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The most popular example of this attack was seen with
the Electrum Wallet (spesmilo/electrum), where threat
actors forked the repository under official-looking accounts
and tricked users into downloading compromised versions
of the application that can exfiltrate users’ wallet seeds to
an attacker-controlled server [3]. This behavior led to the
widespread theft of a substantial amount of Bitcoin from
users, leading the original maintainers to get the repository
taken down and launch their own counterattack against the
attackers’ servers. Aside from the use of forks to imitate
known benign software, threat actors also have used forks
as a storage medium to hide payloads as part of a larger
attack chain [4]. This allows attackers to launch phishing
and adware campaigns against victims, and pull second-stage
payloads from GitHub rather than a suspicious domain that
can be detected by an on-device antivirus or endpoint security
solution.

It is important to note that there currently exists no mitiga-
tion for these types of attacks other than manual investigation
and reporting to both maintainers and GitHub. Furthermore,
threat actors can repeatedly fork and create malicious reposito-
ries [4], making fork malware difficult to catch and remediate
before actual damage has been done.

In this paper, we focus on the automated discovery and
alerting of such malicious fork repositories by implementing
a detection infrastructure called Fork Sentry, which integrates
with an open-sourced project to perform fork integrity anal-
ysis. During this process, forks are actively checked for ma-
licious executables, and instances of abuse are reported back
to maintainers for takedown by GitHub Trust & Safety. Fork
Sentry uses typosquatting detection, well-established static
malware detection engines to catch adversarial capabilities,
and binary similarity hashing to reduce repeat analysis and
connect threat actors. In addition, Fork Sentry can be deployed
to monitor on a schedule to detect future attacks.

Given the number of actively maintained and used repos-
itories on GitHub, we restrict the scope of our initial work
to analyzing popular cryptocurrency-related repositories. As
seen in the previously-mentioned campaigns and by Pastrana
et al. [5], cryptocurrency-related projects are a popular target
for attackers because of the large amount of money at stake.
Additionally, we focus only on the detection of compiled
executables in forks and their releases, with future work
planned to augment this detection with source-based static
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suspicious forks, but also provides continuous monitoring for 
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I. INTRODUCTION

As GitHub has evolved into the largest collaborative devel-
opment platform, it has seen a rise in abuse of the platform’s
functionality itself, such as recent incidents of cryptomining
in its Actions continuous integration (CI) offering [1]. In
this paper, we demonstrate how GitHub’s forking and artifact
release features have given rise to a novel breed of supply
chain attack, where threat actors fork popular repositories to
serve malicious artifacts.

These threat actors can use their forks to trick users to pull
and compile their source code, download malicious artifact
releases, or use it as a storage solution for a multi-stage attack
chain. Creating malicious forks is an attractive technique for
malware propagation since forks are not indexed for public
search by GitHub unless they have more stars than the parent
repository [2]. This compounds the severity of these attacks as
malicious forks can evade detection efforts by static analysis
engines.
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analysis tuned towards adversarial capabilities.
The main contributions of our work are:
1) Introduce Fork Integrity Analysis as a viable tech-

nique for the detection of malicious artifacts in forks of
GitHub repositories.

2) Analyze malicious behavior of malware we detected in
cryptocurrency-related forks, and present how they are
being used and propagated against victims.

Our results from this work are as follows:
1) We identify and report 26 malicious forks in 35 cryp-

tocurrency repositories, causing seven of them to be
taken down so far.

2) We discover a persistent threat actor who was actively
propagating novel cryptocurrency-based malware, who
appears to have made over $200,000 through illicit
mining.

3) We use the results to provide recommendations to
GitHub for mitigations to help prevent future supply
chain attacks.

II. BACKGROUND AND RELATED WORK

GitHub is the most popular code hosting platform, housing
over 271 million repositories at the time of writing [6].
The platform includes a feature called forking, which allows
developers to create public snapshot clones of a repository.
This allows developers to introduce new changes separately
before getting them merged and shipped, or to create a spinoff
variant of the software. GitHub has also enabled a feature
called releases, which complements repositories and allows
maintainers to release pre-built versions of their software that
users can download instead of having to build the project
themselves.

