB 1.00e+05 8.35min
222 48.0MB 4.00e+05 33.41min
225 384.0MB 3.00e+06 4.46hr
228 3072.0MB 3.00e+07 1.49d
230 12288.0MB 1.00e+08 5.94d

256:1

220 12.0MB 1.00e+05 20.99min
222 48.0MB 4.00e+05 1.40hr
225 384.0MB 3.00e+06 11.20hr
228 3072.0MB 3.00e+07 3.73d
230 12288.0MB 1.00e+08 14.93d

From the table, we can know that when the sampling ratio
is 16:1, we set the memory of the NCBF to about 12288MB.

7

https://mawi.wide.ad.jp/mawi/ditl/ditl2019-G/201904090000.html
https://mawi.wide.ad.jp/mawi/ditl/ditl2019-G/201904090000.html


The NCBF can handle the backbone network traffic for 2
days, which means it is cleared every 2 days. After NCBF
has continuously processed network traffic for 2 days, the
probability of hash collision will increase. The next input data
packet is more likely to be mapped to the wrong counting
block, resulting in inaccurate statistical information. When the
sampling ratio increases, NCBF of the same memory can be
cleared for a longer time.

And during the 2 days of data collection, some Tor bridge
may generate normal traffic, we can judge whether the traffic
is normal based on features. The normal traffic won’t affect
the detection results.

Taking into account the actual traffic situation in the
backbone network and the needs of network management, we
need to establish NCBF with suitable memory for the detection
of the Tor bridge.

B. Procedures of the validation experiment

In order to verify the method’s usability in backbone
networks, the validation experiment is divided into four main
steps:1) collecting traffic data, 2) changing the ratio of Tor
traffic to normal traffic, 3) sampling the traffic and using
NCBF, 4) detecting and obtaining Tor bridge addresses.

(1) Collecting traffic data: Some Tor users use Tor bridge to
access the network, disguising the Tor traffic as normal traffic.
In the existing research, it is not mentioned whether bridges are
used in the Tor traffic data set collected during the experiment.

Therefore, our experiments are conducted using a mixture
of large public traffic datasets and self-gathered Tor traffic from
known bridges.

We use the same traffic data set in sction V-A as the public
traffic data set. The 15-minute backbone traffic was collected
by the MAWI working group[25] at samplepoint-G on April
9, 2019. This data set contains more than 100 million packets
and 72.93% of the packets are tcp packets. And samplepoint-G
is one of the samplepoints monitored by WIDE. It monitors
the 10Gbps link to an experimental IX in Tokyo.

When collecting Tor traffic, the bridges are applied via
https and email. We use Wireshark to collect the traffic. The
topology for Tor traffic collection is shown in Figure 7.

Client

Obfs4 

bridge

Middle 

Node
Exit Node

Web Server

obfs4

 obfuscation

Fig. 7: Topology of Tor traffic collection

(2) Changing the ratio of Tor traffic to normal traffic: Since
the percentage of Tor traffic in the actual network is very low,
we change the ratio of Tor traffic to normal traffic during the
experiment to verify that the method can still detect Tor bridge
in the actual network environment where the percentage of Tor
traffic is very low. The ratios are shown in Table III.

After adjusting the ratio, we used a random function to
modify the time starting point of Tor traffic and inserted each

TABLE III: Different ratio of Tor traffic

Tor packets Public data set packets Ratio

17613 1418227476 0.01%

70197 1418227476 0.05%

140784 1418227476 0.10%

217314 1418227476 0.15%

282564 1418227476 0.20%

350600 1418227476 0.25%

425874 1418227476 0.30%

Tor traffic file into the different time points in the public traffic
file.

(3) Sampling traffic and using NCBF: When a ratio of
mixed traffic data is selected, the traffic needs to be sampled.
We use systematic sampling techniques to obtain packets from
the traffic, and change the number of samples by adjusting the
value of λ. Then we use NCBF to process these packets to get
Records and corresponding eigenvectors for detection.

(4) Detecting and obtaining the detection results: After
the model outputs the detection results, the evaluation criteria
related to the results can be calculated since the experiment is
conducted under the premise of known bridges.

C. Analysis of results

Before proceeding to analyze the detection results, the
sampling results are first analyzed. To reduce the storage size,
we sample the complete traffic. Once the scale of Tor traffic
is too small, the number of packets obtained after sampling is
not enough to constitute Records. By adjusting the sampling
ratio and traffic ratio, the numbers of Records in the detection
sample are shown in Figure 8.

