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Security.txt is still a relatively young standard in its early
draft stages. In particular, existing RFCs are currently being in-
validated every six months, often with non-trivial changes [16].
To maximize utility for vulnerability notifications, standard
authors great care must be taken to ensure that the evolv-
ing standard best meets the needs of various stakeholders,
including the domains implementing the standard and the
security researchers who will come to rely upon it. The
evolving nature of this situation presents an opportunity to
study Security.txt’s early adoption, characterize its benefits for
vulnerability notifications, and identify any sources of friction
between the upstream standard and downstream stakeholders.
Findings therein can then be used to drive improvements in
the existing standard and promote best practices among early
adopters.

In this paper, we present a large-scale measurement study
characterizing the adoption of the Security.txt standard in the
wild, emphasizing its utility for vulnerability notification cam-
paigns. In particular, we develop a Security.txt crawler capable
of rapidly iterating over the top 1M most popular domains
and identifying, classifying, and storing information about any
Security.txt files it encounters for subsequent analysis. Finally,
we leverage this crawler and the data it produces to answer
research questions about the effectiveness of Security.txt files
for vulnerability notifications.

Our work is most similar to a study conducted concurrently
by Poteat and Li, who examined the adoption of Security.txt
in the Alexa top 100K sites over 15 months. While many of
the findings presented by Poteat and Li are consistent with our
own, we note significant differences in methodology, including
scope and source of truth for seed domains, the timeline during
which measurements were conducted, and the approach to
parsing and validating Security.txt files. Moreover, our work
considers additional research questions which were left out
of Poteat and Li’s study, including the differences between
RFC versions deployed in the wild and how Security.txt
contacts compare with other potential vulnerability contacts
such as WHOIS abuse records. We argue that considering
these two works together helps to build a clearer picture of
the overall Security.txt landscape and lends further insight into
the reproducibility of our respective results.

Abstract—While security researchers are adept at discovering 
vulnerabilities and measuring their impact, disclosing vulnera-
bilities to affected stakeholders has traditionally been difficult. 
Beyond public notices such as CVEs, there have traditionally been 
few appropriate channels through which to directly communicate 
the nature and scope of a vulnerability to those directly impacted 
by it. Security.txt is a relatively new proposed standard that 
hopes to change this by defining a  canonical file format and URI 
through which organizations can provide contact information 
for vulnerability disclosure. However, despite its favourable 
characteristics, limited studies have systematically analyzed how 
effective Security.txt might be for a widespread vulnerability 
notification c ampaign. I n t his p aper, w e p resent a  large-scale 
study of Security.txt’s adoption over the top 1M popular domains 
according to the Tranco list. We measure specific f eatures of 
Security.txt files such as contact information, preferred language, 
and RFC version compliance. We then analyze these results to 
better understand how suitable the current Security.txt standard 
is for facilitating a large-scale vulnerability notification campaign, 
and make recommendations for improving future version of the 
standard.

I. INTRODUCTION

Encouraging affected stakeholders to patch security vul-
nerabilities has traditionally been a difficult t ask [ 24, 25,
26, 28]. Among the chief sources of friction for widespread
vulnerability notification, s ecurity r esearchers h ave c ited the
problem of determining the best point of contact for impacted
stakeholders [24, 25]. To drive positive security outcomes
from vulnerability research, the security community needs a
way to effectively communicate the presence and severity of
vulnerabilities to affected stakeholders. The proposed Secu-
rity.txt standard [16, 18] seeks to address this limitation by
providing the community with an open standard for publishing
vulnerability contact information. The file f ormat i s designed
to be both human-readable and machine-parsable, enabling
vulnerability notification o n b oth a  m anual a nd automated
basis.
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Specifically, we approach the following research questions:

1) Measuring Adoption. To what extent is the Security.txt
standard currently adopted by major stakeholders?

2) Measuring Consistency. How consistent are existing Se-
curity.txt deployments? Which RFC versions are they com-
pliant with, if any? What factors impact consistency?

3) Measuring Utility. How viable is the current Security.txt
standard for a widespread, automated vulnerability notifi-
cation campaign?

4) Identifying Barriers. What barriers, if any, exist that
are inhibiting the adoption of the standard or decreasing
its utility for vulnerability notifications? How can the
current standard be improved to mitigate or eliminate these
barriers?

Our findings indicate that Security.txt currently sees a mea-
gre adoption rate of about 0.49% among the top 1M domains.
Moreover, the vast majority of domains that do implement
Security.txt files are following outdated versions of the RFC,
some of which are over three years old. Many of these
files incorporate fields that are no longer considered valid,
were never considered valid, or are common misspellings of
standardized fields. These common issues increase the risk
that any automated software driving a notification campaign
might either ignore the Security.txt file entirely or misinterpret
it in such a way that its content is of little utility to security
researchers.

Among valid Security.txt files, we find that a significant
number provide contact information in the form of email
addresses or URLs linking to a few large-scale bug bounty
platforms. These contact methods are highly amenable to auto-
mated or semi-automated vulnerability notification campaigns,
a promising early result despite the challenges highlighted
above. However, very few of these files provide additional
information which may be critical to the success of a notifi-
cation campaign, such as preferred communication language,
expiry date, a digital signature, and encryption keys.

Based on these findings, we recommend that several cur-
rently optional fields be mandatory in Security.txt. We also
propose measures to mitigate potential sources of error, such
as introducing regional spellings as alternative field names,
making field formats more consistent with each other, and
taking additional steps to ensure machine readability. We also
encourage downstream implementers to read the latest versions
of the standard carefully, employ (and abide by) shorter expiry
dates, and keep up to date with the latest RFC versions. Finally,
implementers should work to accommodate any automated
software consuming their Security.txt files and follow security
best practices such as providing a cleartext PGP signature to
ensure authenticity.