A. Software Supply Chain Attacks

Our work falls into the area of supply chain attacks, where
threat actors introduce malware backdoors into software com-
ponents that are used by developers. Kaplan et al. [7] examined
the attack vectors that can be carried out against package
dependency registries, such as typosquatting package names
and exploiting outdated dependencies. Duan et al. [8] take this
further by implementing an analysis pipeline that found 278
malicious dependencies across three registries. Enriksen [9]
also attacked this problem in Go dependencies by generating
typosquat permutations of popular packages, uncovering a
malicious fork of the commonly used urfave/cli package.

While this work is important in highlighting the severity of
attacks against the open-source ecosystem, it is limited in only
looking at threats that hide in software dependencies, rather
than directly in code repositories themselves.

B. Finding GitHub Malware

One avenue of approach to mitigate against any form of
supply chain attack is to automate the detection of malicious
source code in repositories. Measurements done by Rokon et
al. [10] demonstrated the prevalence of malware source code
on GitHub, with Gonzalez et al. [11] going further by building

a system that applies a decision model for detecting malicious
commits as they enter a codebase.

While these works overlap somewhat with our own in
malware detection on GitHub, they consider only malicious
source code and assume a threat model of attackers that want
to push malicious code directly to the parent repository, rather
than hide compiled artifacts in separate forks. Work done by
Cholter et al. [12] is more closely related to ours, as they
conduct large-scale mining and scanning of Windows and
C/C++-based malware in GitHub repositories. However, they
do not focus on fork repositories, as these are not directly
indexed for analysis by independent researchers. Thus, prior
work involved in the detection and remediation of malware
on GitHub is not directly applicable for detecting fork-based
malware.

C. Fork Analysis

Work has been done to examine the interactions between
fork repositories and their parents [13], [14], [15]. Notably,
Ren et al. [13] introduce a similar system to ours that gives
insight into forks and the behaviors that they are introducing
to the parent repository. While efforts like these demonstrate
the necessity of understanding how forks interact with their
parents, it does not directly address the security gap that exists
in finding threats in forks.

III. MALICIOUS INDICATORS

Before presenting the design of Fork Sentry, we gathered
several heuristics that have been previously observed in open-
source malware attacks that should be detected when scanning
a repository’s forks.

A. Typosquatting

As pointed out by Taylor et al. [16], a suspicious indicator
that a piece of software is malicious is the presence of
typosquatting, where the name is intentionally misspelled in
the hope that a user will accidentally use it instead of the
original. This is an attractive technique to maximize the spread
of malware, and it is important for Fork Sentry to be able to
recognize it. A common detection technique is to compute the
Levenshtein distance [17]. We can apply this in Fork Sentry
by looking at the distance between the parent repository name
and its forks, flagging any forks with a small distance score
for further investigation.

B. Presence of Compiled Malicious Executables

GitHub repository trees typically do not contain compiled
executables, since it is designed for distributing source code
files. As seen in the Avast report [4], the presence of exe-
cutable artifacts committed directly to the repository tree is a
suspicious indicator, since it can cause unsuspecting users to
execute the executable or be used as a place to store artifacts in
a larger attack. Furthermore, shell scripts can also complement
these artifacts to help bootstrap the payload properly when
executing on a victim’s host, e.g. by setting input flags for a
cryptominer. Fork Sentry needs to be aware of the presence of
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Fig. 1. A high-level overview of Fork Sentry’s detection architecture.

binaries and shell scripts directly committed to the repository.
However, our infrastructure should not indiscriminately label
a fork as malicious based only on the presence of these files,
since there are many benign forks that may have accidentally
committed compiled executables of the source code. Thus, it is
important to additionally check for malicious capabilities such
as packing, obfuscation, and signatures of known malware
families.

Forks can have malware in their GitHub releases, since it is
a natural location for pre-built executables, and GitHub does
not perform malicious artifact scanning. By not storing pay-
loads directly in the repository tree, attackers can phish more
effectively by alleviating suspicions from potential victims. As
such, our compiled executable detection must also include files
in artifact releases associated with forks.

IV. DESIGN

A. Goals

While we want Fork Sentry to be able to detect the
malicious indicators laid out earlier, it should also fulfill
several implementation goals to maximize its usefulness to
both security researchers and repository maintainers.

Automation. Conducting fork integrity analysis needs to be
automated so that security researchers and maintainers can
recover alerts and request takedowns quickly, rather than
spending time on manual investigation. In addition, our anal-
ysis should be continuous in order to detect newly emerging
fork threats.