Fig. 8: The number of Records with different ratios

When Tor traffic only accounts for 0.01%, after sampling
with a ratio of 8:1 and sending the data packet to NCBF for
processing, 12 Records for detection can still be obtained. And
the number of Records increases as the traffic ratio increases.
This demonstrates that NCBF can process the sampled packets
to obtain the Records in large-scale traffic environments with
low Tor traffic ratios.

After the analysis of the sampling results, the detected
results were evaluated using precision, recall and F1 score.

8



TABLE IV: Tor bridge detection results

Tor traffic ratio Sampling ratio Precision Recall F1 Score

0.01%

8:1 25% 100% 0.4
16:1 23.08% 100% 0.375
32:1 50% 100% 0.6667
64:1 25% 100% 0.4

0.05%

8:1 57.32% 100% 0.7287
16:1 54.05% 95.24% 0.6897
32:1 50% 100% 0.6667
64:1 33.33% 100% 0.5

0.10%

8:1 74.24% 93.33% 0.827
16:1 75.38% 96.08% 0.8448
32:1 73.33% 88% 0.8
64:1 78.57% 91.67% 0.8462

0.15%

8:1 84.88% 95.42% 0.8985
16:1 87.50% 95.89% 0.915
32:1 89.19% 94.29% 0.9167
64:1 93.75% 88.24% 0.9091

0.20%

8:1 84.48% 96.55% 0.9011
16:1 82.30% 93.94% 0.8774
32:1 85.19% 97.87% 0.9109
64:1 91.30% 100% 0.9545

0.25%

8:1 86.48% 93.78% 0.8998
16:1 84.43% 96.26% 0.8996
32:1 87.72% 98.04% 0.9259
64:1 75.86% 100% 0.8627

0.30%

8:1 86.69% 96.21% 0.912
16:1 82.31% 98.37% 0.8963
32:1 85.07% 98.28% 0.912
64:1 81.48% 95.65% 0.88

Since the bridge addresses used in the experiment are in a
known state, the precision, recall, and F1 score for Tor bridge
detection with different traffic ratios and sampling ratios can
be calculated, as shown in Table IV.

From the table, it can be seen that as the ratio of Tor traffic
increases, the precision rate has increased significantly, and the
recall rate has stabilized above 95%. When Tor traffic accounts
for only 0.15%, the F1 score of the detection result stabilized at
about 0.9. When the ratio of Tor traffic increased from 0.20%
to 0.30%, the precision rate shows a downward trend. After
analysis, we consider that it might be because when adjusting
the ratio, Tor packets are randomly selected, resulting in the
occurrence of deviations.

For network managers, what is needed is to detect as
many correct Tor bridge addresses as possible. High recall rate
means that the number of the real bridges which identified
as bridge accounts for a high proportion of the number of
the real bridge, which means that the detection results are
relatively complete, and the real bridges are almost in the
detection results. Therefore, when the detection is performed
in the actual network, it is only necessary to perform a second
identification based on the first detection result.

VI. DISCUSSION

In this section, we first compare the advantages and dis-
advantages of our method with existing Tor bridge detection
methods. Then we discuss the limitations of our method and

possible countermeasures. Finally we suggest aspects that can
be improved in future work.

A. Comparison

Compared with the Tor bridge detection method proposed
by M. Yang et al.[10], our method is more practical. They
suggested that there existed high correlations among the sub-
scribed tuple of three bridges, so it is possible to expand the
bridge set to get all bridges. This means that their approach
requires constantly expanding the set of bridges, putting a lot
of pressure on storage and computational resources. And to
extract such correlations, their experiments must use complete
traffic.

They run Tor bridges in the campus network environment
and conduct experiments. They detect the bridge by analyzing
the traffic between the campus network and the Internet, which
is complete traffic.

Our method is mainly applied in backbone networks, so
traffic sampling is performed first, breaking the continuity and
correlation between flows. And we consider the low ratio of
Tor traffic in the real network environment, so we conducted
experiments under different Tor traffic ratios to prove the
availability of this method in backbone networks with a low
Tor traffic ratio.

In order to achieve Tor bridge detection in the backbone
network, it is difficult to use the method based on the correla-
tion between bridge tuples. Processing each flow in the massive
traffic consumes a lot of resources. Therefore, our method has
better adaptability.

In research[9], they used randomness and timing sequence
detection to roughly distinguish the obfs4 traffic. The timing-
sequence based detection method has strict requirements for
the integrity and continuity of the traffic. This means that
when using this method for obfs4 traffic detection, the traffic
processed must be sequential. As the method in the study [10],
this method is less usable in actual network.

We also compare our detection method with research[8].
Since we used random forest in our research and performed a
70-30 percentage split on the data set, we used random forest
and the parameter settings are consistent with the research.
The results of comparison experiment is shown in Table V.

