Log4shell: Redefining the Web Attack Surface

Douglas Everson, Long Cheng, Zhenkai Zhang
School of Computing, Clemson University, USA

Abstract—The logdshell vulnerability has been called one of
the most significant cybersecurity vulnerabilities in recent history.
For weeks after initial disclosure, companies around the globe
scrambled to respond by patching their systems or by applying
mitigating security measures to protect systems that could not
be readily patched. There are many possible ways to detect if
and where an organization is vulnerable to logdshell, each with
advantages and disadvantages. Penetration testing in particular
is one possible solution, though its results can be misleading if
not interpreted in the proper context. Mitigation measures have
varying degrees of success: Web Application Firewalls (WAFs)
could be bypassed, whereas our analysis revealed that outbound
network restrictions would have provided an effective protection
given the rapidly evolving patch cycle. Ultimately, logdshell
should change the way we look at web attack surfaces; doing
so will ensure we can be better prepared for the next critical
zero-day Remote Code Execution (RCE) vulnerability.

Index Terms—Logdj; Web Attack Surface; Penetration Testing

I. INTRODUCTION

Log4shell has been referred to as one of the most significant
cybersecurity vulnerabilities in the modern age for several
reasons. It received a Common Vulnerability Scoring System
(CVSS) rating of 10 [1], the highest and most dangerous rating
possible on that scale; it allowed Remote Code Execution
(RCE) on a target; and it did not require user interaction
for successful exploitation. The only requirement is that a
specially-crafted string of characters is received by a system
with outbound access to the Internet and then logged by that
same system using an open-source Java library called log4;.
Most importantly, millions of systems of all types use Java, and
many of those use log4j for their logging—this is one reason
why experts claim it may be years before the vulnerability is
completely resolved [2].

Log4shell (and vulnerabilities like it) force us to redefine
how we see the web attack surface. While traditional web RCE
vulnerabilities allow us to directly run code on the system
we are impacting, the log4shell vulnerability has a potentially
much wider scope. Any application that logs the specially-
crafted string can be exploited, and it doesn’t matter how that
string is delivered. It can be delivered directly to a web server
that keeps logs of user-controlled input. It can be intercepted
by a Web Application Firewall (WAF) and then logged. It can

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2022
28 April 2022, San Diego, CA, USA

ISBN 1-891562-78-9

https://dx.doi.org/10.14722/madweb.2022.23010

www.ndss-symposium.org

even be received in data imported from an unrelated third-
party site. Systems thought to be well-protected or untouched
are now potentially vulnerable.

In this paper we will make the following contributions:

« we introduce the log4j Java logging library and detail the

log4shell vulnerability.

« we analyze the methods used to detect and mitigate the

log4shell vulnerability in various systems.

o we discuss how log4shell should change the security

professional’s view of the web attack surface.

Section II provides a background of log4j and logdshell,
Section III discusses detection methods and the role of penetra-
tion testing, Section IV provides the results of our preliminary
analysis of log4shell mitigations, and Section V provides
conclusions.

II. LOG4SHELL VULNERABILITY

A. Logdj

Log4j is a free and open-source library implementing a
logging framework [3]. There are a number of reasons, security
and otherwise, that a developer should implement logging.
Cheng et al. [4] provided an overview of logging platforms,
including log4j, as an alternative to Java’s built-in logging
system. The authors explained the benefits of using a single
logging solution and reviewed the different capabilities a
developer can use to track significant events generated by their
application.

B. Log4shell

In 2013, a log4j user requested that a feature be added
to log4j that allowed the use of Java Naming and Directory
Interface (JNDI) lookups [5]. JNDI provides an interface
to naming and directory services like Lightweight Directory
Access Protocol (LDAP) or Remote Method Invocation (RMI).
The requester wanted the feature so the logged application
could use these services to look up items and produce bet-
ter logs, rather than having to code each item individually.
This feature is the root cause of log4shell; it transformed a
simple logging system into a powerful command interpreter,
thus making it vulnerable to the same command injection
techniques used against other application components.

In December 2021 it was discovered that providing a
specially crafted string to log4j would cause it to contact
an external server and either run Java code specified by the
server, provide data to the server, or deny service to the
logging application [6]. Respectively, these vulnerabilities are
generally classified as RCE, Information Disclosure, or Denial
of Service (DoS). The RCE vulnerability is the source of the

“log4shell” name, a combination of the name of the log4j
library and “shell”, a reference to using the log4j library
to gain access to ultimately run shell commands. Listing 1
shows an example of a vulnerable application. This simple
console application reads a line from standard input, prints it
to standard output, and then logs it as an error using log4j. The
last line shown, logger.error (data), calls log4j to log
data read from the console. The three types of vulnerabilities
are described in detail below.

| private static final Logger logger = (Logger)
LogManager. getLogger (Vulnerable . class);

s BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in));
s String data = reader.readLine () ;
6 System.out. println (”Your data is:
logger.error(data);
8 .