In summary, this paper makes the following contributions:

1) We design and open source a novel web crawler and
parser for Security.txt files that can accurately parse and
classify all major, breaking RFC versions of the Security.txt
standard. Leveraging the power and safety of Rust, our

crawler can iterate over the top 1M domains (2M requests)
in just under 2 hours on commodity hardware.

2) We present a large-scale study of Security.txt’s adoption
among the most popular domains, according to the Tranco
list [23]. This study reveals several key factors inhibiting
the practical adoption of Security.txt in its current form
and offers early insights into how practical Security.txt
files might be for a widespread, automated vulnerability
notification campaign.

3) We leverage the findings from our study to make recom-
mendations to both Security.txt’s authors and down-
stream stakeholders. Our goal is to reduce current sources
of friction between the Security.txt specification and its
implementations.

II. BACKGROUND

Security.txt [16, 18] is a proposed open standard for pub-
lishing vulnerability contact information. In particular, its
goal is to be a machine-parsable and human-readable file
format through which an organization can (1) list contact
information for disclosing security vulnerabilities; (2) link to
any relevant security policy; (3) thank security researchers and
list previously found vulnerabilities; and (4) provide public
encryption keys which can be used to digitally sign and
encrypt communications with security researchers. The end
goal is to promote and facilitate responsible vulnerability
disclosure in the security community [18].

The standard specifies two possible locations for Se-
curity.txt files: /.well-known/security.txt or
/security.txt. These files must be served over HTTPS
and must follow a pre-determined, plaintext format. All lines
must either be a comment, which must be delineated using
the # symbol, or a field-value pair delineated by the field
name followed by a colon. Listing 1 in the Appendix depicts
an example Security.txt file compliant with RFC version 12
(the most recent version at the time of writing this paper).
For illustrative purposes, the example file uses every possible
field defined in the current standard, although organizations
frequently use only a few. We briefly highlight the main
components of the Security.txt file in the paragraphs that
follow, but encourage the reader to consult the official RFC
for a complete description of the full specification [16].

The Contact field is required and allows an organization
to list a contact address in one of three acceptable formats:
https for web URIs, mailto for email addresses, and tel
for telephone numbers. The implementer may choose any of
these three options and may list multiple contact fields in order
of preference. A given contact address must begin with the
name of the chosen format, followed by a colon.

Besides the Contact field, the only other required field
as of RFC version 12 is the Expires field, which lists an
ISO8601-compliant date by which the contents of the file
should no longer be considered valid. The Expires field
is one of only two fields that may not appear more than once
(the other being Preferred-Languages).
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The Preferred-Languages field is an optional field
that allows the organization to enumerate a list of pre-
ferred contact languages for communication with secu-
rity researchers. Unlike other fields, which allow multi-
ple values to be defined simply by repeating the field,
the Preferred-Languages field must be a comma-
separated list of languages. Like the Expires field,
Preferred-Languages may only be provided once in
a given Security.txt file. Languages are specified using their
respective IANA language tags as per RFC 5646 [32].

The Canonical field allows an organization to list the
canonical URI where the Security.txt file can be found. When
combined with a valid digital signature, this field gives the
security researcher assurance that the file and its content is
authentic. The Encryption field provides a URI where
security researchers may locate the organization’s public en-
cryption key. If an organization chooses to digitally sign
its Security.txt file, it may do so using a cleartext PGP
signature. In this case, a link to the public encryption key
used to generate the PGP signature should be provided via the
Encryption field. An example of this is given in Listing 1.

Aside from the aforementioned fields, additional fields in-
clude Acknowledgments, Policy, and Hiring. These
fields are used to acknowledge researchers who previously
disclosed vulnerabilities, outline the organization’s security
policy, and perform hiring outreach to the security community.

TABLE I: Breaking RFC versions of Security.txt and their distin-
guishing features.

RFC Distinguishing Feature

12 [16] Uses ISO8601 dates for the Expires field.

11 [17] Uses RFC5322 dates for the Expires field

09 [15] Last version where the Expires field is optional.

05 [14] Last version where http URIs are allowed.

04 [13] Last version to use the Signature field instead
of PGP cleartext.

02 [11] Last version with inferred URI schemes for email
and telephone contacts.

Since its inception in late 2017 [12], Security.txt has under-
gone 13 distinct RFC versions (numbered 00–12) [16]. Over
time, significant changes have been made in terms of its scope,
the number of fields it defines, and the nature of these fields.
Working backwards from the latest version, we identify a total
of six “breaking” versions, i.e., ones that are incompatible with
a higher RFC version. For example, RFC 11 is incompatible
with RFC 12, since RFC 11 uses RFC5322 dates, whereas
RFC 12 uses ISO8601 dates. Table I highlights each breaking
RFC version and their respective distinguishing features. We
later use these distinguishing features to classify Security.txt
files by their highest possible RFC version.

III. METHODOLOGY

A. SecMap and sectxt.rs

To scrape and parse Security.txt files, we design and im-
plement two artifacts1: sectxt.rs, a Security.txt parsing
library for Rust, and SecMap, a highly-concurrent web crawler
that uses sectxt.rs to parse and validate candidate Secu-
rity.txt files. Figure 1 depicts an overview of our methodology
and SecMap’s architecture. SecMap and sectxt.rs are
written in just under 2K lines of code in the Rust programming
language.

SecMap is inspired by and, in part, named after Zmap [7]
an open source tool for Internet-wide scanning. Like ZMap,
SecMap shares a similar goal of being able to rapidly iterate
over candidate hosts, which we accomplish by massively
parallelizing its scanning strategy. However, the similarities
between the two tools stop here. ZMap is designed to iterate
over the entire IP space and may probe a single domain
many times in a single run. Conversely, SecMap only issues
two requests per input domain in a given scanning run. This
difference has ethical implications since it means SecMap will
never overwhelm the domains it scans.

