
First, Do No Harm: Studying the manipulation of
security headers in browser extensions

Shubham Agarwal
Saarland University

s8shagar@stud.uni-saarland.de

Ben Stock
CISPA Helmholtz Center for Information Security

stock@cispa.de

We recently noticed a critical error with our measurement
method. The problem originates from server-side random-
ness (that sometimes omits headers on a follow-up request)
as well as a race condition in CDP/browser extensions.
This leads to an unknown (yet likely quite high) number
of false positives we report in the paper. See our blog post
for details.
Overall, since retroactively fixing the numbers is infeasible,
the number of extensions reported in the paper must not be
assumed to be correct. The following is the final version as
was presented at the workshop. We leave it up nevertheless
to allow others to better understand the technical aspects
of our work, and to avoid they make similar mistakes.

Abstract—Browser extensions are add-ons that aim to enhance
the functionality of native Web applications on the client side.
They intend to provide a rich end-user experience by leveraging
feature-rich privileged JavaScript APIs, otherwise inaccessible for
native applications. However, numerous large-scale investigations
have also reported that extensions often indulge in malicious
activities by exploiting access to these privileged APIs such as
ad injection, stealing privacy-sensitive data, user fingerprinting,
spying user activities on the Web, and malware distribution.

In this work, we instead focus on tampering with security
headers. To that end, we analyze over 186K Chrome extensions,
publicly available on the Chrome Web Store, to detect extensions
that actively intercept requests and responses and tamper with
their security headers by either injecting, dropping, or modifying
them, thereby undermining the security guarantees that these
headers typically provide. We propose an automated framework
to detect such extensions by leveraging a combination of static
and dynamic analysis techniques. We evaluate our proposed
methodology by investigating the extensions’ behavior against
Tranco Top 100 domains and domains targeted explicitly by the
extensions under test and report our findings. We observe that
over 2.4K extensions actively tamper with at least one security
header, undermining the purpose of the server-delivered, client-
enforced security headers.

I. INTRODUCTION

The Web has become increasingly popular over time to
provide a wide range of services to their end-users over the
Internet. At the same time, the complexity of the client-side

code among Web applications has also increased to provide
a better user experience at their disposal. Browser extensions,
also known as plug-ins or add-ons in different browsing envi-
ronments, are an integral part of modern browsing architecture.
Third-party entities usually develop them to provide additional
client-side functionalities and enhance the user’s browsing
experience, for example, by improving the appearance of Web
sites, integration with popular third-party services, password
management, and access to users’ resources. They are more
powerful than native Web applications, owing to the feature-
rich JavaScript APIs that they have at their disposal. Thus,
they often mediate privacy-sensitive information and perform
security-critical operations for the users.

Web applications are regularly the targets of different
attacks from Cross-Site Scripting through framing-based at-
tacks to TLS downgrading. Researchers and practitioners have
develop different mitigations for these attacks, which are
typically delivered through HTTP headers from the server
and subsequently enforced by the client. For instance, the
server may define a Content-Security-Policy header to control
script inclusion and framing from third-party pages. However,
given the aforementioned capabilities, extensions may modify
or drop such headers, effectively disabling well-configured
security mechanisms and thus undermining the applications’
security which is supposed to be enforced by the client.

Numerous studies by the research community have con-
tinually reported the abuse of these extensions as vectors to
carry out malicious operations, leading to potential privacy and
security implications. Previous large-scale studies by various
researchers indicate that they often spy on user browsing
history, steals privacy-sensitive user information, or illegiti-
mately modifies the content of Web pages [2, 14, 25, 31].
Recent studies further assert that these man-in-the-browser
entities are persistently abused in the wild and may have grave
implications [26, 27, 32]. While these studies indicate that
the extensions often intercept and modify the security headers
at runtime, we emphasize that a systematic investigation is
essential to determine, categorize and quantify the threats
associated with them and propose effective countermeasures
to tackle these vulnerabilities.

In this paper, we specifically analyze extensions that in-
tercept, inject, drop or modify HTTP security headers within
the response. The Web server specifies HTTP security headers
and sends them along with the response so that the browser
enforces the corresponding security protocol at the client.
Tampering with these headers may hamper the client-side
security of the applications and expose them to vulnerabilities

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2021
25 February 2021, Virtual
ISBN 1-891562-67-3
https://dx.doi.org/10.14722/madweb.2021.23016
www.ndss-symposium.org

https://swag.cispa.saarland/default/2021/07/19/madweb-headers.html


that the headers aim to mitigate. To study this behavior at scale,
we propose an automated framework to analyze and detect
such extensions using a combination of static and dynamic
analysis strategies. We also review the risks associated with
these headers’ alteration and their impact on the application
security and user privacy. To this end, we investigate over
186K publicly available Chrome extensions. The proposed
framework statically analyzes the codebase and crawls on the
Tranco Top 100 domains and other target hosts to identify
potentially harmful extensions. We observe from our findings
that most of these extensions that tamper with the security
headers also disable at least one of the corresponding client-
enforced security mechanisms.

To summarize, the key contributions in this study are as
follows:

• We present our automated approach to identify
browser extensions that manipulate security headers,
ultimately undermining the security configurations de-
sired by the Web application server.

• Based on the proposed methodology, we conduct a
large-scale study with over 186K Google Chrome
extensions and show that 2.4k actively undermine the
clients’ security.

• We conduct a deep dive into the modifications of CSP,
highlighting that extensions even take the seemingly
non-security relevant decision to add directives to the
delivered policies.

• We outline the implications of other security headers
being manipulated and propose expansion of our ap-
proach as part of future work.

II. TECHNICAL BACKGROUND

In this section, we briefly discuss the extension architecture
and its permission model. We also describe the security headers
we investigate in our work and outline their use cases.

A. Extension Architecture

Chrome extensions are lightweight add-ons that enhance
the user experience on the client side by utilizing the Chrome
APIs exposed by the browser. The extension architecture
provides component isolation and privilege separation as part
of its security mechanism. The browser isolates the installed
extensions from each other and their core components from the
native Web applications. Each extension provides a manifest
where the extension developer defines the metadata of the
application such as the API permissions required to perform
privileged operations, the target hosts on which it should
operate, and other operational configurations. It also consists
of different script components that contain its core logic.
If appropriately configured, their cross-origin capabilities are
not governed by the Same-Origin Policy (SOP). Instead, the
extensions can make authenticated fetch requests to allowed
hosts and can execute JavaScript within Web applications.

The background script, often referred to as the extension
core, runs in a single isolated process as a separate component.
It has access to the highly privileged, feature-rich Chrome
Extension APIs through which it can perform a multitude of

functionalities. Some of these functionalities include accessing
and deleting browser history, sending notifications to the user,
periodic script execution in the background, updating browser
configurations, managing the list of applications and extensions
installed, and launching or uninstall them if and when desired.
It can also passively intercept or actively drop, issue, or modify
requests for any given Web site. Hence, extensions are more
powerful than regular Web applications, given the wide range
of operations they can perform on the client, such as make
cross-origin requests.