2

+ data);

Listing 1: Example Vulnerable Application

1) Remote Code Execution: RCE vulnerabilities allow an
attacker to run their code on a victim machine. Biswas et al. [7]
conducted a case study of web-based RCE vulnerabilities.
The authors discussed different types of RCE vulnerabilities
in web applications and provided demonstrations of how
they might be exploited, to include tools commonly used by
attackers. Bier et al. [8] studied RCE vulnerabilities in Android
applications and Apache web server software to analyze the
prevalence of RCE vulnerabilities as compared to others.

The original log4shell vulnerability was given a rare CVSS
rating of 10, the highest possible rating, because it al-
lowed total control of an entire server (not just the logged
application) and was trivial to exploit. An exploit looked
like this: ${jndi:1ldap://servername/}. Logdj would
parse the JNDI expression in the ${} and execute an LDAP
request to server servername. It would then either execute
the Java code provided or, if a resource was provided, reach out
to that resource over the network to download and execute the
provided class. This resulted in complete attacker-controlled
code execution on the device. Other protocols like RMI could
be used instead of LDAP with similar effect. Log4j was
patched several times in the month of December to address
the original finding and some subsequent bypasses, but each
bypass used essentially the same basic attack: a specially
crafted string resulted in RCE with no user interaction.

A recent Apache Struts vulnerability has many similarities
to the log4shell RCE. In 2017, threat actors discovered and
exploited CVE-2017-5638, a vulnerability in Apache Struts
software [9]. This RCE vulnerability allowed an attacker to run
malicious code on the application server. Struts is a web frame-
work for Java applications, and by placing a specially-crafted
string in the Content-Type header, an attacker could run
arbitrary commands on the Struts application server. In one
publicized use of this vulnerability, Personally Identifiable
Information (PII) of about 143 million Equifax customers was
exposed [10].

2) Information Disclosure: An Information Disclosure vul-
nerability allows an attacker to compel a server to reveal data
it was not designed to reveal. A prominent and recent example
of this class of vulnerability is Heartbleed, a flaw in OpenSSL
through which a threat actor could send a crafted request to
a server and convince it to send blocks of its heap memory
just under 64KB in size. This memory could include private
keys, passwords, or other sensitive data, depending on what
was adjacent to the string in question on the heap [11].

Log4j has a feature called Lookup that allows a developer
to add variable values like the current date or the hostname
to logs. For example, to add the current Java version to a
log, the developer could specify ${java:version} in the
string, and log4j would log "Java version 15.0.1".1If
a threat actor placed that string within the JNDI expression
of a log4shell attack, it would be evaluated and then sent as
part of the JNDI request, which we verified in a test network
on Cloudlab [12]. While knowing the target system’s Java
version might prove valuable to an attacker, sensitive data
in environment variables might be even more useful; these
were accessible via the Environment Lookup, just one of many
lookups available to anyone using log4j.

3) Denial of Service: Distributed Denial of Service (DDoS)
is a well-known attack that involves harnessing a large number
of network nodes to fling packets at a target in the hopes
of overwhelming it [13]. However, a DoS in its most literal
and purest form can occur at any level up or down the
Open Systems Interconnect (OSI) model. Application layer
attacks can be asymmetric in nature, meaning a relatively small
quantity of traffic sent by an attacker can translate into a large
DoS impact.

Researchers identified a DoS bug not fixed by the 2.16.0
patch [14]. In certain conditions, threat actors can create
a recursive Lookup condition which crashes the application
using log4j. The example the author provided was when log4;j
was directed to log an entry based on a Context Lookup of an
attacker-controlled value. The attacker could simply make that
value equal to the Context Lookup for that value, thus creating
a recursive condition that would quickly crash the application.

C. Log4shell Vulnerability Timeline

Version Date CVE Description
2021- Lookups within message
2150 12/06 44228 text disabled by default.
216.0 13 2021- JSNDI dtlsabled }ziyfdefault.
2122 45046 upport removed for mes-
sage lookups.
2.17.0 2021- Recursion in string substi-
2.12.3 12/17 45105 tution fixed. Limit JNDI to
2.3.1 the Java protocol.
2171 Fixed possible RCE via
e 2021- JDBC Appender when at-
2.12.4 12727
44832 tacker controls server con-
232 .
figuration.