The detection result shows that for the very low ratio of
Tor traffic (0.01%, 0.05%), the method proposed by Soleimani
et al.[8] cannot achieve the detection purpose, which may be
because the low ratio was not considered in their experiment.
In other ratios of Tor traffic, Soleimani’s method achieves high
precision rate, but the recall rate is not high compared with
precision. Therefore, we can refer to their method in future
research and adjust the parameters of the machine learning
model to obtain better detection performance.

B. Limitations and Countermeasures

We did not use the latest version of Tor Browser when
collecting Tor traffic. We collected traffic mainly around July
2020, and once the obfuscation protocol changed within six
months, we needed to re-screen the features for our method.

9



TABLE V: The results of comparison experiment

Tor traffic ratio Sampling ratio
Soleimani et al Our paper

Precision Recall F1 Score Precision Recall F1 Score

0.01%

8:1 null 0 null 25% 100% 0.4
16:1 null 0 null 23.08% 100% 0.375
32:1 null 0 null 50% 100% 0.6667
64:1 null null null 25% 100% 0.4

0.05%

8:1 100% 91.70% 95.70% 57.32% 100% 0.7287
16:1 100% 50% 0.667 54.05% 95.24% 0.6897
32:1 null 0 null 50% 100% 0.6667
64:1 null null null 33.33% 100% 0.5

0.10%

8:1 100% 83.30% 0.909 74.24% 93.33% 0.827
16:1 100% 68.80% 0.815 75.38% 96.08% 0.8448
32:1 75% 54.50% 0.632 73.33% 88% 0.8
64:1 100% 25% 0.4 78.57% 91.67% 0.8462

0.15%

8:1 100% 93.80% 0.968 84.88% 95.42% 0.8985
16:1 100% 76.90% 0.87 87.50% 95.89% 0.915
32:1 85.70% 54.50% 0.667 89.19% 94.29% 0.9167
64:1 100% 60% 0.75 93.75% 88.24% 0.9091

0.20%

8:1 94.50% 88.10% 0.912 84.48% 96.55% 0.9011
16:1 100% 64.90% 0.787 82.30% 93.94% 0.8774
32:1 100% 100% 1 85.19% 97.87% 0.9109
64:1 100% 25% 0.4 91.30% 100% 0.9545

0.25%

8:1 98.50% 91.70% 0.95 86.48% 93.78% 0.8998
16:1 96.60% 93.30% 0.949 84.43% 96.26% 0.8996
32:1 100% 84.20% 0.914 87.72% 98.04% 0.9259
64:1 100% 57.10% 0.727 75.86% 100% 0.8627

0.30%

8:1 98.80% 97.60% 0.982 86.69% 96.21% 0.912
16:1 97.20% 97.20% 0.972 82.31% 98.37% 0.8963
32:1 100% 94.70% 0.973 85.07% 98.28% 0.912
64:1 87.50% 100% 0.933 81.48% 95.65% 0.88

In order to prevent detection, the obfuscation protocol can
be improved based on the features proposed in this method.
The features we extracted are most related to the length
of packets. Once the obfuscation protocol has updated for
obfuscating packet lengths, such as adding padding in the
information control part, shielding ultra-small data packets, our
method needs to be updated accordingly.

C. Future work

In this paper, we propose a method to detect Tor bridges in
backbone networks. While the experimental results prove the
feasibility of the method, the method still has some limitations
mentioned above. In future work, we need to follow the update
of the obfuscation protocol promptly, re-screen the features,
and design a secondary detection method to maintain the
practicability of this method.

VII. CONCLUSION

While the initial design purpose of the anonymous commu-
nication systems are only to enhance anonymity, the darknet
market based on it has caused major hidden dangers to the
network and even social security.

The use of bridges further obfuscates traffic and makes
Tor traffic analysis more difficult. In order to exclude normal
users using the bridge and identify criminals, the traffic passing
through the bridge needs to be analyzed to identify the

behavior. Therefore the use of bridges needs to be detected
first.

In this paper, we have proposed a method to detect Tor
bridges in backbone networks. Compared with other methods,
our method samples the traffic to reduce the amount of
data that needs to be processed and designs a new storage
structure called NCBF for packet statistics recording. Taking
into account the low ratio of Tor traffic in backbone networks,
we mix the public backbone network traffic data set with
different ratios of Tor traffic in experiments to verify the
availability of this method in backbone networks. When Tor
traffic accounts for only 0.15%, the F1 score of the detection
result is maintained at about 0.9. And the recall rate stabilized
above 95% all the time.