Robustness. One obstacle that needs to be overcome is
the GitHub API rate limit that is imposed on authenticated
users [12]. This rate limit unfortunately imposes restrictions
on how we can gather critical metadata about forks. Thus,
our infrastructure must attempt to minimize the number of
API calls used while scraping, and also recover gracefully and

continue fork analysis if one of our components fails due to
the rate limit.

Scalability. Popular target repositories can contain thousands
of forks by other GitHub users, which can further aid in hiding
their repository from showing up in the public fork tree. Thus,
the analysis time for a large number of fork repositories may
become too high for timely detection and alerting. Therefore,
Fork Sentry needs to be able to efficiently scale analysis
to millions of repositories and their forks, processing inputs
quickly and asynchronously and allowing the workload to be
distributed across as many workers as are available.

B. Architecture

Figure 1 shows the internal components that make up the
Fork Sentry infrastructure, which consists of the Dispatcher,
Analyzer, and Alerter. Figure 2 depicts the analysis workflow
that gets carried out for an individual fork repository and
its artifacts, not including typosquatting detection. We will
discuss these components and explain the implementation
details that help fulfill our design goals.

Dispatcher. The dispatcher offers an API endpoint that can
be invoked ad-hoc by a user or on a schedule in a CI/CD
workflow to kick off the fork integrity analysis. The API
endpoint consumes a target parent repository and uses the
GitHub API to recover all forks. To be comprehensive in our
scanning efforts, we do a depth-first traversal on the parent’s
fork tree to recover additional children of forks themselves.

Analyzer. Conforming to a publish-subscribe model, forks
recovered are all pushed to a message topic. Analyzers are
then instantiated as subscribers to perform malware analysis on
each fork, as highlighted by the workflow in Figure 2. To avoid
overloading the GitHub API, the fork repository is cloned to
disk, and relevant file types are filtered for malware analysis
by traversing all newly made changes in the commit history
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Fig. 2. Compiled artifact analysis workflow employed for an individual target fork repository.

of each branch. Artifacts are also downloaded and filtered for
relevant compiled executables. These filtered samples are then
checked against the similarity database with their computed
locality-sensitive hash to determine if they have been seen
previously.

Next, signature-based detection using ClamAV [18] and
capability-based detection with capa [19] will be employed
to do the actual malware analysis. Checking for signatures
helps determine if artifacts resemble known malware, and
checking for capabilities helps determine suspicious actions
statically for potentially novel samples. If suspicious artifacts
match a known signature, capability, or have similar samples,
alerts are generated and sent to the alerter for output.

To fulfill our goal of being robust and to mitigate GitHub’s
imposed rate limit, the analyzer re-publishes the fork for
analysis in the next hour if the rate limit is reached. This
ensures that we are able to continue comprehensive analysis
of forks without missing any repositories.

Similarity Database. It is important to detect similar samples,
as it helps both reduce the analysis workload for samples that
have already been ingested, and to highlight clusters of similar
malware that may indicate longer-running campaigns in the
fork ecosystem.

To detect similar samples, we compute and store locality-
sensitive hashes produced by the ssdeep algorithm [20],
which uses context-triggered piecewise hashing to create a
“fingerprint” for each file. ssdeep can then compute a
similarity score between two hashes; according to its author,
any score greater than 0 indicates that the files are similar [21].
However, a straightforward implementation of this similarity
search requires a full scan over the hash database for each
sample.

To help achieve our goal of scalability, we employ an
optimization from Wallace [22] that indexes the hashes in
the database by their chunk size; a hash with chunk size n
can only match hashes with chunk sizes n

2 , n, or 2n, so
this allows the search to be performed over a much smaller
set of candidates. Although ssdeep is robust and well-
understood, there are several newer similarity hashes intended
for malware analysis (e.g., Lempel-Ziv Jaccard Distance [23]

TABLE I
CRYPTOCURRENCY REPOSITORY SCAN SUMMARY

Category Repos Total Forks Malicious Forks

Core Implementation 5 47,723 0

Cryptominer 22 13,964 24

Wallet 8 7,192 2

Total 35 68,879 26

TABLE II
LOCATION OF DISCOVERED MALWARE IN FORKS

Location # of Malicious Forks

Repository Tree 14

Releases 12

and TLSH [24]) that may offer better performance; we hope to
explore these in future research. The online malware analysis
service VirusTotal also supports both ssdeep and TLSH,
which could potentially be used to expand the scope of our
similarity checking.