A few factors motivated the creation of custom software
for this research, the most critical of which is the unique
requirements imposed by the nature of this study. We want
to investigate the adoption of Security.txt files across many
domains and over a potentially wide variety of different RFC
versions. This scale necessitates a crawler that is both fast and
capable of handling many different versions of the Security.txt
standard at the same time. While some Security.txt parsing
libraries do exist,2 they are neither fast enough for this study
nor are they capable of handling more than one RFC version.
Moreover, none of the existing libraries support the latest
RFC, version 12, which means that we would potentially miss
out on valuable early adoption metrics for the most recent
components of the standard.

Rust is an ideal choice for implementing our custom tooling
for several reasons. First, the tokio asynchronous program-
ming framework provides powerful abstractions for writing
correct, maximally concurrent code to iterate over the top 1M
domains as fast as possible. Due to this highly concurrent
implementation, SecMap can rapidly take snapshots of the
Security.txt landscape as it evolves. Second, Rust’s powerful
type system is highly conducive to supporting multiple Se-
curity.txt versions simultaneously, which was a primary goal
of this research. Using Rust’s enum variants, we can express
each valid Security.txt version as a single data structure and
define custom parsing logic for each version as needed.

We leverage the MongoDB NoSQL database to store
Security.txt data. Using Rust’s MongoDB driver and the
serde library, inserting records into the database is as
simple as annotating our Security.txt data structure with
#[derive(Serialize)] and invoking the appropriate

1Available: https://github.com/willfindlay/secmap
2An official list of Security.txt related projects is available at https:

//securitytxt.org/projects.
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Fig. 1: An overview of our methodology. SecMap ingests the top 1M domains from the Tranco list and mutates them into relevant URLs
using a crawl strategy. These URLs are then passed to several crawler threads which concurrently issue HTTP GET requests. Valid replies
are forwarded to the sectxt.rs library which parses and validates Security.txt files, then stores them in a database for subsequent analysis.

method call at runtime. This approach saves significant engi-
neering effort and is largely responsible for the small number
of lines of code needed to implement SecMap. An added
benefit to this approach is that a smaller codebase makes the
source code easier to test and audit and reduces the probability
of a mistake in the tooling impacting results.

Although a smaller codebase helps to reduce the risk of
developer error, we elect to store the raw replies associated
with each request. This is a precautionary measure, enabling
subsequent human analysis to guard against potential errors in
data collection and improving our confidence in the accuracy
of SecMap’s results. SecMap also stores as much metadata
about each request and reply as possible, including a unique
identifier for the experimental run, the time of day at which
the request was sent, the domain and full URL being checked,
and any errors encountered while fetching or parsing the
Security.txt file. Finally, we maintain a verbose debug log of
each action SecMap performs over a given run, storing as
much information as possible in case further investigation is
needed.

To encourage reproduction of our results and provide maxi-
mum utility to the research community, we are releasing both
SecMap and sectxt.rs as free and open-source software
under the MIT license. Beyond their utility for measuring Se-
curity.txt’s adoption, we expect that SecMap and sectxt.rs
will also be valuable tools for driving future vulnerability noti-
fication campaigns (see Section V). To support reproducibility,
we have also open sourced our raw dataset and data analysis

toolchain3.

B. Experimental Configuration

1) Hardware and Network Connection: We run our exper-
iments on commodity hardware running version 5.15.7-arch1-
1 of the Linux kernel. The system has an eight core 4.5GHz
Intel i7-7700K Kaby Lake CPU and 16GiB of DDR4 RAM at
3GHz. Finally, the NIC is an Intel I219-V ethernet controller
running the latest e1000e driver. We issue requests from a local
Internet connection provided by Rogers communications with
advertised speeds of 1Gbps download and 20Mbps upload.

2) Tuning SecMap: In addition to binding to a network
interface, SecMap supports several configuration options that
control its speed and impact its accuracy. In particular, we
support command-line flags to tune the number of concurrent
requests SecMap buffers at any given time and the timeout
duration for filtering out dead connections. Getting these
settings right is imperative to the success of our study. A lower
level of concurrency and high connection timeout will improve
accuracy by ensuring that all connections are handled from
start to finish. However, tuning these values too low would
result in prohibitively slow crawl times. Similarly, higher
concurrency and lower timeout duration will significantly
improve crawl speeds but could impact the accuracy of results
by dropping some valid connections before they can complete.

We determine the optimal SecMap configuration empirically
by repeating preliminary trials under different settings and

3Available: https://gitlab.com/willfindlay/secmap-dataset
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measuring both the time it takes to complete each trial and
the number of successful attempts to locate a Security.txt
file. Specifically, we start at a low concurrency level and
high timeout and gradually increase concurrency and lower
the timeout until we note diminishing returns in speed versus
the number of found Security.txt files. Repeating this process
iteratively, we arrive at a concurrency level4 of 512 and a
connection timeout of 10 seconds.

Another factor to consider is whether SecMap will go
too fast for the operating system to handle. In our early
experiments, we noted a large number of requests being
dropped due to too many open file descriptors after running
SecMap under strace. The Linux kernel imposes a limit
on the number of open file descriptors to prevent a single
process from exhausting system resources — open network
sockets are one such resource. To alleviate this difficulty, we
implement a --ludakris command-line flag, which serves
two purposes. First, it bumps its file descriptor resource limit to
the theoretical maximum using the rlimit(2) system call.
Second, it increases the maximum concurrent TCP connections
supported by the kernel using a sysctl(2) call. We run all
of our SecMap experiments under this “ludakris”5 mode and
note no further bottlenecking by the kernel.

3) Seeding and Crawling Domains: We seed candidate
domains using the Tranco list [23], an aggregation of the
Alexa [1], Majestic [21], and Umbrella [20] lists. Among its
most desirable properties, Tranco is hardened against attacker
manipulation, mitigating potential sources of error and making
it an attractive target for this kind of research. Since its initial
publication in 2019, the Tranco list has been consistently
used by other measurement studies published in top security
venues [10, 27, 30].