The content script runs as a separate instance and within the
context of any given Web site. It can directly interact with the
page as well as modify its contents at runtime. This makes the
content script very powerful as the JavaScript executed from
within the content script is indistinguishable from the original
Web page’s JavaScript. Thus, to prevent exploitation of Web
applications that may result from abusing content scripts by
malicious entities, it only has access to low-privilege and less
critical browser APIs such as i18n, XMLHTTPRequest, or
storage APIs. It can also directly communicate with the
background script using the Messaging API.

To access any Chrome Extension API, browser API, or
access the Web site’s content that they intend to use in
their components, the extension developers must declare its
corresponding permissions in the manifest. Upon an exten-
sion’s installation, the user has to grant all the required
permission to enable the extension. While it is necessary to
declare permission to use privileged APIs, it is also required
to declare the host permissions on which the extension core
should operate. For instance, if an extension needs to intercept
requests originating from the client on example.com, the
developer needs to declare this host in the manifest as part of
webRequest and example.com as API and host permission,
respectively.

Although it is recommended for the developers to request
minimal permissions for their target functionality, as per
the Principle of Least Privilege, prior research works have
shown that only a few extensions adhere to this policy (e.g.,
[5, 23, 24]). Moreover, once the user grants the required
privileges to these extensions at install time, the user does not
have any control or knowledge on how and when the extension
utilizes the granted privileges to carry out their functions in the
background and within what context. Thus, an extension with
elevated privileges can pose a severe threat to the security
of the application as well as to the privacy-sensitive data
processed at the client side.

B. HTTP Security Headers

HTTP security headers are a subset of standard HTTP
headers that mediate security-specific information between
the server and the client. The Web server sends necessary
security configurations along with response headers to the
browser when a user accesses any Web site. Upon receiving
the response, the browser enforces the desired security features
for the given site on the client. Tampering with these headers
in-flight may potentially disable the desired defense mecha-
nism, e.g., framing control, and expose an application to the
associated types of attacks, e.g., clickjacking. Several header-
based mechanisms have been introduced over time which

2

example.com
example.com


intend to defend against different threat models. We focus on
four widely-used, security-critical headers deployed by popular
Web applications for this study, based on our observations from
recent academic and non-academic studies over adoptions of
various HTTP security headers such as by Buchanan et al. [6]
and other following works.

1) Content-Security Policy (CSP): Although initially intro-
duced to mitigate cross-site scripting (XSS), this header has
undergone several revisions over the years to control framing
and enforce secure communication channel on the client [22].
Through various CSP directives, the server controls how the
browser should handle different contents for a given Web
site, such as scripts, style-sheets, images, and forms. These
directives contain the allowed origins for each type of content
and instruct the browser to load only those resources. For
example, through script-src https://*.foo.com, a
site allows only scripts originating from any HTTPS-enabled
subdomain of foo.com to provide scripts to it and ex-
cludes all other sources (including inline scripts), mitigat-
ing a potential injection flaw. This primary use case was
often the topic of modifications in CSP; e.g., to get rid
of the dreaded ’unsafe-inline’ keyword, CSP’s Level
2 introduced nonces and hashes to selectively allow the
inline scripts from the developer. In Level 3, CSP added
the ’strict-dynamic’ keyword to enable scripts trusted
through nonces or hashes to programmatically add additional
script resources, while at the same time disabling a host-based
allowlist. Notably, CSP is designed in a backward compatible
fashion, i.e., combining nonces with ’unsafe-inline’
will enable modern browsers to rely on nonces (i.e., they ignore
’unsafe-inline’), whereas legacy browsers still execute
the inline scripts even without supporting nonces.

Orthogonally, other directives such as
frame-ancestors and frame-src limit the domain
which can render the current Web page inside an iframe and
those which the given Web page can load within an iframe,
respectively, thus mitigating click-jacking and frame-injection
attacks. CSP also contains directives to enforce TLS over
an insecure connection and prevent any man-in-the-middle
attack. For instance, the block-all-mixed-content
directive explicitly instructs the browser to block all mixed
content included within the Web page while declaring
upgrade-insecure-requests directive forces the
browser to upgrade all HTTP resources and links to HTTPS.

2) HTTP Strict-Transport-Security (HSTS): The Web
server defines an HSTS header to ensure a secure communica-
tion channel between the client and the server and prevent any
man-in-the-middle attack such as protocol downgrade attack
and cookie hijacking [20]. When the browser receives this
header, it blocks any redirection over HTTP and enforces
communication over HTTPS connection for the given host.
The browser can cache this setting for a given period, as
specified by max-age directive (at least one year as per
the recommended standards) while includeSubDomains
directive instructs the browser to load all the subdomains for
the given host over HTTPS as well.

3) X-Frame-Options: The X-Frame-Options header intends
to defend against click-jacking attacks on the client side. It
enables the server to restrict their Web site to be framed inside
another Web site, within <frame>, <iframe>, <embed> or

<object> elements, over same or different origin, as desired
[21]. For instance, one can completely disallow any framing
for their Web site using DENY attribute, irrespective of the
origin of the parent page, whereas the parent page with the
same origin may frame the target Web site with SAMEORIGIN
attribute. While CSP’s frame-ancestors is the desired
way of stopping framing-based attacks, sites still deliver the
X-Frame-Options header much more frequently than the better
CSP-based alternative [30]. Furthermore, in the presence of
frame-ancestors, the X-Frame-Options header is ignored
by modern browsers; however, Web applications often use
both, often with conflicting security guarantees [8].

4) X-Content-Type-Options: This HTTP header intends to
thwart MIME-type sniffing vulnerability on the client by
instructing the browser to not determine the MIME type of
the content within the response and obey the values specified
by the Content-Type header. For instance, whenever a user
accesses any uploaded file for which either the server sends no
Content-Type header or sends with inappropriate values,
the browser ”sniffs” the sent resources to determine its content
type. This can lead to dangerous situations, e.g., when the
client detects the uploaded file to be HTML or Java. By setting
the nosniff attribute for this header, the server instructs the
browser to not sniff the MIME type of any resource.

III. RESEARCH METHODOLOGY

In this section, we describe our automated framework to
identify potentially suspicious Chrome extensions that prevails
in the Web ecosystem by utilizing a combination of static
and dynamic analysis techniques. We outline the goal of
this framework before discussing its technical specifications.
The proposed methodology intends to answers the following
fundamental questions in line with the discussed threat as
follows:

• How many extensions hold the privilege to intercept
or modify Web responses before the browser renders
them?

• How many of the above extensions perform operations
on specific hosts and how many of them target all the
domains to modify the response headers?