Alerter. Finally, suspicious forks that are detected are passed
to the alerter for storage and to output back to parent repository
maintainers through the GitHub issues tracker for the project.

V. EVALUATION

We scanned 35 popular cryptocurrency repositories (a total
of 68,879 forks) with Fork Sentry and detected 26 malicious
forks. Table I breaks down the categorization of the target
repositories that we chose to scan, and the number of malicious
forks found for each. According to Table II, we noticed that

TABLE III
TARGETED OPERATING SYSTEM

Operating System # of Malicious Forks

Windows 3

Linux 22

Android 1
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TABLE IV
SUSPICIOUS INDICATORS

Category # of Malicious Forks

Typosquatting/Confusion 2

Packing 6

Malicious Cryptomining 26

Fig. 3. Typosquatted fork of nicehash/NiceHashMiner serving a
malicious release.

a near equal amount of forks stored malware artifacts in their
repository trees and releases, and as per Table III, a majority of
malware discovered is compiled for Linux. We have reported
every malicious fork that has been detected, resulting in seven
takedowns by GitHub Trust & Safety, with others pending
review.

From our pool of recovered malicious forks, we will high-
light malicious capabilities prevalent in those samples, and
examine in more detail a specific instance of a persistent threat
actor that spread novel malware across multiple detected forks.

A. Malicious Behaviors

Name Typosquatting and Confusion. From our analysis,
we discovered one instance of a fork repository typosquatting
nicehash/NiceHashMiner, where an account with the
name of nicehashe was created with malicious releases
to attract new victims (Figure 3). Furthermore, we detected
another suspicious fork of spesmilo/electrum that em-
ployed confusion by naming itself electrummonerocl
assic/electrummoneroclassic and serving its own
suspicious releases.

Packing. One common malicious behavior is using different
packing routines to both obfuscate and make files smaller.
We noticed an instance of malware using UPX as a packer,
a Windows malware that employed the VMProtect packer,
and an Android-based miner that employed the Chinese-based
Jiagu packer. Furthermore, as detailed in the next section, we
also uncovered malware that used a custom packing and anti-
analysis workflow.

. / sec <BASE64_CONFI G>

t ar  xf  / var / t mp/ nor m/ RANDOM. t ar . gz - C 
/ var / t mp/ nor m/ p_RANDOM

Miner binary " a"

support_library.so

. / a - a et hash - o 
et hpr oxy+t cp: / / us1. et her mi ne. or g: 4444 - u 
0xaebFf 746F6a49ab158CD7C00C1208D789024f 7A3. sec 
- - pr oxy kechi sa. ddns. net : 10555

Fig. 4. Unpacking and execution workflow for sec malware.

Malicious Cryptomining. All of the malware samples de-
tected by Fork Sentry are tagged as malicious cryptominers.
We recognize that many malware detection engines often
flag cryptominers, even if created to be legitimately used for
participating in proof-of-work. In order to limit the amount of
false positives, we ensured that samples detected as cryptomin-
ers needed to have additional tags that signified malicious
behaviors.

B. Persistent Threat Actor Case Study

We highlight a case study of a recurring threat actor and the
discovery of their novel malware inside the forks of several
cryptominer repositories, and how it was potentially being
propagated amongst victims.

Discovery. Fork Sentry detected this particular piece of
malware first when evaluating pooler/cpuminer, where
the fork cambel183/cpuminer and a transitive fork,
michaelmusto26/cpuminer, were found serving ma-
licious miners that used packing and anti-analysis tech-
niques in their repository trees. Furthermore, the samples
created by this threat actor showed up again in another
cryptominer repository ethereum-mining/ethminer as
89565004/ethminer, due to high similarity scores be-
tween the artifacts in the codebase. These forks and their
malware were active from June 2021 until their time of
takedown in November 2021; here we will specifically discuss
the malware found in 89565004.