TABLE I: Log4shell Timeline

A timeline for the log4shell event can be found in Figure
1. The patch history for the log4shell vulnerability is shown
in Table I [15] and can be summarized as follows:

Patch
v2.15.0

Log4shell
privately
disclosed

released

Exploitation
detected by
Cloudflare

CVE 2021-44228
published

Patch Patch Patch
v2.16.0 v2.17.0 v2.17.1
released released

CVE

Widescale released
exploitation begins

2021-44832

CVE

CVE published
2021-45046 2021-45105
published published

24 25|26|27|28|29|30 (2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 [l 11|12|13 14 15|16|17élv.9|20|21|22|23|24|25|26|27

November 2021

December 2021

Fig. 1: Significant Log4shell Events

1) 2.15.0: This was the original patch introduced to fix
log4shell. Released on 12/6/2021, it disabled lookups within
message text by default, which was the only known attack
vector at the time. For those unable to install the patch, a
mitigating action was recommended to use a command-line
switch which disabled the same lookup feature.

2) 2.16.0, 2.12.2: Once the log4shell vulnerability gained
notoriety, security researchers were quick to find another attack
vector, non-default Pattern Layouts using Context Lookups.
This patch, released on 12/13/2021, disabled JNDI by default
and removed support for message lookups. For those unable
to install the patch, removing the JNDILookup class from the
log4j-core JAR file was a sufficient mitigation. Note this patch
cycle introduced a fix for Java 7 (2.12.2) as well as Java 8 and
later (2.16.0).

3) 2.17.0, 2.12.3, 2.3.1: On 12/17/2021, Apache released
another patch to address a DoS vulnerability caused by infinite
recursion. The patch changed the code to limit recursion and
limited JNDI to the Java protocol. This patch also introduced
2.3.1, a fix for Java 6.

4) 2.17.1, 2.12.4, 2.3.2: The patch released on 12/27/2021
caused a stir because it fixed another possible RCE vulnera-
bility. However exploiting this RCE would require access to
the server configuration—and anyone with that access already
controlled the server anyway. As a result, this vulnerability
was not deemed critical.

D. Log4shell Targets

1) Web Servers: Any server running a Java app using a
vulnerable version of logd4;j is a target. Given the proliferation
of web applications, they are an obvious major target—and
any attacker-controlled value is a potential attack vector.

HTTP request headers are an excellent example. When an
HTTP request is made, headers are sent with the request to
fulfill any number of functions. The Cookie header helps
sites maintain state. The Host header tells the IP address
receiving the request what host was entered in the browser
URL bar. The User Agent header tells the server what type
of browser, computer, and even operating system are being
used to request the page so it can be rendered for optimal
user experience. However, since these headers are in the
user-controlled request, they can be manipulated by users to
unexpected values that can impact servers [16]. It may be
valuable for a developer to log the user agent or a cookie,

or any number of other significant values communicated by
headers. If these values are logged by a vulnerable version of
log4j, they can be used to exploit the log4shell vulnerability
and cause code to be executed on the server.

Post parameters are another potential attack vector, and with
login pages being accessible to all, the username makes a great
choice. If an application uses a vulnerable version of log4j to
record login attempts, it is trivial for a threat actor to submit a
“username” with an attack string that triggers the RCE vulner-
ability. While it may not be readily apparent, post parameters
and HTTP headers can be manipulated with developer tools
integrated into most browsers or with proxy/repeater tools like
Burp Proxy Suite [17].

2) Security Tools: Relevant metadata from an application
is passed through to security tools for logging purposes or
for further investigation. If this data is logged on the security
tool using a vulnerable version of log4j, it is feasible a threat
actor could gain control of the security tool performing the
logging. For example, imagine a network Intrusion Detection
System (IDS) written in Java used a vulnerable version of
log4j and was configured to log suspicious events, with details
from the network packet. An attacker only needs to create
a suspicious event on the network and include the log4shell
attack somewhere in the packet. The IDS would log the
packet and immediately execute the embedded JNDI request,
potentially downloading the vulnerable code and executing it.
The damage done by compromising a device that sees all
network traffic could be substantial.

3) Backend Servers: Much as a Structured Query Lan-
guage (SQL) injection attack grants a threat actor access to
run database commands via the web server, the log4shell
vulnerability could provide command execution on backend
servers. Similar to the security tools vector mentioned above,
exploiting this vector would require the web server to pass
a threat-actor-controlled value on to a backend application,
which would then need to log the value with a vulnerable
version of log4j. In some instances, the exploit might happen
some time after the attack was sent; for example, if the
organization conducts batch processing of transactions using
a vulnerable Java application, the exploit wouldn’t fire until
the batch was processed.

E. Web Application Firewalls

When faced with the task of patching so many systems in
a short time, organizations frequently turn to WAFs [18]. The
goal is to protect the perimeter until the entire organization
can be patched and tested according to a more reasonable
update cycle. For example, blocking a packet containing the
string ${jndi:1ldap (no trailing brace) would block the
earliest form of the logdshell attack. Unfortunately, WAFs
have limitations, many of which can be easily bypassed by
attackers. This was the case with the log4shell vulnerability.