• How many of the above extensions actively inject,
drop, or overwrite HTTP security headers on respec-
tive target domains?

• What are the security headers most targeted by these
extensions? Do these modifications degrade the client-
side security of Web applications in the wild?

In the following parts of this section, we first explain the
filtering mechanism by which we select the target extensions
that hold required privileges and build our dataset for further
analysis. We then outline the process by which we collect the
target security headers in the presence of each of the Chrome
extensions and the ground truth headers. In the end, we then
discuss the steps to analyze and determine those extensions that
are suspicious and may prove to be a danger to the security
of the Web application. Figure 1 depicts an overview of the
proposed framework. In (i), we demonstrate the steps followed
during static analysis of the codebase and initial screening.

3



var oneMoreDomain = "*://*.bar.com/";

chrome.webRequest.onBeforeSendHeaders.addListener(
function(details) {
//core logic
return {requestHeaders: details.requestHeaders};

},
{urls: ["*://*.foo.com", "https://*/*",

oneMoreDomain]},↪→

["blocking", "requestHeaders"]
);

Listing 1: Host Permissions to intercept request passed along
with the event listener.

While (ii) and (iii) describe the process of header interception
and comparative analysis at runtime.

A. Dataset Construction

The framework leverages a static flow-analysis approach
to detect those extensions that intercept responses before
the client renders them. An extension is required to hold
the webRequest and optionally the webRequestBlocking per-
mission in order to intercept and/or modify requests and
responses at runtime. While webRequest allows the exten-
sion to intercept requests and responses for the target hosts
asynchronously, webRequestBlocking allows them to handle
the requests synchronously, and the control-flow returns only
after the execution of the callback method [18]. Thus, we
proceed ahead with our framework as follows: (i) We first
shortlist all the extensions from the downloaded 186K ex-
tensions which request the above-stated permission(s), de-
clared in their manifest. (ii) We then combine all background
scripts into a single file and pass it to our AST parser.
(iii) We then check for the existence of *.webRequest.*

(e.g., chrome.webRequest.onCompleted.*) methods
within the parsed AST and select the extensions for the
next step. (iv) In the last step, the framework again iter-
ates over the ASTs of the shortlisted extensions and, in
particular, looks for the method signatures used to intercept
the responses right before the browser renders them, i.e.,
*.webRequest.responseReceived.* [18]. In the last
step above, the framework follows the function-call chain and
return values and traces back to all the function initialization
and definitions to locate the desired function signature effec-
tively. To implement the above-mentioned steps, the framework
utilizes the error-tolerant version of Acorn, i.e., acorn-loose,
an open-source NodeJS library [1], to parse the ASTs of the
background script(s), detect the function signature and extract
URL literals. The shortlisted extensions obtained from the last
step constitute our candidates for further analysis.

The framework now extracts the target domains for each
of these shortlisted extensions at this stage. There are multiple
ways by which an extension can declare its target domain.
(i) The first obvious way is to list all the target domains in
the manifest for host permissions. These domains may also
contain wildcards to allow operations on different schemes,
paths, and their sub-paths or subdomains of the given domain,
for instance. (ii) Many extensions are domain-agnostic and
operate on all the domains and thus, declare all urls [16] as
host permission. (iii) Another way to achieve either of the
above two steps is by utilizing the activeTab privilege when

the user manually invokes the extensions’ functionality on any
target domain, loaded on the currently active tab [15]. It allows
intercepting requests from the active tab until it terminates.
(iv) Many extensions declare activeTab or all urls in their
manifest yet operate only on specific domains, by sending
hosts permissions along with the Chrome API to intercept
to requests/responses or perform domain checks in their core
logic to carry out operations, as demonstrated in Listing 1.

The framework considers the above four ways of host
permissions and extracts the domains for further analysis as
follows. First, it extracts the hosts and wildcard domains from
the manifest, if there exists any. Depending upon the nature
of the wildcard, it either extracts the top-level domain from
the wildcard or terms it as all urls. For example, it interprets
http://*/*/* or *://*/* as wildcards for top-level
domains and thus, consider them in all urls. Whereas, it ex-
tracts example.com from https://*.example.com as
specific target host. Besides, it also checks for the permissions
as in (ii) and (iii) above to accurately determine the Chrome
extension’s operational space. Though the framework also
extracts the literals from the AST of the extension background
script and perform contextual checks for all URL-like strings
to determine hosts, it does not prove to be full-proof effective
due to client-side obfuscations, use of hidden or cached values,
and data fetched at runtime. We further segregate the filtered
extensions into two pools based on their operational space, i.e.,
extensions that operate on all URLs while those that operate
only on specific URLs.

B. Header Collection

We saw in Section III-A that the framework filters out
unwanted extensions while it considers and stores those for
the next stage of analysis, which show any signs of header
interception and manipulation on the client side, using static
analysis of the codebase. To accurately determine the exten-
sions that tamper with the security headers and recognize the
target security headers, we now leverage dynamic flow-analysis
and incorporate it into our framework. For each extension, the
framework extracts its target URLs and visit each of them
twice: The first crawl provides the ground truth for further
analysis by intercepting all the security headers without load-
ing the extensions on the browser. While in the second run, the
crawler loads the Chrome extension and allows the framework
to collect the security headers, which may or may not be
manipulated by the target extension. For those extensions that
target all the URLs (using all urls or wildcards) or has access
to any active tabs, as discussed before, the crawler visits the
Tranco Top 100 domains [29] as their target hosts and collect
the headers, along with any other specified or extracted URLs
from its data. The framework gathers all these headers and
stores them for further comparative analysis.

To incorporate the above crawling feature, we use pup-
peteer, an open-source NodeJS library, to load browsing ex-
tensions on-the-fly and launch headless Chromium instances
[17]. In addition to puppeteer, the crawling component also
utilizes the Chrome DevTools Protocol to intercept all the
response headers after the target extension makes all the
modifications at the client side [13]. In particular, we use
Network.responseReceived method to intercept the re-
sponses. The crawler launches the browser for every extension

4



Fig. 1: An overview of the automated framework for analysis

individually, with and without loading them, visiting each of
the URLs successively. It stays on the page for five seconds
after the page load event triggers to allow and record the
client-server communication. It records the request initiator,
the request and response URL, the resource type, the frame
of the originating request, and other important metadata along
with the actual headers to distinguish between the requests
and responses, and subsequently, their respective headers. After
every page visit and its subsequent timeout, the crawler clears
the cache before the next URL is visited. It then dispatches
the data to the remote server for analysis after collecting the
headers for each of the given URL, where it further stores the
data into the database.

C. Identifying Suspicious Extensions

At this stage, we have the target security headers modified
by the extensions on respective domains along with the cor-
responding ground truth headers to compare against, available
for analysis. In the next and final step, the framework retrieves
all the headers: both ground-truth and the modified security
headers in the presence of extension, for each of them grad-
ually. It then performs a comprehensive comparative analysis
on the two sets to determine the nature of modifications and
whether it exhibits benign or suspicious behavior, based on its
subsequent impact on the target application.