Runtime. Fork Sentry reported on the presence of several
malicious bootstrap scripts that complemented these samples,
which are run post-exploitation and are used by the mal-
ware to establish persistence and stealth on a compromised
server. The script found in 89565004/ethminer is seen
in Listing 1. An inconspicuously named systemd unit file,
gpu1.service, is created to run another malicious script,
covi2.sh (Listing 2) after networking is enabled, which
executes the actual cryptominer.

Packing & Anti-Analysis. The main Golang-based malware,
sec, implements a runtime-based packing routine, demon-
strated by the workflow in Figure 3. During execution, the
malware untars and writes to disk the actual cryptominer,
a copy of the nheqminer cryptominer, and an additional
support_library.so shared object that is decoded from
Base64. The shared object appears to be dynamically loaded
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by the initial sample, which then executes the actual cryp-
tominer. Here, anti-debugging is employed additionally to
check for ptrace interactions by a debugger, and the contents
of the LD_PRELOAD environment variable.

1 cd /home
2 sudo wget https://raw.githubusercontent.com

/89505004/ces/master/scripts/covi2.sh
3 sudo wget https://raw.githubusercontent.com

/89505004/ces/master/a
4 sudo wget https://raw.githubusercontent.com

/89505004/ces/master/sec
5 sudo chmod +x sec
6 sudo chmod +x a
7 sudo chmod +x covi2.sh
8 sudo rm -rf /lib/systemd/system/gpu1.service
9 sudo rm -rf /lib/systemd/system/gpu.service

10 sudo rm -rf /lib/systemd/system/eth.service
11 sudo rm -rf /var/crash
12 sleep 86400
13 bash -c ’cat <<EOT >>/lib/systemd/system/gpu1.

service
14 [Unit]
15 Description=gpu1
16 After=network.target
17 [Service]
18 ExecStart= /home/covi2.sh
19 WatchdogSec=18000
20 Restart=always
21 RestartSec=60
22 User=root
23 [Install]
24 WantedBy=multi-user.target
25 EOT
26 ’ &&
27 systemctl daemon-reload &&
28 systemctl enable gpu1.service &&
29 service gpu1 stop &&
30 service gpu1 restart

Listing 1. Script bootstrapping malicious cryptominers on a compromised
server.

1 /home/sec huZU1vijNr6S6G1f766z//
ocy7gAa4Md1YWTvhCl234IDNVZVKImiFO23hiajKuAyKu+79
zCdW0oU2fdd7a9hARp9Yppff4jFIwse2rA85zxwVV...

Listing 2. Malware execution with Base64-encoded configuration.

From the given address used to mine Ethereum, we noted
that this attacker seemed to have already made approximately
76.46 ETH [25], worth approximately $234,555 in USD at the
time of this writing)1. After validating our automated analysis,
we submitted takedown requests to GitHub Trust & Safety,
which were all fulfilled in the span of a week.

VI. DISCUSSION

Our work showcases that using fork repositories to host
malware is indeed a rising problem in open-source security,
based on several observations we can make from our results:

1) Fork-based malware is quite prevalent in cryptomin-
ing repositories. This is concordant with observations
made by Pastrana and Suarez-Tangil [5]; given the
high economic incentives associated with the growth of

1The malware runs a miner and directs the mining reward to Ethereum
address 0xaebFf746F6a49ab158CD7C00C1208D789024f7A3; note that we
cannot confirm what portion of this revenue from mining may have been
gained through illicit mining.

proof-of-work cryptocurrencies, attackers will naturally
gravitate toward this area.

2) Fork-based malware is mostly built for Linux. We
can speculate that many of these attacks carried out are
against Linux containers, servers, and IoT (Internet-of-
Things) devices, and used post-intrusion to capitalize off
of compute and memory capacity for revenue generation.

3) Malware in releases are enticing for phishing. The
typosquatting/confusion malware introduced in Section I
and found by us show how easy it is for threat actors to
exploit misspelling errors propagate malware.

Given these observations, should GitHub be responsible for
detection of malicious forks (or any malware in repositories),
or defer that effort to the community? We believe that GitHub
should take action given the implicit trust users naturally place
on the platform, and the pervasive effects of these attacks on
them when that trust is exploited by threat actors. Moreover,
first-party malware scanning by GitHub would not be affected
by the API rate limits that hinder independent researchers,
and they have access to other metadata, such as IP and email
addresses, that can be used to more effectively detect and
link threat actors across campaigns. Therefore, although we
believe Fork Sentry is a valuable interim solution, we also
make several recommendations to GitHub to enhance defense
against this new attack vector in the long-term.