A common WAF bypass used to exploit log4shell was
nesting. By nesting additional lookups inside the attack, there
are countless possibilities. One technique that can be used with
nesting is the default value. The log4j Lookup functionality
allows the programmer to specify a default value, which is
used in case the key is not found. By specifying no key or
a bogus key backed up by a default value, the string will
be interpreted as the default value itself. This opens up to
a nearly endless combination of strings, extremely difficult
for a WAF to detect. For example, the string ${: : —value}
is identical to the string value when interpreted by a vul-
nerable log4j class. So are the strings ${x:y:-value} and
${::-${::-value}}. With so many possibilities, it may
not be feasible for a WAF to detect every value without a
high probability of impacting benign traffic.

There is also the possibility that an encoded value could
be decoded and then logged. One example of this is Base64,
an encoding mechanism that turns any data into a string
containing any of 64 possible characters. Base64 can be used
to encode binary data into text that can be safely sent via
a text-only protocol. However, it can also be used to hide
a log4shell attack. If a log4shell attack can be encoded in a
Base64 string, it can be extremely difficult for a WAF to detect
it. This is compounded because the log4shell attack works
even if padded on either or both sides with any other data.
Since the attack can also be padded internally with nesting, the
Base64-encoded values likely yield too many possible strings
to match with a WAF. Pen testers and threat actors alike can
examine valid requests containing Base64-encoded values, and
then embed an encoded attack in the parameters or headers
containing those values to see if the victim server reaches out
to the IP address they specified in the attack. If it does, they
know the server is vulnerable.

III. SUSCEPTIBILITY ANALYSIS

Susceptibility can be defined as how easily one can be
harmed by something, or the inability to resist something
[19]. In the case of log4shell, the question facing so many
IT professionals in December 2021 was “How susceptible
are we?’. To be susceptible to logdshell, an organization
must have the vulnerable JAR files installed and running
such that they process attacker-controlled input. The Java
version, configuration of the server, how log4j was used, and
even the network configuration can reduce or even eliminate
susceptibility, even if the above conditions are met. Another
variable to be considered is the threat model.

A. Threat Model Impact on Susceptibility

The threat model is the collection of all malicious activities
that an attacker can perform against an entity [20]. It follows
from this definition that 1) the threat model varies from
organization to organization, and 2) the public disclosure of
a new vulnerability could add potential activities to a threat
model. In the case of a vulnerability with an extremely broad
impact like log4shell, the range of impacted threat models is
extensive.

The threat model of an organization being targeted by an
Advanced Persistent Threat (APT) is far different than the
threat model of an arbitrary organization with data of financial
value, and that organization’s threat model is different again
than that of an organization with no data of significant value.
Security researchers reported spraying of attacks shortly after
log4shell went public [21], and these attacks are in all three
threat models. However, organizations with something of value
must be ready for more targeted attacks, since criminals will
spend more time trying to identify the log4shell attack surface
and developing tailored attacks to bypass WAFs or fit custom
code that will be overlooked by automated scanners.

B. Determining Susceptibility with Penetration Testing

Determining susceptibility carries a level of effort which
can be increased for greater accuracy or a larger attack
surface, or decreased when resources are limited. The internal
organization must use all of its advantages to outrun the threat
actor, and arguably the most significant advantage it has is that
of direct, behind-the-firewalls access to potentially vulnerable
systems.

For example, searching server filesystems for vulnerable
versions of log4j will help determine if you are running the
vulnerable software. This can be accomplished by looking for
the vulnerable Java Archive (JAR) files, or more extensively by
looking for the vulnerable classes inside the JAR files. Having
an up-to-date software bill of materials makes this process
easier, as it can highlight vulnerable dependencies without the
need for manual checking [22]. However, it is problematic to
check IoT devices and appliances for which file system access
may be limited. Because of this, even organizations with direct
access to systems needing testing may choose to augment
traditional vulnerability management with penetration testing.

Penetration testing is a vulnerability hunt from a threat’s
perspective [23]. A major advantage of pen testing is that a
tester can create a proof of concept that proves a vulnerability
exists. A disadvantage is that the tester only finds what they
have the knowledge, skill, ability, and access to find.

Pen testing for log4shell can take three different forms.
The first one commonly discussed online was to set up
temporary subdomains using a service like canarytokens[.Jorg.
By creating a subdomain, a tester will receive a notification if
a server performs a lookup on the domain. If a tester uses the
subdomain in a log4shell attack and receives a notification,
this could be an indicator that the system is vulnerable.