More specifically, the framework retrieves the two set of
headers for an extension and separately groups them based on
a tuple of their {requestInitiator, requestURL, responseURL,
resourceType, responseStatus}. By doing this, it ensures that

var targetHeader = "content-security-policy:
script-src 'self', *.xx.fbcdn.com,
*.googleapis.com, *.attacker.com;";

↪→

↪→

var groundTruth = "content-security-policy:
script-src *.fbcdn.com, *.googleapis.com;";↪→

var difference = headerDiff(targetHeader,
groundTruth);↪→

//difference = ["self", "attacker.com"]

Listing 2: An example of header comparison based on their
domains.

the requests, as well as the headers collected from them,
are distinguishable and comparable against their ground-truth
candidates. It then parses the header values for all the grouped-
data from both sets into JSON serialized format and further
compares one set of headers with its counterpart to record the
differences. In case the server sends multiple instances of the
same header within a response, the framework groups all the
distinct values for the given header in a serialized structure and
compare accordingly. For instance, in the case of X-Frame-
Options header, when an extension tries to modify the header
value to enforce a relaxed version of the policy desired by
the Web server, e.g., replace DENY with SAMEORIGIN or
the empty string, the framework identifies the change and
report both the original as well as the extension-desired policy
accordingly. In case there is any security header for a given
request, intercepted along with the presence of an extension

5



Category # Extensions

Extensions analyzed in this phase 186,434

Extensions with target API privileges 17,434

Extensions with relevant function signatures 3,286

Extensions targeting <all urls> & wildcards 2,694

Extensions targeting specific hosts 592

No. of distinct domains extracted 4,550

TABLE I: Summary of the findings from static analysis

and there is no counterpart in the ground-truth dataset, the
analyzer labels the header as “injected” by the extension. On
the contrary, if any ground-truth security header is missing in
the header set intercepted along with the extension, it marks
them as “stripped” by the extension.

The analyzer performs an additional check between the
injected and stripped headers to rule out any correlation.
Moreover, it implements an extended top-level domain-based
comparison for the security headers that allow URLs with a
wildcard set as their values. For instance, the script-src
attribute allows wildcards as well as specific URLs. As demon-
strated in Listing 2, the framework compares the top-level
domain of all the URLs and wildcards and report those that
do not exist in the ground truth headers. This is helpful in
particular for CSP as the framework avoids comparing nonces
and only identifies the differences among allowed domains and
other associated attributes. This way, it intends to reduce the
risk of false-positives and accurately determine the nature of
modification by the extensions. Once the framework identifies
all the modified, injected, and dropped headers, it then reports
whether an extension exhibits suspicious activity or is benign
if it performs any of the above operations on the target security
headers.

IV. EVALUATION

In this section, we evaluate the proposed methodology by
analyzing over 186K Chrome extensions that were publicly
available on the Chrome Web Store between January and June
2020. The framework crawls the Tranco Top 100 domains, as
on 15th September 2020 and other target hosts, depending on
their corresponding host permissions, to scrutinize the behavior
of individual extensions. It intercepts all the target domains’
responses and from all the frames embedded in the parent
domain. We report our findings from each of the steps during
analysis in the following subsections.

A. Permission & Source Code Analysis

The framework begins by extracting the crx packages for a
total of 186,434 downloaded extensions and then checks for the
API and host permissions declared in the manifest. It identifies
a total of 17,434 extensions that requests for either webRequest
or webRequestBlocking permission, necessary to successfully
intercept and modify header at the client and filters out the rest
in the first round. It then considers these selected extensions
for the next stage of analysis.

For the above extensions, the static analyzer component
parses the manifest to identify the background script(s) and

subsequently builds a single unified AST using them. Now, the
analyzer traverses through the AST twice: At first run, it col-
lects all possible forms of function declarations in JavaScript,
which could be used as a callback argument to the target APIs,
and in the second run, it detects the APIs as well their callback
method along with their target hosts, if they are passed as an
argument, by utilizing the information obtained from the first
run. Moreover, it also extracts the host permissions and URLs
for those extensions from the manifest where the relevant
function signatures are detected. Thus, it identifies a total
of 3,286 extensions, which show definite evidence of header
interception and manipulation at the code level. It also extracts
4,550 distinct URLs from these extensions’ host permissions
other than the Tranco top 100 domains. It further categorizes
the extensions based on their target hosts, i.e., whether they
operate on all hosts or a particular set of the host(s). We
summarize the findings from this phase of analysis in Table I.
As listed in the table, we observe that most extensions operate
on a large number of domains. We also manually verify a few
of these extensions before storing them for the next phase of
scrutiny.

B. Runtime Analysis

Table II outlines the statistics reported from the second
and final stage of checking. The crawling framework visits
the corresponding target hosts twice for each of the extensions
identified in the initial phase simultaneously and intercepts the
headers to detect the extension’s modifications. It crawls a total
of 4,637 distinct URLs that constitute the Tranco Top 100
domains and 4,550 URLs extracted in the preceding phase. It
records the target header and their respective values with and
without the extension loaded into the browser for all the frames
within a domain. We observe that approximately 76% of all the
extensions (i.e., 2,485) analyzed at this stage tamper with at
least one security header considered for this study. Moreover,
approx. 17% (i.e., 553) among the above 2,485 extensions alter
the values of all the four headers. Further, when classifying
them based on their target hosts, we find that approx. 90%
(2,245) among the above-reported findings operate on all URLs
or wildcards while the rest of them only target specific hosts.
We realize that many extensions that operate on specific hosts
may execute their target functionality on a particular path or
require user interaction at runtime, thus possibly resulting in a
lower rate of detection. On the other hand, when we scrutinize
those extensions which target all URLs, a majority of them
operate on a small number of domains, or rather URLs, among
the top 100 domains, that provide auxiliary services such as
ad contents, analytics services, third-party tools, and other
resources, even though it requests for all urls or wildcards
as host permissions.