In future research, we will study how to design a secondary
detection method, determine the new features and maintain the
usability of the method when the obfuscation protocol update
causes the old features to be unavailable.

Our research on bridge detection demonstrates to some
extent that there is still room for improvement in Tor, and
we believe there are other ways to defend against such attacks
and strengthen anti-censorship capabilities besides the coun-
termeasures briefly mentioned in this paper.

ACKNOWLEDGMENT

This work was supported by the National R&D Program
of China (2020YFB1807503)

10



REFERENCES

[1] The chainalysis 2021 crypto crime report. [Online]. Available:
https://go.chainalysis.com/2021-Crypto-Crime-Report.html

[2] Users. [Online]. Available: https://metrics.torproject.org/
userstats-relay-country.html

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

[4] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features.” in ICISSp,
2017, pp. 253–262.

[5] M. Kim and A. Anpalagan, “Tor traffic classification from raw packet
header using convolutional neural network,” in 2018 1st IEEE Inter-
national Conference on Knowledge Innovation and Invention (ICKII).
IEEE, 2018, pp. 187–190.

[6] J. Lingyu, L. Yang, W. Bailing, L. Hongri, and X. Guodong, “A
hierarchical classification approach for tor anonymous traffic,” in 2017
IEEE 9th International Conference on Communication Software and
Networks (ICCSN). IEEE, 2017, pp. 239–243.

[7] Z. Rao, W. Niu, X. Zhang, and H. Li, “Tor anonymous traffic identifi-
cation based on gravitational clustering,” Peer-to-Peer Networking and
Applications, vol. 11, no. 3, pp. 592–601, 2018.

[8] M. H. M. Soleimani, M. Mansoorizadeh, and M. Nassiri, “Real-time
identification of three tor pluggable transports using machine learning
techniques,” The Journal of Supercomputing, vol. 74, no. 10, pp. 4910–
4927, 2018.

[9] Y. He, L. Hu, and R. Gao, “Detection of tor traffic hiding under
obfs4 protocol based on two-level filtering,” in 2019 2nd International
Conference on Data Intelligence and Security (ICDIS). IEEE, 2019,
pp. 195–200.

[10] M. Yang, J. Luo, L. Zhang, X. Wang, and X. Fu, “How to block tor’s
hidden bridges: detecting methods and countermeasures,” The Journal
of Supercomputing, vol. 66, no. 3, pp. 1285–1305, 2013.

[11] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of sampling
methodologies to network traffic characterization,” in Conference pro-
ceedings on Communications architectures, protocols and applications,
1993, pp. 194–203.

[12] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco systems
netflow services export version 9,” 2004.

[13] P. Phaal, S. Panchen, and N. McKee, “Inmon corporation’s sflow: A
method for monitoring traffic in switched and routed networks,” 2001.

[14] A. N. Mahmood, J. Hu, Z. Tari, and C. Leckie, “Critical infrastructure
protection: Resource efficient sampling to improve detection of less
frequent patterns in network traffic,” Journal of Network and Computer
Applications, vol. 33, no. 4, pp. 491–502, 2010.

[15] W. Meng, W. Li, C. Su, J. Zhou, and R. Lu, “Enhancing trust
management for wireless intrusion detection via traffic sampling in the
era of big data,” Ieee Access, vol. 6, pp. 7234–7243, 2017.

[16] L. Huo, D. Jiang, and Z. Lv, “A software-defined networks-based mea-
surement method of network traffic for 6g technologies,” Transactions
on Emerging Telecommunications Technologies, p. e4172, 2020.

[17] R. Jang, “Towards scalable network traffic measurement with sketches,”
2020.

[18] Servers. [Online]. Available: https://metrics.torproject.org/networksize.
html

[19] Yawning/obfs4. [Online]. Available: https://github.com/Yawning/obfs4
[20] meek · wiki · legacy / trac. [Online]. Available: https://gitlab.torproject.

org/legacy/trac/-/wikis/doc/meek
[21] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,

X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” 08 2018, pp. 561–575.

[22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[23] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[24] G. Androulidakis, V. Chatzigiannakis, S. Papavassiliou, M. Gram-
matikou, and V. Maglaris, “Understanding and evaluating the impact

of sampling on anomaly detection techniques,” in MILCOM 2006-2006
IEEE Military Communications conference. IEEE, 2006, pp. 1–7.

[25] C. Sony and K. Cho, “Traffic data repository at the wide project,” in
Proceedings of USENIX 2000 Annual Technical Conference: FREENIX
Track, 2000, pp. 263–270.