A. Recommendations

Account typosquatting prevention. GitHub should apply edit
distance detection to block users from creating accounts/or-
ganizations that are too similar to one that is existing, such
that they do not have the opportunity to take advantage of
misspelling accidents by users to serve them malware.

Comprehensive malware scanning. Filtering and malware
analysis should be conducted on executable artifacts com-
mitted to any repository and their releases. Such work has
been proposed for hosting vendors like GitLab [26], but
has not come to fruition. Given the presence we’ve seen of
packing and cryptomining, such detections should incorporate
heuristics for catching these capabilities.

Code provenance for releases. Releases should only be
public if it can be demonstrated that they were created from
a specific codebase. Efforts such as applying program analy-
sis [27] and compiler and attribute identification [28] can help
verification, but are difficult to make perfectly accurate given
the diversity of compilation runtimes. Thus, a more practical
technique is to require that releases be created through publicly
verifiable continuous integration builds, rather than allowing
users to directly upload assets on their own.

Improved indexing and search for detection. Forks that
have changes from their parents should be indexed for static
analysis efforts, and researchers should also be able to query
for non-source file types to better catch malicious artifacts.
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VII. FUTURE WORK

Given the diversity of threats and the variety of analysis
techniques, we highlight future work that can help bolster our
accomplishments.

A. Analyzing Other Modified Artifacts

Fork Sentry does not account for adversarial changes in
source code, where injected source can discreetly conduct
malicious behaviors. Catching such attacks will either involve
incorporating prior work done in identifying malicious source
code and commits or applying source-based diff-aware static
analysis.

Another area of detection can be in compilation manifests,
which establish metadata, dependencies, and runtime behavior
during installation. The Octopus Scanner malware [29] is an
example of this, where the Java build process for a popular
project is backdoored to install malware. Parsers for different
manifest formats can be incorporated to statically analyze
these configurations to recognize if malicious capabilities are
introduced.

B. Improving Similarity Analysis

Previous studies [30] have showcased how similarity hashes
like ssdeep that employ a sliding window technique on the
entirety of a file lack context in binary features that may be
critical to associating similar samples. As such, false negatives
may become prevalent in identifying samples that are compiled
and released, particularly if malware authors actively attempt
to evade similarity analysis.

When examining the effectiveness of our similarity anal-
ysis with the weaponized cryptominer propagated by the
persistent threat actor against all other samples detected in
pooler/cpuminer’s forks, we found that Fork Sentry fails
to recognize its similarity to original cpuminer binaries,
even though it is only lightly modified.

In addition, because our scope is currently limited to
cryptocurrency repositories, obtaining reliable ground truth
about whether a given repository is malicious can be difficult.
Although we require that cryptominers have additional sus-
picious indicators (described in Section IV-B) to be deemed
actually malicious and worth reporting to GitHub, we lack
sufficient context to determine if any of the unreported repos-
itories were, in fact, malicious.

To address this, we plan to investigate other similarity
clustering techniques, perform deeper analysis on the meaning
of the changes made in a fork repository, and broaden the
scope of our work to incorporate other repositories and source
code.

C. Expanding Target Scope

In this paper, we focused on analyzing cryptocurrency-
based repositories, a very small subset of all projects on
GitHub. This scope can be widely expanded for many other
open-sourced ecosystems. For instance, as demonstrated by
Enriksen’s [9] work, Go-based packages have been targets
of malware infection through typosquatted forks accidentally

used as dependencies. Popular offensive security projects are
also good candidates, since there may be malicious forks
hidden amongst projects meant for pedagogy or research.
Finally, we could further expand our scope to include all
popular repositories (using, e.g., Google’s BigQuery dataset
for GitHub repositories [31]).

AVAILABILITY

To help others build on our work, we have released the
code of our fork scanning infrastructure under an open source
license at:

https://github.com/ex0dus-0x/fork-sentry
Datasets containing the results of our initial fork scans,

binary similarity database, and analyses are available at:
https://zenodo.org/record/6391341
https://www.virustotal.com/gui/collection/f15433215537bc

3dea2e71718778ca70f8241228cd2418b5b7f21a3a729a34da
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