We consider the top 1M domains on the Tranco list for
our study. For reproducibility, we note that we used version
5WYN6 of the Tranco list from October–November 2021. To
determine candidate URLs, SecMap ingests the list of 1M
domains and produces a new list of 2M candidate URLs — one
for each canonical path outlined in the Security.txt RFC [16].
It then uses the reqwest Rust library to issue an HTTP GET
request to each URL in parallel, checking for the presence of
a Security.txt file.

To improve confidence in the results of the study, we repeat
our crawling activity once per day over a period ranging
from November 28th to December 5th 2021, and verify no
significant difference in the collected data across any of the
experimental runs. We include only the most recent data from
December 5th in our results.

4) Collecting Security.txt Files: After issuing a GET re-
quest for a Security.txt file, SecMap applies four filters to
discard invalid replies. We enumerate each filter as follows:
F1 Request and Protocol Errors. Request and protocol

errors comprise any error that prevents an HTTP re-

4This means that SecMap will buffer up to 512 requests at a time.
5The misspelling of “ludicrous” is an intentional reference to the name of

the largest possible map size in the video game Age of Empires II.
6Available at https://tranco-list.eu/list/5WYN.

quest from completing. In general, this includes any
error encountered by the reqwest library (the client
used to make the GET requests). Examples of request
errors include failed DNS queries, unreachable hosts, and
connection timeouts. Examples of protocol errors include
invalid SSL certificates or HTTP responses.

F2 Bad Status Codes. Of the successful requests, we filter the
resulting HTTP responses by status code, discarding any
response without a status code of “success” (200–299) as
per HTTP RFC 7231 [9]. This step filters out known-bad
responses and spurious replies returned by misbehaving
servers.

F3 Non-Plaintext Responses. Of the successful HTTP re-
sponses, we discard any responses which are not tagged
with the text/plain MIME type. This is done in
accordance with the Security.txt standard, which stipulates
that all Security.txt files must be returned as plaintext
responses with the appropriate MIME type set in the
response header [16]. Filtering out such spurious replies
helps to improve crawling speeds and reduces the volume
of data in the database.

F4 Parse Errors. All responses which have passed the above
checks are passed into the Security.txt parser implemented
in sectxt.rs. The parser then returns any errors en-
countered while parsing a Security.txt file, and flags the
corresponding file as invalid.

IV. RESULTS

A. Adoption Rate and Taxonomy of Security.txt Files

Of the 2M requests, SecMap received 1.38M valid HTTP
responses. HTTP 400-series status codes (client errors) ac-
counted for 83% of all responses, with Error 404 (Not Found)
at 78% (1.08M) and Error 403 at 3% (46K) of all responses.
Successful status codes (200-series) comprised 15.6% of all re-
sponses (214K), with status code 200 being the most common.
Interestingly, 0.3% of replies contained non-standard status
codes (considered invalid by SecMap). These were generally
vendor-specific error codes for the given web server or invalid
status codes returned by malfunctioning web servers. Unless
otherwise specified, the remaining analysis in this section
considers only the set of valid Security.txt files as determined
by SecMap.

Figure 8 in the Appendix classifies the responses filtered
out by F1, F3, and F4. In total, 237K requests (11.9%)
result in a protocol error, with TLS errors being the most
common at 11.2%. Another 383K requests (19.2%) result in
a request error, with DNS errors, connection timeouts, and
refused connections being the most common. We received
206K replies (96% of all “successful” responses and 10% of
all requests) that are not plaintext. The reasons underlying this
large number of spurious replies are similar to the problems
with HTTP status codes outlined above. Many web servers are
configured to serve incorrect responses (most commonly an
HTML page accompanied by a 200-series status code, but we
also note a few instances of binary blobs) to invalid requests.
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Fig. 2: A summary of all responses to the 2M requests. Protocol
errors and request errors prevented a request from successfully
completing. Valid files, parse errors, and non-plaintext responses
account for all 200-series HTTP status codes. Note that HTTP client
errors make up nearly 57% of all responses.

Of the 8.3K plaintext replies, 2.5K result in parse errors
for a total of 5.8K valid Security.txt files (or 0.29% of all
requests). After accounting for domains with two files (recall
that there are two valid canonical paths for a Security.txt
file), we are left with 4864 domains with at least one valid
Security.txt file (0.49% of the top 1M domains). If we narrow
our scope to only the top 100K domains, we note a total of
1624 unique domains (1.6% of the top 100K). These numbers
might seem shockingly low but are, in fact, in line with our
expectations outlined at the beginning of this section.

The most common parse error was including a line without
any field (i.e. any line that is not a comment and that does
not begin with a field name followed by a colon). Many of
these can be attributed to plaintext responses that did not
contain anything resembling a Security.txt file. Upon manual
inspection of a random sample of invalid files, we also note
another common occurrence: the presence of lines that should
have been comments but were missing a #. The most promi-
nent example of this was amazon.com/security.txt (number 18
on the Tranco list), which invalidated itself according to our
parser by listing a bare URL without any comment or field
name. The second more frequent parse error was a missing
contact field (considered invalid for all RFC versions). In total,
900 files did not provide any contact field, effectively making
the Security.txt file unusable.

Figure 3 shows the cumulative percentage of valid Se-
curity.txt files over the top 1M domains (without double-
counting). Interestingly, while the distribution of Security.txt
files is more-or-less uniform over the long tail of domains,
the highest-ranked domains are significantly more likely to
have a Security.txt file. In particular, the top 31K domains
account for 20% of all valid Security.txt files, while the top
241K account for 50% of all valid Security.txt files. These
numbers make intuitive sense given the context underlying site

1 0.2M 0.4M 0.6M 0.8M 1M
0

0.2

0.4

0.6

0.8

1

Site Rank (Tranco List)

CD
F

Total domains with a valid file = 4864Top 31K Top 241K

Fig. 3: The cumulative percentage of valid Security.txt files by site
rank according to the Tranco list [23]. Note that the top 31K domains
account for 20% of all valid files and the top 241K account for 50%
of all valid files. In total, only 4864 of the top 1M domains provide
a valid Security.txt file.

ranks — the top-ranked domains generally correspond to large
organizations with a vested interest in security (to protect their
clientele as well as their profit margins). Such organizations
are, in turn, more likely to be following the bleeding edge of
security best practices.