The next check involved setting up a packet capture and/or
responder on a server and then sending a log4shell attack

—> Log4shell exploit , , > E St
= | Susceptible to RCE if E Web App E e %/ %
%@# running vulnerable Logdj | Servers o | ﬁla- i
! ! “'m ! External Vendor
; N I— i — __._.._..Servers |
! Ql x B 8 N\ Backend
P — \ Processin
Internet | WebApi | g
v Fi i L
g e NI -
J ' E E7|- - %@#-————‘ﬂ
Attacker ; SIEM ?3# ; d Eo5 SIEM
E -——l‘ E
External * DMZ ' Database Servers Internal

Fig. 2: Example of Log4shell-susceptible Web Application

string pointing to that server. If a connection was made to
the server after the attack, that server was likely vulnerable
to log4shell. Using a rudimentary response tool like netcat, it
was often possible to convince the server to disclose its name,
Java version, or even environmental variables.

The third method of pen testing attempted a full chain
exploit. This involved setting up an LDAP or RMI responder
that replied with either a link to a Java class or code that
could take advantage of a Java class already on the target
system. This exploit, while complicated, could provide much
more certainty that the target is in fact exploitable.

C. Limitations of Penetration Testing

1) Proving a Negative: Test results must be reported in the
proper context. The organization requesting the test wants an
answer to the question posed at the beginning of this section,
“How susceptible are we?”. If an organization is susceptible,
it is feasible to test and provide proof of that; however,
proving the opposite requires something a penetration test
cannot provide: proof of a negative. A penetration test can
prove that the system is exploitable, or it can prove that a test
team with limited resources could not exploit the system under
the established test conditions. However, it will never be able
to guarantee that the system is safe from exploitation.

2) Automated Log4shell Scanners: The Cybersecurity and
Infrastructure Security Agency (CISA) published an automated
scanner designed to hunt for exposed services containing
the logdshell vulnerability [24]. This scanner is effective
at checking commercial off-the-shelf applications and many
frameworks for the log4shell flaw. It sends the exploit and 23
variants designed to evade WAFs to servers in over 60 HTTP
request headers and in 7 commonly-used post parameters.
While the finite number of variants for WAF evasion is
a limitation, a tester with knowledge of their own WAF
configuration can craft a payload they know can evade the
WAF if necessary in order to ensure the test payloads reach the
application itself. As with any automated tool, it is necessary
to monitor the responses carefully to ensure that requests aren’t
returning errors because of the unusual headers—this behavior
can cause false negatives. For higher-security systems or other
systems that respond poorly to the scanner, customizing the

code or using a tool like Burp Proxy Suite allows greater
control for more granular testing [25].

3) Watering Hole Attacks: Pen testers and other security
researchers must be alert for watering hole attacks. A watering
hole attack occurs when a threat actor finds a site likely
to be visited by their target and ‘“poisons” the site with
malicious code in the hopes that it will be used by the target
organization [26]. In the hours and days immediately following
disclosure of a critical zero-day like log4shell, security testers
and other security personnel at companies around the world
are under pressure to answer questions from their executives
and managers. Tools to reproduce or test for the vulnerability
are in high-demand, and it would be very easy for someone
to release malware under the guise of a helpful tool. Once
downloaded and run on an internal network, the “tool” could
compromise the very systems the tester meant to protect. One
example of this was a seemingly humorous attempt to cause
a “fork bomb” DoS on a system by tricking someone into
running a bash command containing the code for the fork
bomb, which looks similar to a log4shell attack [27].

Using code from a reputable, verifiable source is a good
practice to follow. Determining the line between good code
and bad code can be difficult, especially under tight timelines.
A malicious actor could purposely publish a malicious tool, or
a well-meaning programmer could inadvertently create buggy
code that damages systems [28]. Using a list of verified
developers can reduce this risk. Even when using a verified
developer, carefully reviewing the source code and then com-
piling the tool on a trusted system is advised. Several tools
were released following the log4shell vulnerability’s disclo-
sure. One tool was published by Veracode [29], a reputable
company specializing in security services like static and dy-
namic code analysis. The Veracode tool, published well before
the log4shell disclosure, provided a rogue LDAP server to help
find JNDI injection vulnerabilities in general. The code was
published on their Github account, so this could be reasonably
trusted, and Veracode made the source code available as well.
Other tools were published by less-well-known researchers,
so reviewing the source code and compiling the application
oneself becomes even more important. In the end, this is a risk
decision—and a well-defined policy regarding the use of open

source test tools, even when responding to a critical security
incident, will help pen testers and others avoid trouble.

D. Internal Systems and Susceptibility

Risk rating frameworks like CVSS rate vulnerabilities as
much more severe if they can be exploited from the Inter-
net [30]. Even with the proliferation of insider threats, zero-
trust, and other modern security paradigms, a system protected
by a firewall is considered more secure. However, we have
seen in the past how command injection attacks allow an
attacker to run code on web servers, even when command
interpreter ports like secure shell are blocked from attacker
access and the only access allowed is to submit traditional
web requests. Likewise, SQL injection attacks let attackers run
queries directly on database servers via the web application—
even when security recommendations are followed to protect
databases deep within a corporate network.