C. Results & Observations

As mentioned in Sections IV-A and IV-B, we report that a
total of 2,485 extensions could potentially undermine the secu-
rity of applications based on their privileges and suspicious na-
ture of security-critical header manipulation at the client side.
We further investigate the overall frequency of manipulation
among different security headers among the above-selected ex-
tensions from the collected crawling data. It helps us assess the
risks associated with each header and modification of their val-
ues and identify the manipulation pattern by these extensions in

6



Category # Extensions

Extensions analyzed in this phase 3,286

No. of distinct domains crawled on 4,637

Extensions that modifies at least one security header 2,485

Extensions that modifies all four security headers 553

Extensions that targets <all urls> & wildcards 2,245

Extensions that targets specific hosts 240

TABLE II: Summary of the findings from runtime analysis

Target Security Headers
Extensions Involved in

Alteration Injection Dropping

Content-Security-Policy 1,412 - 509

Content-Security-Policy-Report-Only 1,436 - 1,436

Strict-Transport-Security 1,338 844 679

X-Frame-Options 1,345 811 676

X-Content-Type-Options 1,115 707 553

TABLE III: Different security headers & their instances of
manipulation by extensions

the wild. We report our findings for each of these target headers
in Table III. While the alterations represent overall figures for
all possible ways of modification by an extension for each
header, injections and dropping represent specific instances of
these actions, respectively. For instance, among 1,412 exten-
sions that alter CSP headers in any fashion, 509 drop them
from the header altogether. We conclude from the statistics
in Table II and III that a significant number of extensions
conveniently drop all the security headers sent by the server
to execute their seemingly benign functionalities at the client
side. We observe that the Content-Security-Policy
(CSP) and the X-Frame-Options (X-FO) headers are
most likely to be modified by the extensions and more of-
ten together. For the sake of completeness, we also mon-
itor the Content-Security-Policy-Report-Only
header (CSP-RO) along with the standard CSP header, which
is deployed as a more relaxed and preliminary policy when
compared to the standard CSP to report the violations to the
server rather than enforcing them at runtime. Specifically, for
CSP-RO, we see that all the reported alterations correspond
to dropped instances. We observe a similar trend among CSP
headers containing the ’report-sample’ directive. This
property instructs the browser to send the first 40 characters
of the object that violates the stated policy to the server within
a violation report. While over 591 domains sent this property,
we find that 490 extensions among 2,709 of them strip this
property from the original value and over ten distinct domains.

We observe a mixed trend while analyzing the changes
made by the reported extensions over X-FO headers.
While many extensions arbitrarily set the header values to
SAMEORIGIN or even DENY at times that may cause side-
effects due to a more restrictive policy, other extensions set it
to an empty strings. This leads to a relaxed version of security
enforcement at the client, undesired by the server, as Chrome
does not accept an empty string as a valid value. We see
a similar pattern among X-Content-Type-Options (X-

CTO) headers where half of the reported extensions inject the
header with nosniff value while the rest of them drop this
header. For HSTS headers, we see that there exist inconsisten-
cies between their values originally sent by the server and their
modified counterparts. Many extensions often, while modify-
ing the header value, miss out on includeSubDomains
originally sent by the server and only specify the max-age
value. Few extensions also assign the max-age to zero even
though the original value is non-zero. While many extensions
continue to drop these headers, an equivalent number of them
also injects them to potentially strengthen the application’s
security. However, at the same time, this may often result in
security- or compatibility-based side-effects.

There exist some discrepancies from the server side as
well, particularly for the HSTS and X-FO headers, that cause
conflict during our analysis. The Web servers often send the
same security header but multiple times and with distinct
values to the client, which may be interpreted differently by
different browser vendors, as described in detail by Calzavara
et al. [8, 9]. We observe similar conflicting cases when the
extensions encounter such situations, even though it intends to
modify values for more vigorous security enforcement. The
security headers and their values differ even with different
user-agents, often specified by the seemingly privacy-aware
extensions while sending requests. Given the fact that these
extensions do tamper with the security headers having the
privilege to do so, we still find them suspicious and report
them in this study.

D. Deep Dive into CSP

Based on the discovery from previous work by Hausknecht
et al. [19] and our findings in Table III, we infer that extensions
often modify the CSP headers to bypass the security policies
that they dictate at the client. We find that among all the 2,051
Chrome extensions that alter any of the two variants of the
CSP (i.e., CSP and CSP-RO) and on 104 distinct domains,
1,604 of them drop these headers altogether on 87 unique
domains. These figures highlight that extensions often find CSP
as the biggest roadblock to perform their core functionalities
at the client and ultimately resort to dropping them from the
response headers. We now perform an in-depth investigation
over the modifications, injections, and drops among individual
directives and policies within those CSP headers, which are
only modified by the extensions.

We categorize the alterations among these directives and
their values within a modified CSP header based on the follow-
ing definitions: An instance is deemed to be modified when an
extension modifies the existing header such that it only alters
the values associated with that directive by selectively adding
or dropping any allowed sources whereas the directive remains
intact within the existing header. A dropped instance is one
that is selectively removed along with its values (or entirely
replaced as the empty string) by the extension without affecting
any other directives within the header. Lastly, an injected
instance refers to a situation when an extension specifically
adds a particular directive along with its associated values in
an existing CSP header. While it may seem counter-intuitive
that extensions could threaten a CSP’s security by adding a
directive, it must be noted that many directives in CSP fall
back to default-src. That is, a strict default-src may

7



CSP
Directives

Domains
that send
them

Modified
Instances

Dropped
Instances

Injected
Instances

Extensions
Involved

default-src 1,123 40 9 - 1,110

script-src 1,656 35 23 - 1,123

style-src 1,027 27 19 - 1,114

connect-src 971 24 18 - 223

img-src 334 7 11 - 981

media-src 230 7 9 - 979

worker-src 541 5 11 - 18

frame-src 251 2 13 5 981

frame-
ancestors

880 8 13 5 980

font-src 262 12 11 - 13

child-src 101 1 8 - 13

object-src 1,322 5 18 6 981

form-action 58 1 5 - 3

manifest-src 60 - 10 4 974

report-uri 1,938 - 25 - 676

report-to 1,026 - 2 - 2

base-uri 660 - 12 - 10

upgrade-
insecure-
requests

1,676 - 11 - 3

block-all-
mixed-content

802 - 9 - 4

TABLE IV: Different CSP directives targeted by extensions

be undermined by injecting a lax script-src, as resources
are always governed by the most specific directive, which does
not inherit the values from the fallback directive.

For our analysis, we parse the CSP headers into JSON
documents and consider these directives as keys and their
specified origins as a list of values. While analyzing injections
and drops, we only focus on the existence of keys, and the
change in values indicates a modified directive.

Table IV summarizes our findings for various CSP di-
rectives that the reported extensions alter, injects, or drops
within the modified CSP (and CSP-RO) headers. We identify
the distinct domains that send these directives among the
crawling dataset and then report those domains as instances
where we observe any alterations as defined above among the
modified CSP headers. Since the domains and extensions are
representative of the alteration among individual directives,
we understand that there is significant overlap among the
number of extensions that alter more than one directive at a
time. For instance, an extension that drops frame-src and
frame-ancestors for a given domain, is listed separately
for each directive. It follows in the case of domains as well.