Recall from Section III that we are interested in measuring
the RFC version of Security.txt files in addition to their
validity. Accordingly, the number of valid files is the total
of valid files across all RFC versions. This turned out to be a
sound research decision since the vast majority of Security.txt
files do not fall within even the three most recent RFC
versions. Only 560 files (11.5%) are compliant with the most
recent RFC (version 12 [16]). RFC 11 accounts for another 272
files (5.6%). RFC 9 was by far the most common version with
2283 files (46.9%). Shockingly, RFC 5 (which dates back to
2019 [14]) accounts for 1598 Security.txt files (32.9%). Even
older RFCs account for the remaining 151 files.

B. Expiry Dates

To characterize expiry windows, we measure the expiry
dates of Security.txt files against various factors such as site
rank and RFC version. Note that RFC version 9 is not included
in the data presented here. This omission is intentional. RFC
9 is the highest RFC version in which the Expires field
is optional (and this is its only distinguishing characteristic).
Since our parser uses the absence of an Expires field to test
for RFC 9 files, including them in this data is an impossibility.

We find that the majority of Security.txt expiry dates
(85.5%) are concentrated within a period of 1–4 years in the
future. Other bands of activity occur in and around years with
round numbers such as 2030. Of the files that expire in 2021,
about half had already expired at the time of measurement. A
small number of Security.txt files set expiry dates long enough
that they might realistically outlive the person who wrote them.
Example years include 2099 and 2222.
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RFC 9 is not present here since its only distinguishing feature from
RFC 11 is an optional Expires field. The y-axis is cut off at 2030
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other RFC versions.

Figure 4 depicts the distribution of expiry dates by RFC
version. Expired files and those on the precipice of expiring
are distributed among RFC versions 5, 11, and 12, although
most belong to version 11, with two particularly large clusters
concentrated around May and November 2021. Upon man-
ual inspection of the files in these clusters shared common
vulnerability contact domains, including 14 belonging to tech-
day.com and 34 belonging to moodle.com. TechDay appears to
be an aggregation of news sites from New Zealand, whereas
Moodle is a popular learning management system platform.
The former cluster is a collection of Security.txt files belonging
to a single organization, while the latter appears to be a
sensible default provided by Moodle. Curiously, none of the
RFC 2 or RFC 4 files were expired. While this result may
seem counter-intuitive at first, it can be explained by the fact
that previously expired files may be more likely to have been
updated to a later RFC, along with the minimal sample size
for RFC 2 and RFC 4. RFC 12, RFC 11, and RFC 5 each had
Security.txt files with expiry dates well into the future. In the
case of RFC 11 and RFC 12, a significant number extended
into the later 2020s and early 2030s — enough to skew both
distributions into the future.

C. PGP Signatures

We find a total of 363 domains with a Security.txt file signed
using PGP cleartext. Of these, only 310 are valid Security.txt
files. Of the 53 invalid Security.txt files with digital signatures,
29 arose from incorrect handling of the OpenPGP specification
or encryption keys. Nine Security.txt files contained a format-
ting error that invalidated their cleartext signature and caused
parsing to fail. Another 20 files used the Encryption field
incorrectly, placing a key ID tagged with the openpgp4fpr
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Fig. 5: Top 15 contact domains for http(s) and mailto contacts
in Security.txt files.

URI scheme. This URI is invalid according to the Security.txt
spec, and so the file was invalidated by SecMap.

Among the 310 valid Security.txt files that include PGP
signatures, we find that they all list at least one public
encryption key. In total, we find 153 unique encryption keys,
with a select few keys being far more common than others.
A key belonging to soc.beiersdorf.com, the security division
of a German beauty product corporation, accounted for 28
Encryption fields in total (9% of all Encryption fields).
The second most common key belonged to Atlassian, a web
security firm. Manual inspection of files containing these keys
revealed that they all belong to domains owned by their
respective corporations. In the case of Atlassian, this included
unique domains for specific security products as well as status
pages managed by Atlassian for popular services like Discord.

D. Vulnerability Contacts

A primary goal of this research was to gauge the viability of
the Security.txt standard for automated vulnerability notifica-
tion campaigns. As one can imagine, the success or failure
of such a campaign would heavily depend on the reliable
availability of contact information in a consistent format. The
most desirable format would arguably be mailto links since
these can be reliably contacted by automated software. Less
desirable are http and https links since these are gener-
ally inaccessible to automated software without significant
engineering effort (e.g., natural language processing, HTML
parsing, web drivers to fill out forms). In this section, we
examine the most common contact schemes and domains
used by Security.txt files and compare them with a previously
studied alternative: WHOIS abuse records [24].
https (26.5%) and mailto (72.8%) were the most popu-

lar contact schemes, with tel (0.6%) and http (0.1%) being
the least popular. Note that http contacts are considered
deprecated by the Security.txt standard and have not been
supported since RFC 4 [13]. In total, 4824 mailto contacts
were defined across 4100 Security.txt files, and 1560 https
contacts were defined across 1440 Security.txt files. This
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means that 84.3% of valid files support at least one email
contact, while 29.6% of files support at least one HTTPS
contact. Only 35 files provide a tel contact and four files
provide an http contact.