The log4shell vulnerability has the potential to be much
more widespread and dangerous. Consider the traditional SQL
injection. The threat actor sends the SQL injection attack string
almost directly to the vulnerable component, the web server.
Because the web application did not use parameterized queries
or server-side input validation, the attack is successful, and the
threat actor can abuse the application’s relationship with the
database to conduct RCE on that database. But this is a specific
exploit, tailored to a specific web endpoint on a particular
application—and most importantly, with a single victim, the
database for which that web endpoint has privileges to query.

Contrast this with the log4shell vulnerability, where the flaw
is in a component used in so many diverse applications, from
Internet of Things (IoT) devices to vehicles to web servers and
frameworks, and even security tools and back-end processing
applications. With log4shell, any application of any type that
“sees” the exploit and logs it using a vulnerable log4;j library is
vulnerable to RCE. Figure 2 shows a notional web application
vulnerable to log4shell, where data from a user’s query flows
from the Internet, through the firewall and app servers in
the Demilitarized Zone (DMZ), and ultimately to databases,
back-end servers (and possibly out to external vendors)—all
the while being monitored by Security Information and Event
Management (SIEM) tools. If the user is a threat actor using
log4shell, they can send the attack string to the web server,
just as in the SQL injection attack. However, unlike SQLI, the
log4shell attack string can proliferate to other components.
The threat actor may gain RCE on the web application server
if it is vulnerable. But vulnerable or not, the web application
server will likely pass that value into a database. The database
may pass the data on to a back-end processing application that
is vulnerable—or worse yet, to an external vendor as part of a
different business process. Normally transparent systems, like
SIEM and antivirus could scan and log the attack in a database,
in network traffic, or on another server. If they do, and they
are logging with the vulnerable library, they too could become
compromised.

An example of a vulnerability that allowed an attack on a
transparent system was CVE-2016-2208 [31], a flaw affecting

all Symantec Antivirus products that allowed root-level RCE
on an affected system [32]. The vulnerability was triggered
when the antivirus product scanned a file. Normally there’s
no way for an attacker to interact with an antivirus scanning
engine directly, but by interacting with any other software
running on the server that allows file uploads or creation, an
attacker could indirectly exploit the attack and subsequently
gain direct root access to any and all systems that scanned
the file for viruses. Similarly, a web application could pass a
log4shell attack string to a vulnerable system for processing
which was being monitored by a SIEM using a vulnerable
Splunk add-on [33], subjecting the SIEM to RCE.

IV. MITIGATION EFFECTIVENESS
A. Mitigation versus Remediation

When dealing with cybersecurity vulnerability management,
it is important to understand the difference between mitigation
(making a vulnerability less significant) and remediation (“cur-
ing” a vulnerability completely) [19]. Remediation typically
involves uninstalling the vulnerable component or replacing it
with a patched component that no longer has the vulnerability.
Mitigation can be much more complicated, and can involve
any number of measures designed to lower the risk of the
finding, where risk is a function of both likelihood and
impact [34]. Thus, a mitigation might reduce likelihood by
making the vulnerability more difficult to exploit, and/or a
mitigation might reduce impact by limiting what the threat
actor can accomplish upon successful exploitation.

B. Log4shell Mitigation

In the case of log4shell, an initial mitigation was proposed
that reduced the attack surface by disabling the vulnerable fea-
ture at the command line or by an environment variable. This
fix was soon rolled back as ineffective, because a non-standard
configuration file could override the mitigation. However, it
did block the exploit in default configurations, and thus was
in fact effective in reducing the likelihood of exploitation [35].

Another widely-proposed mitigation was to isolate vulner-
able systems from the rest of the internal network. This miti-
gation assumed the system was or would be compromised by
vulnerability exploitation. It reduced the impact of exploitation
by limiting it to the affected system, and it was effective,
though it had the potential for significant negative business
impact.

A related mitigation not widely proposed was blocking
initial Internet-bound network connections from the system
running a vulnerable version of log4j, before it could be
exploited. The RCE and Information Disclosure exploitation
paths require initial outbound connections to an attacker-
controlled server; without these connections, there is no way
for an attacker to even know if the vulnerability exists—
and more importantly, no network path for them to receive
information or accept a request for malicious Java code to send
back for execution. This can be demonstrated with an IPTa-
bles command such as sudo iptables -t filter -I

Results (v'= yes) Attack Steps (v'= observed with Wireshark)
Attack Type Mitigation Technique Application Attack Inbound JNDI Req LDAP App Class
Worked Successful Attack Received Response Request
None v v v v v v

. Command Line 4 v
Remote Code Execution Remove Class 7 7
Outbound Net Block v v

None v v v v N/A N/A

Information Disclosure Command Line v v N/A N/A

Remove Class v v N/A N/A

Outbound Net Block 4 v N/A N/A

TABLE II: Experimental Results

OUTPUT 1 -m state —-—-state NEW —-j REJECT, al-
though this command blocks all new connections from the
system. A better method would be to use internal firewalls
to ensure that the application could initiate connections to
databases, update servers, and other trusted devices but be
blocked by default from all others.