Extensions often alter these directives and their values to
bypass the browser’s content restriction policies, as evident
from the number of modified and dropped instances by 1.1K
unique Chrome extensions and over 40 distinct domains. We
see that they often inject scripts, images, style-sheets, fonts,
and other third-party resources that may come from illegitimate
sources and pose a significant risk to the application and
expose them to dangerous client-side vulnerabilities, such

as cross-site scripting (XSS). For instance, we observe that
they add wildcards (*), unsafe-inline and other ori-
gins such as google-analytics.com within the existing
script-src. While the latter might not seem like a security
issue, any Google Tag Manager scripts (which can be arbitrary
code uploaded by an attacker) are accessible through https://
www.google-analytics.com/gtm/js?id=XXX, making any CSP
protection entirely useless.

Such behavior is often accompanied by the manipulations
within the value of default-src attribute, which serves as
a fallback directive for some directives such as script-src
and frame-src in case the server does not define them, or
the extension drops them from the header. Another popular
directive among extensions is connect-src that controls
and whitelists sources for fetch requests, XMLHttpRequests
and web-socket connections that originate from the client.
We observe that extensions often inject third-party domains
and extension identifiers as whitelisted sources among these
attribute values to communicate with these domains in the
context of the target webpage.

Since CSP also allows the server to control fram-
ing at the client side, extensions often interfere with the
frame-ancestors directives, as evident in Table IV, by
either entirely dropping them or injecting unwanted third-party
domains as whitelist sources, along with the existing values.
While at the same time, they also tamper with the frame-src
(and child-src) directives to enable loading any target
third-party domain in an iframe from within the given Web
page. A similar trend follows in the case of object-src
and font-src that allows loading plugins and fonts from
allowed sources, respectively. We observe that the extensions
often resort to altering these attributes to inject frames with
analytics and ad-serving domains. Extensions may potentially
exploit this behavior in collusion with attacker-controlled hosts
to not only fingerprint the user activity on the Web but
further allows stealing privacy-sensitive information from the
client. A specific case where we find such modifications is
on github.com where an extension injects third-party ori-
gins such as www.youtube.com, player.vimeo.com,
checkout.paypal.com and https://*.addtoany.
com within the frame-src attribute originally not sent
by the server. It allows an extension or any other client-
side adversary to inject frames pointing to the above allowed
origins, undesired by the server (i.e. github.com).

The report-uri attribute, used to report the policy
violations that occur at the client side to the specified server
endpoints, is also manipulated by several extensions. It appears
obvious given that these extensions attempt to inject some
code of their own (which is why they manipulate the CSP
in the first place) and do not want to have possible CSP
violations reported accidentally. However, the newly proposed
substitute report-to attribute is still unpopular and is
contrasting to the findings as for its predecessor. While the later
revisions in the CSP standards introduced directives, such as
upgrade-insecure-requests, and enabled the server
to enforce TLS over communication channels that originate
from the client, we see that only 7 extensions alter these config-
urations. We find that while almost all the analyzed extensions
encounter these attributes over 1,676 distinct domains, only
3 extensions drop it and over 11 discrete domains. We ob-

8

google-analytics.com
https://www.google-analytics.com/gtm/js?id=XXX
https://www.google-analytics.com/gtm/js?id=XXX
github.com
www.youtube.com
player.vimeo.com
checkout.paypal.com
https://*.addtoany.com
https://*.addtoany.com
github.com


serve similar trends for the block-all-mixed-content
attribute, though it is recently deprecated.

E. Risks Associated Manipulation of Other Security Headers

As also highlighted in Section IV-C, many extensions
misconfigure the security policies of multi-valued headers,
such as HSTS and X-FO, while injecting or redefining values
for them. In particular, for HSTS, we see that extensions define
arbitrary max-age values irrespective of the original value
sent by the server, often setting it to 0. This modification has an
interesting side-effect. For HSTS, once a browser has observed
an HSTS header, it will refuse to connect to the given domain
via HTTP until the max-age value has expired. This condition
also holds if any other visited pages on the same origin do
not send the header. However, by explicitly setting max-age to
0, the browser is instructed to drop the HSTS pin, effectively
disabling the protection against SSL stripping attacks.

Extensions also drop other pertinent attributes, such as
includeSubDomains, specified by the server that allows
an attacker to exploit the communication channel between the
client and the server upon the users’ first visit or by controlling
sub-domains for a given parent domain, respectively. It is cru-
cial to correctly configure the policies for HSTS as disabling
them, incorrectly defining them, or dropping them would
expose the application to vulnerabilities such as protocol-
downgrade attacks exploited by the man-in-the-middle entities
in the wild. In the case of CSP, any form of alteration among
values for different directives, as we saw in Section IV-D, may
lead to potential degradation of the client-side security required
by the server.

In the X-FO header case, many extensions specify an
empty string, which often leads to the enforcement of browser-
defined fail-safe defaults at the client. Chromium considers this
value as invalid and fails insecurely, i.e., allows framing from
any origin. Thus, it exposes the application to click-jacking
vulnerabilities at the client. This behavior is often in con-
junction with modifying or dropping the frame-ancestors
directive within CSP, which is the replacement for the long-
since deprecated X-FO header [8]. We also observe ”security-
aware” extensions arbitrarily defining more-restrictive policies
("DENY") for framing-control that may lead to unwanted
side-effects such as inconsistencies and incompatibility among
legacy applications. Extensions often drop the X-CTO header
from the responses that allow the browsers to perform MIME-
sniffing on the sent resources. An active web attacker may
exploit this behavior by injecting malicious JavaScript within
the benign content and perform nefarious operations, such as
XSS and XSSI, although other mitigation strategies, such as
CSP, are well in place.

V. IMPROVEMENTS AND FUTURE WORK

Although the proposed automated framework leverages an
amalgam of static and runtime monitoring to precisely identify
potentially harmful extensions, we recognize cases where it
fails to detect many extensions during analysis relevant to our
study due to several limitations in respective phases. While
statically scrutinizing the scripts, the analyzer track-backs to all
the function initialization, declarations, and definitions along
with the target URLs to identify the target event listeners,

their callback methods, and the target hosts on which they
operate and execute webRequest APIs. We observe that
many extensions fetch their core logic at runtime from the
remote server and either only execute them or, further, store
them at the client-side storage for reuse. In either of these
cases, our static analyzer fails to identify the use of target
function signatures within them. It also fails to analyze over
obfuscated scripts and do not extract target URLs if they are
defined in variables. Thus, we emphasize that the findings
from our framework, as discussed in Section IV, represent
an underestimate of the suspicious behavior prevalent among
these extensions. While we understand that there are generic
limitations to static analysis, we intend to use runtime mon-
itoring for extensions that describe the above-stated behavior
within the codebase in our future work. Moreover, the static
analyzer could be made more robust to handle the minified
script and extract pertinent literals.