Many contact domains exhibited disproportionate popu-
larity. Figure 5 shows the respective frequencies of the
top 15 most popular contact domains among crawled sites.
HackerOne [19] which makes up 6.7% of all contact domains,
is a bug bounty platform that partners with businesses to
manage their coordinated disclosure policies. The second and
third most popular domains, g.co and google.com are both
used as umbrella contacts for all official domains owned and
operated by Google. The fourth most popular contact domain
bitly.com is a popular URL shortener, which may be used
to obfuscate or otherwise shorten the actual contact URL.
The salla.sa and shopify.com domains belong to e-commerce
platforms, and the corresponding Security.txt files appear to
be sensible defaults applied to websites operating atop these
platforms. Other common umbrella domains were thg.com,
used in several cosmetic product websites and bmwgroup.com,
used in websites belonging to auto manufacturers operating
under BMW.

Perhaps the most shocking finding among the most pop-
ular contact domains is the prevalence of example.com as a
vulnerability contact. In total, we find 56 separate instances
of mailto:security@example.com being used as a mailto
contact. This is the example email address provided on the
Security.txt informational site [18] and should not be treated
as a legitimate contact. The end result is 56 Security.txt files
(1.2% of all valid files) that essentially have no contact infor-
mation, rendering them totally useless for security researchers
hoping to perform vulnerability disclosure.

Security.txt Contacts Versus WHOIS Abuse Contacts: Li
et al. [24, 25] have investigated the use of WHOIS abuse
records as vulnerability contact information in longitudinal
vulnerability notification campaigns. Their results were mod-
est, indicating that WHOIS contacts may not be the best
point of contact for vulnerability disclosure. In the context of
this research, we are interested in verifying this hypothesis
by checking to see whether WHOIS abuse records match
the contact information given in Security.txt files. To do
this, we instruct SecMap to fetch the WHOIS abuse contact
information associated with every domain that also has a valid
Security.txt file. In total, SecMap was able to retrieve 2477
WHOIS abuse contacts. Interestingly, not a single WHOIS
abuse contact was found to match a Security.txt contact. More-
over, we found only three instances of an abuse contact whose
domain matched the site’s domain. This finding raises further
questions about the utility of such schemes for vulnerability
notification.

E. Contact Languages

Another critical piece of information for security researchers
seeking to perform vulnerability notifications is knowing
which language to use when communicating with vulnera-
bility contacts [25]. The Security.txt standard provides such
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Fig. 6: Primary and supplementary language choices for vulnerability
contacts. Only Security.txt files with at least one preferred language
are considered. We define the primary language of a Security.txt
file as the first language provided in its Preferred-Languages
field. Any other languages listed as Preferred-Languages are
considered supplementary. A value of “No Language” on the right-
hand side indicates a file with no supplementary languages. Note
that English dominates both the primary and supplementary language
choices in our dataset.

information using the Preferred-Languages field, an
optional, comma-separated list of IANA language tags per
RFC 5646 [32]. In this section, we examine the use of the
Preferred-Languages field in Security.txt files, with a
particular emphasis on how many files provide a preferred
language and how frequently specific languages are chosen.

To identify a given language tag, SecMap uses the
language-tags7 Rust library, which provides a parser and
validator for IANA language tags. We then use metadata
from the IANA registry to convert each language tag into its
named counterpart (e.g. en-US would resolve to “English”),
deduplicating as necessary. Almost half of all Security.txt files
(47%) did not provide any contact language, while English
(32%) was the most popular contact language provided. Other
popular languages included German (4.5%), Czech (3.0%),
French (2.5%), Flemish (2.2%), Arabic (1.5%), and Spanish
(1.1%). All other languages appeared in under 1% of files.

According to the Security.txt standard, stakeholders may
provide multiple languages in the Preferred-Languages
field, in order of preference. Figure 6 depicts the relationship
between primary and secondary languages in Security.txt files.
We define a “primary language choice” as any language that
is the first element of a file’s Preferred-Languages list.

7Available: https://crates.io/crates/language-tags
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Fig. 7: The most common causes of extension fields in Security.txt
files. These were found using a simple string-matching heuristic and
manual examination of the data. The “Other” category comprises all
extension fields that did not map cleanly onto this heuristic (e.g.
unique extension fields).

A “secondary language choice” is any language present in the
list that is not the first element (i.e. all other elements in the
list). English is the most popular choice as both a primary
and a secondary language. In total, only 21 Security.txt files
(0.4%) did not list English as a primary or secondary contact
language.

F. Extension Fields

To provide as much forward compatibility as possible [16],
the Security.txt standard provisions for extension fields, which
it defines as any field name not included in the official
standard. For instance, a line like Foo: Bar would be con-
sidered an extension field. Characterizing the most common
extension fields used in Security.txt files is important for a
few reasons. First, it may highlight widely-used extensions
that should be considered for inclusion in the official standard.
Moreover, extension fields may be considered as hard errors by
an ignorant parser8 — SecMap initially considered extension
fields to be hard errors before it was modified to support them.
A subtler yet equally important factor is that extension fields
may mask any unintentional errors (e.g., spelling mistakes)
that invalidate an official field. While the Security.txt file
would still be considered valid, this information would likely
go unnoticed by automated software.

In total, there were 1843 extension fields in 1362 files. This
number was small enough that we could manually apply a
heuristic to characterize them by reason. We derive the heuris-
tic iteratively by examining a sum aggregation of all extension
field names and applying a simple string matching algorithm
to them. In the end, we derive a list of the six common reasons
for extension fields (shown in Figure 7). By far, the most
common error was a misspelled Acknowledgments field

8Extension fields are not well-documented in the official standard [16] and
are absent in the official informational webpage [18].