C. Proof of Concept

We used Cloudlab [12] to create a test environment in which
to run the vulnerable application in Listing 1. Our environ-
ment consisted of a victim server (running the vulnerable
application), an attacker-controlled server (running a malicious
LDAP responder and a web server to serve out the malicious
Java class [36]), and a firewall between them that could be
configured to monitor or block traffic. We tested the RCE and
Information Disclosure attacks. If successful, the RCE resulted
in a reverse shell, while the Information Disclosure attack
transmitted the current Java version to the attacker server.

For each attack, we tested a baseline case with no mitiga-
tions and three mitigating strategies: a command line option
to disable JNDI lookups, the removal of the JNDI lookup
class from the JAR files, and blocking outbound network
connections. Our results can be found in Table II. For an RCE
attack to be successful, all four steps needed to be successful
(application receives inbound attack, attacker receives the
JNDI request, application receives the LDAP response, and
attacker receives application’s request for the Java class). For
the Information Disclosure attack, only the first two steps are
relevant since the disclosed information is transmitted with the
JNDI request.

The RCE attack was successful, but only in the baseline
case (vulnerable log4j with no mitigations). With any of the
three mitigations in place, the application received the attack
but did not make an outbound JNDI request.

Likewise, the Information Disclosure attack was also suc-
cessful in the baseline case. The information to be disclosed
was sent in the initial JNDI request to the attacker-controlled
server. As with the RCE attack, when any of the three mitiga-
tions were in place, the application did not make the outbound
JNDI request and thus did not disclose any information. The
last two columns are not applicable for this attack because the
disclosure happens in the JNDI request.

In summary, with no mitigations applied, we were able to
successfully execute the attacks and observe the network traffic

for all steps as expected. All mitigations successfully blocked
both attacks with equal effectiveness; this was expected since
our vulnerable application used the most basic use case of
log4j. None of the mitigations had a negative impact on the
application’s functionality.

V. CONCLUSION

Traditionally, a web attack surface has been the listening
ports exposed to a threat [23]. A vulnerability like log4shell
expands the attack surface for knowledgeable threat actors. In
effect, it gives internal applications a new, often externally-
facing attack surface. Any system that can receive attacker-
controlled data can be a proxy to attack another system that
ultimately logs it. Going forward, we must acknowledge that
even systems with no clear direct relationship to an Internet-
facing system may be easily exploitable, even if they are
behind a firewall or on a network completely isolated from
the original point of entry. But perhaps the real lesson here
is that widely-used open source libraries like log4j can serve
as a conduit, connecting our most protected, sensitive systems
to our most exposed—and our risk assessment processes must
be prepared for the inevitable public disclosure of the next
critical open-source library vulnerability.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments. This work is supported in part by National Science
Foundation (NSF) under the Grant No. 2114920 and 2031002.

REFERENCES

[1] National Institute of Standards and Technology. NVD - CVE-2021-
44228, 2021.

[2] Phil Muncaster. Experts: Log4j Bug Could Be Exploited for “Years”,
December 2021.

[3] Apache Software Foundation. Log4j — Changes, December 2021.

[4] Fu Cheng. The platform logging API and service. In Exploring java 9,
pages 81-86. Springer, 2018.

[5] Woonsan Ko. [LOG4J2-313] JNDI Lookup plugin support - ASF JIRA,
2013.

[6] Paul Ducklin. Log4Shell explained — how it works, why you need to
know, and how to fix it, December 2021.

[7] Saikat Biswas, MMHK Sajal, T Afrin, T Bhuiyan, and MM Hassan.
A study on remote code execution vulnerability in web applications.
In International conference on cyber security and computer science
(ICONCS 2018), 2018.

[8] Stephen Bier, Brian Fajardo, Obinna Ezeadum, German Guzman,
Kazi Zakia Sultana, and Vaibhav Anu. Mitigating remote code execution
vulnerabilities: A study on tomcat and android security updates. In
2021 IEEE international 10T, electronics and mechatronics conference
(IEMTRONICS), pages 1-6, 2021. tex.organization: IEEE.

[9]

[10]
(1]
[12]

[13]

[14]

[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]

Jeff Luszcz. Apache struts 2: how technical and development gaps
caused the equifax breach. Network Security, 2018(1):5-8, 2018.
Publisher: Elsevier.