On the other hand, many extensions operate on subdo-
mains, specific paths, and their sub-path to execute their
potentially devious operations, which may be behind the login
or would require users’ intervention at runtime. For instance,
the execution of core extension logic by utilizing activeTab
permission would require users’ consent for each target host.
Since the runtime analyzer only visits the top-level domains
and any other specific URL, if there exists any, it would
fail to replicate required user behavior at the client and thus,
cannot trigger all the desired target functionalities. Moreover,
for extensions with all urls permission or wildcards URLs, the
framework only crawls on the Tranco top 100 domains, which
severely limits its coverage and detection rate. When visiting
target domains with and without extensions at runtime, we
observe that the servers often send different security headers
on consequent visits or with varying user-agents. This behavior
severely impacts our findings as it may lead to a high rate
of false-positives and label benign extensions as suspicious.
While replicating user behavior at runtime is an apparent
limitation to dynamic analysis, we believe that collecting a
range of ground truth headers over a small time-interval and
with different user-agent configurations may help tackle the
randomization among security headers and help overcome the
above-stated challenges during analysis.

While we analyze the impact of modifications among the
four most popularly deployed security headers, it is imperative
to quantify the risks of other pertinent headers as well, such
as Referrer-Policy that permit Web servers to control
referrer information sent along with the request, or CORS head-
ers which regulate resource-sharing across different origins. If
injected by an extension, this could potentially allow for access
to cross-domain resources, which would usually be protected
through the Same-Origin Policy [11]. Hence, we aim to extend
our framework to cover the rest of the security headers in
our future line of work. Lastly, the framework analyzes the
extensions individually to identify any suspicious behavior.
As much as it helps to discover the characteristics of every
extension separately, it does not provide a view on the side-
effects of communication-channel and potential collusion that
may exist between multiple extensions installed at the client.
Picazo-Sanchez et al. [28] further showed that the browser
decides the execution order of each extension based on their
registered event listeners and installation timestamp, which
may cause unintended security issues at the client. Since it

9



is infeasible to analyze the collusion pattern among every
combination of extensions, we aim to identify those that are
externally-connectable and clusters based on their functional-
ities and installations to detect any potential collusion pattern
arising from the union of their respective privileges.

VI. RELATED WORK

This section briefly outlines the previous research con-
tributions related to our work and highlights the significant
differences between this work and other closely related studies.

A. Malicious Browser Extensions

The scientific community has ventured significant time and
effort in the past to protect against the threats that these
browser extensions may pose to the security of the Web
applications and the privacy of the user information that it
mediates. Thomas et al. [31] and Xing et al. [33] individually
conducted a longitudinal study and observed that a large
number of extensions inject unwanted ads from illegitimate
sources into the webpage for monetary purposes. Perrotta and
Hao [27] and DeKoven et al. [14] further affirmed in their
respective works that these extensions are often abused to
install malware at the client and may often serve as an integral
component of the botnet framework over the Internet, owing
to the over-privileged capabilities that they enjoy on the client
side. Another line of work by the authors in [2, 25, 32] report
that the extensions often observe the users’ activity on the
Web and may steal sensitive information and send it to a third-
party domain to create unique user profiles. While these studies
demonstrate that the adversaries abuse extensions as an attack
vector on the Web for various nefarious purposes, we explicitly
focus on a specific threat in this work, i.e., extensions that
manipulate security headers on the client side.

B. Extensions & Security Headers

Bauer et al. [5] statically examined the privileges held by
the top 1000 Chrome extensions and highlighted that they
could be abused as a potential attack vector to carry out a mul-
titude of attacks at the client. They emphasized that extensions
often manipulate security headers within the response to carry
out intended functionality and may potentially collude with
other extensions installed at the client to escalate their effective
privilege and perform undesired operations. At the same time,
Kapravelos et al. [24], conducted a large-scale study over 48K
Chrome extensions to identify malicious extensions in the
wild using dynamic analysis and HoneyPages for maximum
functionality coverage. They also observe that extensions are
involved in security header alterations at the client. We identify
these two studies as the most closely related ones with our
work. Chen and Kapravelos [12] used the taint-propagation
technique to detect those extensions which leak privacy-
sensitive data of the user over 180K Chrome extensions.
Further, Buyukkayhan et al. [7] deployed a multi-stage static
analysis technique to determine extension-reuse vulnerability,
a specific class of attack among Firefox extensions.

Although we observe that the above works provide suffi-
cient evidence that these man-in-the-browser entities manip-
ulate security headers before the client renders the response,
they do not provide an in-depth analysis of this behavior due

to the scope of their work. To close this research gap, we take
inspiration from these studies while designing our framework
and further focus on the following key points: (i) Large-scale
analysis of over 186K Chrome extensions, available on the
Chrome Web Store, to date. (ii) Determining and quantifying
the target security headers that extensions target most often.
(iii) The risk associated with manipulating these headers and
their respective attributes. (iv) Different classes of extensions
and their interception and modification pattern, based on their
functionality.

C. Security Architecture of Extensions

In the early days of Chrome extensions, seminal works by
Barth et al. [4] and Carlini et al. [10], respectively, argued for
fine-grained privilege separation, a permission system based
on the principle of least privilege and component isolation
between the extensions and the native Web applications within
the browser ecosystem. However, the proposed mechanisms
have proved inadequate since the researchers have continually
reported that these browsers often indulge in malicious activi-
ties on the Web. In their work, Bandhakavi et al. [3] proposed
an automated vetting tool to statically analyze the extensions’
source code to identify potential vulnerabilities or dangers that
it may pose before making them available to the public. Jagpal
et al. [23] further proposed a fine-grained screening process
that combines both static and dynamic analysis techniques
to distinguish rogue extensions from benign ones. However,
we observe that it is still possible for an attacker to hide
malicious operations of an extension behind an innocuous
functionality, trigger them at certain events or dynamically
load the code at runtime and thus, could be successfully
uploaded on the store, bypassing the security measures in
place. Recently, Pantelaios et al. [26] also showed that an
extension could initially constitute benign functionalities and
can later turn malicious by receiving updates, thus bypassing
the initial screening. Hence, it is imperative to have an added
line-of-defense at runtime to monitor and defend against such
a specific class of attacks.

VII. CONCLUSION

In this paper, we conducted a large-scale analysis with
over 186K Chrome extensions to detect those extensions that
modify the HTTP security headers in the server’s response
and the threats associated with it at the client. We proposed
an automated framework that analyzes this behavior among
extensions and further label it as either benign or suspicious.
The framework first statically analyzes the permissions re-
quested by individual extensions and their source code to
filter out the irrelevant ones. Further, it crawls on the Tranco
top 100 domains along with other target URLs to detect the
header manipulations at runtime for each of these extensions.
We find that approximately 76% of the 3,286 Chrome ex-
tensions, which requests for necessary permissions and can
also intercept response headers, modifies at least one of the
four widely deployed security-critical headers on the Web
while over 500 extensions target all four of them. We ob-
serve that extensions tend to target X-Frame-Options and
Content-Security-Policy headers more than others to
introduce additional seemingly benign functionalities on the
visited webpage. Upon extended analysis on the modification

10



pattern among CSP, we observe that extensions intend to
bypass the content-restrictions and framing-control, initially
enforced by the server, by modifying corresponding directives
within the header. We assess the risk of modification of
these security primitives and understand that tampering with
them can disable critical security configurations at the client,
exposing the application to nefarious entities on the Web.