(e.g. using the British English variant with an extra “e”). In to-
tal, this error accounted for 857 extension fields (46.5%). The
second most common error was a misspelled Expires field
(most commonly spelled Expiration), which accounted for
333 extension fields (18%). The third most common reason
for extension fields was what we describe as an “incorrect
policy field”. These are fields that ordinarily should have
been assigned to the official Policy field but were named
something else in the Security.txt file. In total, incorrect policy
fields accounted for 293 extension fields (15.9%). Other errors
were less common but still occurred multiple times. A total
of 29 extension fields (1.6%) were caused by a misspelled
Preferred-Languages field. Another 15 (0.8%) were
caused by invalid PGP metadata not picked up by SecMap’s
cleartext PGP parser.
OpenBugBounty fields were the fourth most common

(and arguably the only legitimate) extension field encoun-
tered by SecMap. OpenBugBounty [31] is an open platform
for collaboration between security researchers and stakehold-
ers impacted by vulnerabilities. The Security.txt files with
OpenBugBounty fields each contained a link to the organi-
zation’s OpenBugBounty program. Due to its prevalence, this
field could be a reasonable candidate for inclusion in a future
version of the Security.txt standard.

V. DISCUSSION

A. The Viability of Security.txt for Vulnerability Notifications

The primary factor limiting the utility of Security.txt for
vulnerability notification campaigns is its relatively low adop-
tion rate. In particular, we find that only 1.6% of the top
100K domains or 0.49% of the top 1M domains include at
least one valid Security.txt file. Comparatively, in Li et al.’s
original vulnerability notifications study, they found a total of
12K WHOIS abuse contacts in a population of 310K hosts,
or a rate of about 3.8% [24]. WHOIS abuse records are
designed to mitigate abuse by domain owners rather than as
a destination for reporting security vulnerabilities. Although
Security.txt files are admittedly more likely to provide the
correct contact information for reporting a vulnerability, we
still see a significantly lower adoption rate, even among the
most popular domains.

Another critical factor is how conducive a given contact
field is to automation. To conduct a large-scale vulnerability
notification campaign, automated software needs to process
the Security.txt file, extract contact information, and send the
notification (for instance, via email). While the Security.txt file
format is designed to be machine parsable [16], we find that
many organizations either ignore or incorrectly implement the
standard in such a way that could confound automated soft-
ware in practice. Fortunately, the vast majority of Security.txt
files discovered by SecMap (84.3% of all valid files) contain at
least one mailto contact. This is an encouraging result since
email is highly conducive to automated notification. While we
note that 56 Security.txt files contained invalid example.com
email addresses, this is a small minority of the total population.
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Finally, language preferences merit consideration, as the
effectiveness of a vulnerability notification campaign largely
depends on its ability to convey the nature of security vulner-
abilities to affected stakeholders [24]. Encouragingly, we find
that only 0.4% of valid files (21 in total) did not list English as
a primary contact language. This means that English is likely
a viable choice for large-scale vulnerability notifications, and
translation effort may not be required in most cases. Although
this is an encouraging result, we note that nearly half (47%) of
all Security.txt files do not list any preferred contact language.

In summary, while the Security.txt file format represents
a promising step forward for vulnerability notifications, fun-
damental issues with the current standard, its misuse by
downstream implementers, and a relatively low adoption rate
are fundamental barriers to its practical utility.

B. Recommendations for Adopters

To maximize the utility of Security.txt for vulnerability
notifications, we make the following recommendations to
organizations seeking to adopt the standard:
1) Read and Understand the Standard. Organizations

should read and understand the Security.txt standard be-
fore publishing a Security.txt file. When possible, guided
tooling [18] should be favoured over hand-crafted files to
ensure compliance with the Security.txt spec. In addition,
organizations should keep up to date with the latest version
of the Security.txt RFC to ensure that they are providing the
most useful information possible to security researchers.

2) Follow Security Best-Practices. Organizations should fol-
low recommended best practices when implementing their
Security.txt file. This includes providing a Canonical
field listing the correct URI where the Security.txt file can
be found and cryptographically signing the file using a
cleartext PGP signature. The file should also list at least
one encryption key, including the one used to sign the file.

3) Favour Explicitness. Organizations should favour explic-
itness when possible. This includes defining all optional
fields, even when the field value matches a default de-
fined by the Security.txt standard. For instance, orga-
nizations should always provide at least one value to
the Preferred-Languages field. Being explicit about
preferences reduces the likelihood of misunderstandings on
the part of security researchers, particularly when auto-
mated tooling is involved.

4) Use Meaningful Expiry Dates. Organizations should pro-
vide a meaningful expiry date when creating their Secu-
rity.txt files. In particular, the expiry date should not be
too far into the future. We recommend that organizations
use an expiry date of at most six months in the short term to
match pace with the lifecycle of Security.txt RFC versions.
Files should be kept up to date and not left to expire.

5) Be Aware of Automated Tooling. Organizations should be
aware of automated tooling when creating their Security.txt
files. It is not feasible to expect a security researcher
conducting a large-scale vulnerability notification cam-
paign to manually inspect each Security.txt file for further

information. Links to external resources should be avoided
unless these resources are machine-readable (e.g. favour
plaintext resources in a standard format over HTML pages
or pages rendered with JavaScript). Extension fields should
be avoided in favour of standardized fields where possible.

C. Recommendations for Improving the Standard

We make the following recommendations to improve the
standard:
1) Officially Adopt Popular Extension Fields. Popular ex-

tension fields like OpenBugBounty should be considered
for inclusion in a future version of the standard. Standardiz-
ing these fields will help to ensure that organizations follow
the same blueprint rather than guessing at an appropriate
field name. Moreover, automated software will be better
equipped to recognize these fields when parsing Security.txt
files.

2) Make Important Fields Mandatory. Essential fields like
Preferred-Languages and Canonical should be
made mandatory rather than optional. This helps to reduce
potential sources of error when parsing Security.txt files
and ensures that security researchers always have the in-
formation they need when attempting to notify stakeholders
of a vulnerability.

3) Remove Sources of Ambiguity. Where possible, sources
of ambiguity should be removed from the standard.
Field names like Acknowledgments should be up-
dated to include other popular regional spellings. The
Preferred-Languages field should be modified to be
more consistent with other fields — that is, use multiple
fields rather than a single, comma-separated list. These
changes will help to reduce potential friction between
Security.txt files and parsers.