Vex Woo. Apache Struts 2.3.5 < 2.3.31 /2.5 < 2.5.10 - Remote Code
Execution, March 2017.

JK Harris. HEARTBLEED: A CASE STUDY. Issues in Information
Systems, 19(2), 2018.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1-14, July 2019.

Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A
Ghorbani. Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy. In 2019 international carnahan conference
on security technology (ICCST), pages 1-8, 2019. tex.organization:
IEEE.

Guy Lederfein. Zero Day Initiative — CVE-2021-45105: Denial of
Service via Uncontrolled Recursion in Log4j StrSubstitutor, 2021.
Apache Software Foundation. Log4j — Apache Log4j 2, 2021.

Sanjib Sinha. Header injection and URL redirection. In Bug bounty
hunting for web security, pages 79-96. Springer, 2019.

Portswigger. Burp Suite Professional, 2021.

Victor Clincy and Hossain Shahriar. Web application firewall: Network
security models and configuration. In 2018 IEEE 42nd annual computer
software and applications conference (COMPSAC), volume 1, pages
835-836, 2018. tex.organization: IEEE.

Merriam-Webster Staff and others. Merriam-webster’s collegiate dictio-
nary, volume 2. Merriam-Webster, 2004.

Norah Ahmed Almubairik and Gary Wills. Automated penetration
testing based on a threat model. In 2016 11th international conference
for internet technology and secured transactions (ICITST), pages 413—
414, 2016. tex.organization: IEEE.

Dan Goodin. The Log4Shell 0-day, four days on: What is it, and how
bad is it really? | Ars Technica. Type: misc.

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta,

[23]

[24]

[25]
[26]

(271

(28]

[29]

[30]

and Fabio Massacci. Vulnerable open source dependencies: Counting
those that matter. In Proceedings of the 12th ACM/IEEE international
symposium on empirical software engineering and measurement, pages
1-10, 2018.

Douglas Everson and Long Cheng. Network attack surface simplification
for red and blue teams. In Proceedings - 2020 IEEE secure development,
SecDev 2020, pages 74-80, 2020.

CISA. Log4j Scanner, January 2022.
21T16:23:29Z.

Portswigger. Using burp intruder - PortSwigger, March 2022.

Braeden Bowen, Jeremy Eraybar, Iyanuoluwa Odebode, Douglas D
Hodson, and Michael R Grimaila. The new office threat: A simulation
of watering hole cyberattacks. In Advances in parallel & distributed
processing, and applications, pages 35-42. Springer, 2021.

egyp7. This is why it’s important to understand how your shell works,
folks., December 2021.

Paul B De Laat. How can contributors to open-source communities be
trusted? On the assumption, inference, and substitution of trust. Ethics
and information technology, 12(4):327-341, 2010. Publisher: Springer.
Veracode. veracode-research/rogue-jndi, January 2022. original-date:
2019-11-13T18:11:16Z.

Karen Scarfone and Peter Mell. An analysis of CVSS version 2
vulnerability scoring. In 2009 3rd international symposium on em-
pirical software engineering and measurement, pages 516-525, 2009.
tex.organization: IEEE.

National Institute of Standards and Technology. NVD - CVE-2016-2208,
2016.

Tavis Ormandy. Project Zero: How to Compromise the Enterprise
Endpoint, June 2016.

Splunk Security Advisory for Apache Logdj (CVE-2021-44228 and
CVE-2021-45046), 2021.

Peter Katsumata, Judy Hemenway, and Wes Gavins. Cybersecurity
risk management. In 2010-MILCOM 2010 military communications
conference, pages 890-895, 2010. tex.organization: IEEE.

Daniel Miessler. The subsequent waves of log4j vulnerabilities aren’t

as bad as people think - daniel miessler, December 2021.
Kozmer. log4j-shell-poc, March 2022. original-date: 2021-12-

10T23:19:28Z.

original-date: 2021-12-

	Introduction
	Log4shell Vulnerability
	Log4j
	Log4shell
	Remote Code Execution
	Information Disclosure
	Denial of Service

	Log4shell Vulnerability Timeline
	2.15.0
	2.16.0, 2.12.2
	2.17.0, 2.12.3, 2.3.1
	2.17.1, 2.12.4, 2.3.2

	Log4shell Targets
	Web Servers
	Security Tools
	Backend Servers

	Web Application Firewalls

	Susceptibility Analysis
	Threat Model Impact on Susceptibility
	Determining Susceptibility with Penetration Testing
	Limitations of Penetration Testing
	Proving a Negative
	Automated Log4shell Scanners
	Watering Hole Attacks

	Internal Systems and Susceptibility

	Mitigation Effectiveness
	Mitigation versus Remediation
	Log4shell Mitigation
	Proof of Concept

	conclusion
	References