ACKNOWLEDGEMENTS

We would like to thank Lukas Weichselbaum for volun-
teering to shepherd our paper.

REFERENCES

[1] Acorn. Acorn, 2020. URL https://github.com/acornjs/
acorn.

[2] Anupama Aggarwal, Bimal Viswanath, Liang Zhang,
Saravana Kumar, Ayush Shah, and Ponnurangam Ku-
maraguru. I spy with my little eye: Analysis and detection
of spying browser extensions. In IEEE EuroS&P, 2018.

[3] Sruthi Bandhakavi, Samuel T King, Parthasarathy Mad-
husudan, and Marianne Winslett. Vex: Vetting browser
extensions for security vulnerabilities. In USENIX Secu-
rity Symposium, 2010.

[4] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and
Aaron Boodman. Protecting browsers from extension
vulnerabilities. NDSS, 2010.

[5] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro,
and Yuan Tian. Analyzing the dangers posed by chrome
extensions. In 2014 IEEE Conference on Communica-
tions and Network Security. IEEE, 2014.

[6] William J Buchanan, Scott Helme, and Alan Woodward.
Analysis of the adoption of security headers in http. IET
Information Security, 2017.

[7] Ahmet Salih Buyukkayhan, Kaan Onarlioglu, William K
Robertson, and Engin Kirda. Crossfire: An analysis of
firefox extension-reuse vulnerabilities. In NDSS, 2016.

[8] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A tale of two headers:
A formal analysis of inconsistent click-jacking protection
on the web. In USENIX Security Symposium, 2020.

[9] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius
Steffens, and Ben Stock. Reining in the web’s inconsis-
tencies with site policy. In NDSS, 2021.

[10] Nicholas Carlini, Adrienne Porter Felt, and David Wag-
ner. An evaluation of the google chrome extension se-
curity architecture. In 21st USENIX Security Symposium
(USENIX Security 12). USENIX Association, 2012.

[11] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo
Chen, Vern Paxson, and Min Yang. We still don’t
have secure cross-domain requests: an empirical study of
CORS. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[12] Quan Chen and Alexandros Kapravelos. Mystique: Un-
covering information leakage from browser extensions.
In CCS, 2018.

[13] Google Developers Community. Chrome DevTools
Protocol, 2020. URL https://chromedevtools.github.io/
devtools-protocol.

[14] Louis F. DeKoven, Stefan Savage, Geoffrey M. Voelker,
and Nektarios Leontiadis. Malicious browser extensions

at scale: Bridging the observability gap between web
site and browser. In 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17). USENIX
Association, 2017.

[15] Google Developers Community. chrome.activeTab, 2020.
URL https://developer.chrome.com/extensions/activeTab.

[16] Google Developers Community. Match Patterns,
2020. URL https://developer.chrome.com/extensions/
match patterns.

[17] Google Developers Community. Puppeteer, 2020. URL
https://developers.google.com/web/tools/puppeteer.

[18] Google Developers Community. webRequest, 2020. URL
https://developer.chrome.com/extensions/webRequest.

[19] Daniel Hausknecht, Jonas Magazinius, and Andrei
Sabelfeld. May i?-content security policy endorsement
for browser extensions. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2015.

[20] IETF. HTTP Strict Transport Security (HSTS), 2012.
URL https://tools.ietf.org/html/rfc6797.

[21] IETF. HTTP Header Field X-Frame-Options, 2013. URL
https://tools.ietf.org/rfc/rfc7034.

[22] IETF. Initial Assignment for the Content Security Policy
Directives Registry, 2016. URL https://tools.ietf.org/html/
rfc7762.

[23] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis
Mavrommatis, Niels Provos, Moheeb Abu Rajab, and
Kurt Thomas. Trends and lessons from three years
fighting malicious extensions. In USENIX Security Sym-
posium, 2015.

[24] Alexandros Kapravelos, Chris Grier, Neha Chachra,
Christopher Kruegel, Giovanni Vigna, and Vern Paxson.
Hulk: Eliciting malicious behavior in browser extensions.
In USENIX Security Symposium, 2014.

[25] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In
IEEE S&P, 2013.

[26] Nikolaos Pantelaios, Nick Nikiforakis, and Alexan-
dros Kapravelos. You’ve changed: Detecting malicious
browser extensions through their update deltas. In CCS,
2020.

[27] Raffaello Perrotta and Feng Hao. Botnet in the browser:
Understanding threats caused by malicious browser ex-
tensions. IEEE security & Privacy, 2018.

[28] Pablo Picazo-Sanchez, Juan Tapiador, and Gerardo
Schneider. After you, please: browser extensions order
attacks and countermeasures. International Journal of
Information Security, 2019.

[29] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In NDSS, 2019.

[30] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick
Nikiforakis, and Ben Stock. Complex security policy? a
longitudinal analysis of deployed content security poli-
cies. 2020.

[31] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav
Jagpal, Alexandros Kapravelos, Damon Mccoy, Antonio
Nappa, Vern Paxson, Paul Pearce, Niels Provos, and
Moheeb Abu Rajab. Ad injection at scale: Assessing
deceptive advertisement modifications. In Proceedings

11

https://github.com/acornjs/acorn
https://github.com/acornjs/acorn
https://chromedevtools.github.io/devtools-protocol
https://chromedevtools.github.io/devtools-protocol
https://developer.chrome.com/extensions/activeTab
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://developers.google.com/web/tools/puppeteer
https://developer.chrome.com/extensions/webRequest
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/rfc/rfc7034
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc7762


of the 2015 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2015.

[32] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is dif-
ferent: Client-side diversification for defending against
extension fingerprinting. In USENIX Security Symposium,
2019.

[33] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weins-
berg, Anmol Sheth, Roberto Perdisci, and Wenke Lee.
Understanding malvertising through ad-injecting browser
extensions. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15. International
World Wide Web Conferences Steering Committee, 2015.

12


	Introduction
	Technical Background
	Extension Architecture
	HTTP Security Headers
	Content-Security Policy (CSP)
	HTTP Strict-Transport-Security (HSTS)
	X-Frame-Options
	X-Content-Type-Options


	Research Methodology
	Dataset Construction
	Header Collection
	Identifying Suspicious Extensions

	Evaluation
	Permission & Source Code Analysis
	Runtime Analysis
	Results & Observations
	Deep Dive into CSP
	Risks Associated Manipulation of Other Security Headers

	Improvements and Future Work
	Related Work
	Malicious Browser Extensions
	Extensions & Security Headers
	Security Architecture of Extensions

	Conclusion