4) Favour Machine Readability over Human Readability.
The Security.txt standard has the laudable goal of being
simultaneously human-readable and machine-parsable [16,
18]. We argue that this may be a mistake since our
experiences shows that the current RFC requires non-trivial
engineering effort to parse correctly. More standardized
file formats such as JSON may be more amenable to
machine readability without completely sacrificing human
readability. We also argue that the standard should ex-
pressly stipulate that all external resources linked within
the file must be machine-readable.

VI. RELATED WORK

The problem of vulnerability disclosure in computer secu-
rity dates back to at least the mid-1980s with the advent of
the earliest widespread computer exploits such as the Morris
Worm [8]. Since the inception of such exploits, there has
been widespread public debate [2, 3, 4, 8, 25, 26, 28, 29,
38] surrounding the best way to communicate security vulner-
abilities to impacted stakeholders. One aspect of vulnerability
disclosure that many can agree on is that we have an ethical
responsibility as security researchers to promptly disclose
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vulnerabilities to affected parties so that they may resolve the
issue as soon as possible [25].

The research community has recently begun exploring the
potential impact of widespread vulnerability notification cam-
paigns. In such a campaign, researchers communicate directly
with impacted stakeholders and work with them to achieve
positive security outcomes (ideally total remediation). Li et
al. [24, 25] conducted large-scale vulnerability notification
campaigns using ZMap [7] to identify impacted stakeholders.
They leveraged a variety of existing contact methods, in-
cluding WHOIS abuse records, localized national CERTs and
the US national CERT. Their findings were promising, albeit
modest, with an 11% increase in remediation over the control
when notifying WHOIS contacts. Among their findings, they
cite a lack of availability of alternative contact methods as a
primary limiting factor. Stock et al. [37] performed a similar
study, measuring the impact of direct channels such as WHOIS
abuse records and common email prefixes against indirect
channels like hosting providers on vulnerability notifications.
They expanded on their work in a subsequent study [36] to
measure the impact of various factors such as spam filters and
administrator apathy.

Poteat and Li [33] ran a longitudinal study exploring Se-
curity.txt adoption in Alexa’s top 100K sites over 15 months.
The authors find a comparatively larger number of domains
with Security.txt files, although two differentiating factors in
their methodology can explain this difference. First, their list
of candidate domains changed throughout the study, whereas
our results consider a fixed snapshot9. Second, their criteria for
including files into their dataset appears to be less rigorous.
We note several instances of files in their study which SecMap
would have considered to be invalid. The authors also did not
consider multiple Security.txt RFC versions in their analysis,
instead focusing on RFC version 12. Aside from the density
of valid Security.txt files and the selection criteria used to
find them, many of the results from Poteat and Li [33] are
consistent with our findings.

VII. CONCLUSION

Our results indicate that most top domains have not adopted
Security.txt, and Among domains that have adopted the stan-
dard, Security.txt files are often out of date, expired, or invalid.
These factors can significantly impede Security.txt’s utility
for vulnerability notifications, particularly when automated
software may be required to scale up a notification campaign.

Based on our findings, we encourage standard authors to
address several sources of confusion in the current standard,
which contribute to a high rate of error among adopters. Simi-
larly, we encourage adopters of the standard to follow security
best practices, such as digitally signing their Security.txt files
and providing a machine-readable link to a valid encryption
key. We also stress the importance of ensuring that Security.txt
files are as friendly as possible to automated software in order

9While this is not necessarily a weakness of either study, we note that it is
a differentiating factor.

to maximize their utility for researchers conducting a large
number of vulnerability notifications.
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Listing 1: An example of a valid Security.txt file conforming to RFC 12 [16]. This example was generated using the guided Security.txt
generator by Foudil and Shafranovich [18] and signed using the gpg --clearsign command in GNU/Linux. Mandatory fields are shown
in blue, comments are shown in green, and the optional PGP cleartext signature is shown in purple. Note that this example follows several
security best-practices; it contains a short expiry date some time in the future and includes a digital signature which can be verified using the
provided encryption key. Since the file also provides the optional Canonical field, the signature can be used to verify the file’s authenticity.

1 -----BEGIN PGP SIGNED MESSAGE-----
2 Hash: SHA256
3
4 # You may contact us at any of the following URLs:
5 Contact: mailto:example@example.com
6 Contact: https://example.com/security
7 Expires: 2023-01-01T04:59:00.000Z
8 Encryption: https://example.com/pub-key.txt
9 Acknowledgments: https://example.com/acknowledgments
10 # Use English or French to conact us please!
11 Preferred-Languages: en, fr
12 Canonical: https://example.com/.well-known/security.txt
13 Canonical: https://example.com/security.txt
14 Policy: https://example.com/policy
15 Hiring: https://example.com/careers
16 -----BEGIN PGP SIGNATURE-----
17
18 iQEzBAEBCAAdFiEE1N7b1zOZ1NHHUv2Fi/M/rc9rXxAFAmHXQn0ACgkQi/M/rc9r
19 XxCpNAgAjdtth/RFOSw0rXi8GzX/5vYAFGPstd8yKFq8d8TlmnmRByrngWjLO7ze
20 C1RcqIBID6wOibB4fOUbXAzTLEf5+HlT6scU7Z+/SZZFX9JTv4XgbC+yqXCCEyeB
21 uqzpQFsttdpcOC0SnQeX9dVRm5P8F+/El/nQSyUt66v1cGUW1AKfMYLEr01CvfUK
22 HS8cbKWE/Kc30ZglWtcDfNzP2bAQSR4YbV9vhS+XckLNUkt+Fw3UAQATOvm1KGgr
23 7hXGAbMw5qcavXXxo8XKYvPt6tCMCvdJXOCwXaNU5K1i2lSN3wz23HMNFo2bauFe
24 kBJ51fuR4xll9I9YBNhe26gn3BzPuw==
25 =jiaY
26 -----END PGP SIGNATURE-----
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