11

https://go.chainalysis.com/2021-Crypto-Crime-Report.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/networksize.html
https://github.com/Yawning/obfs4
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek


APPENDIX A
FEATURE ENGINEERING

After capturing traffic from the backbone network, packets
with the same quintuple (source address, source port, destina-
tion address, destination port, communication protocol) can be
grouped into the same flow.

The first step is to extract the features from the complete
traffic. Based on the existing research[6][7][9] and our obser-
vations on traffic, we extract five types of features that can be
used for Tor traffic identification, which is shown in Table I.

TABLE I: Type and quantity of initial features

Type No. Type of features Number

1 the proportion of packets with different directions 6

2 the proportion of packets with different lengths 14

3 the proportion of packets with different intervals 5

4 the proportion of special packets 3

5 the related logarithmic calculation results 4

Total 32

Some of these features have been used in other Tor traffic
identification researches, such as 600-byte packet frequency[6],
and the usability of these features has been validated in the
complete traffic.

To handle the backbone network traffic, the traffic will be
sampled and only a portion of the packets can be obtained from
each flow. A fixed number of packets of the same quintuple
are called Record in the later feature statistics. Depending
on the sampling ratio, the number of packets that can be
extracted from a flow varies, resulting in a different number of
Records. The packets that make up these Records are not time-
dependent, so the proportion of packets with different intervals
cannot be used as a post-sampling feature. The associated
logarithm calculation results are also discarded for the same
reason. The time-dependent packets do not affect the solution,
because the features used in this method can also be extracted
from such packets.

After the first filtering step, the remaining features are
all proportional features, and the eigenvalues need further
computation. In order to reduce the storage and computation
consumption, as few packet statistics as possible need to be
used. At the same time, these features also need to be of some
importance to be useful in model training. Therefore, in this
paper, the importance of features is evaluated using the Gini-
index based method in the random forest algorithm. The final
selection of features are shown in Table II.

TABLE II: The meaning and importance of features

Feature Meaning Significance
score

Ca1/Cd The percentage of packets with a length of 0 to
61 to the total number of no-empty packets sent

by the client

0.206592

Ca4/Cd The percentage of packets with a length greater
than 1050 to the total number of no-empty

packets sent by the client

0.15457

Cd/Cp The ratio of non-empty packets to the total
number of packets sent by the client

0.095711

Cpsh/Cd The percentage of PSH packets out of the total
number of non-empty packets sent by the client

0.082727

Sa4/Sd The percentage of packets with a length greater
than 1050 to the total number of no-empty

packets sent by the server

0.07791

Ca2/Cd The percentage of packets with a length of 61 to
465 to the total number of no-empty packets

sent by the client

0.07743

Spsh/Sd The percentage of PSH packets out of the total
number of non-empty packets sent by the server

0.073635

C0/Sd The ratio of empty packets sent by the client to
non-empty packets sent by the server

0.050955

timestamp Whether more than half of the packets have
timestamp

0.044416

Cd/Dp The ratio of non-empty packets sent by the client
to the total number of bidirectional packets

0.03741

Sd/Dp The ratio of non-empty packets sent by the
server to the total number of bidirectional

packets

0.033841

Sd/Sp The ratio of non-empty packets to the total
number of packets sent by the server

0.030836

Sa2/Sd The percentage of packets with a length of 61 to
465 to the total number of no-empty packets

sent by the server

0.026115

S0/Cd The ratio of empty packets sent by the server to
non-empty packets sent by the client

0.007852

TABLE III: Statistics to be recorded

Counter Statistics recorded Counter Statistics recorded

C1 The number of packets
sent by the client

C7 The number of client
packets between 0 and

61 in length

C2 The number of
non-empty packets sent

by the client

C8 The number of packets
between 61 and 465 in

length sent by the client

C3 The number of packets
sent by the server

C9 The number of packets
longer than 1050 sent

by the client

C4 The number of
non-empty packets sent

by the server

C10 The number of packets
between 61 and 465 in

length sent by the server

C5 The number of PSH
packets sent by the

client

C11 The number of packets
longer than 1050 sent

by the server

C6 The number of PSH
packets sent by the

server

C12 The number of packets
with timestamp

12


	Introduction
	Related Work
	Tor
	Research on Tor traffic
	Traffic Sampling

	Background
	Tor network
	Tor bridge
	Sampling theory
	Bloom Filter

	Methodology
	Feature engineering
	Traffic sampling
	Nested Count Bloom Filter

	Experiment & Results
	Parameter adjustment before validation
	Procedures of the validation experiment
	Analysis of results

	Discussion
	Comparison
	Limitations and Countermeasures
	Future work

	Conclusion
	References
	Appendix A: Feature engineering

