
Latex Gloves:
Protecting Browser Extensions
from Probing and Revelation

Attacks
Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez, Andrei Sabelfeld

Browser extensions

● Allows users to modify browser behaviour
○ Block advertisement & tracking scripts
○ Password managers

● Written in a combination of JavaScript, HTML and CSS
○ Content scripts
○ Background scripts

● User grants permissions

● Can inject content
○ One way through “web accessible resources”
○ chrome-extension:// and moz-extension://

Google Cast example

Detect google cast extension
chrome-extension://boadgeojelhgndaghljhdicfkmllpafd/cast_sender.js

Discover Chromecast on the network

Probing attack

1) Web page makes request to
 chrome-extension://boadgeojelhgndaghljhdicfkmllpafd/cast_sender.js

Sjösten et al., CODASPY 2017
Gulyás et al., WPES 2018 (demo web page: https://extensions.inrialpes.fr/)
Sanchez-Rola et al., USENIX 2017

Probing attack

Sjösten et al., CODASPY 2017
Gulyás et al., WPES 2018 (demo web page: https://extensions.inrialpes.fr/)
Sanchez-Rola et al., USENIX 2017

1) Web page makes request to
 chrome-extension://boadgeojelhgndaghljhdicfkmllpafd/cast_sender.js
2) If extension is installed, resource is returned.

Mozilla’s solution

moz-extension://actual-extension-id/resource.js

moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js

Randomized

Mozilla’s solution

moz-extension://actual-extension-id/resource.js

moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js

“It is randomly generated for every browser instance. This prevents
websites from fingerprinting a browser by examining the extensions it has
installed.”
- Mozilla documentation
 https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources

Randomized

Mozilla’s solution

moz-extension://actual-extension-id/resource.js

moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js

“It is randomly generated for every browser instance. This prevents
websites from fingerprinting a browser by examining the extensions it has
installed.”
- Mozilla documentation
 https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources

“This is something we'd like to do when we have the opportunity to make a
breaking change.”
- Chrome developer forum
 https://bugs.chromium.org/p/chromium/issues/detail?id=611420#c19

Randomized

Revelation attack

1) Extension injects content
 moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js

Revelation attack

1) Extension injects content
 moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js
2) Use the recently acquired random ID to probe for a unique resource in
 an extension.

Revelation attack

1) Extension injects content
 moz-extension://30bb95e6-4208-4633-ab7b-5623c0b09483/resource.js
2) Use the recently acquired random ID to probe for a unique resource in
 an extension.
3) If extension is installed, resource is returned.

Extensions susceptible to revelation attack

● Filter extensions which might inject content

● Check if they have (at least) one unique path to a resource

● Check if they have (at least) one resource with unique content

Extensions susceptible to revelation attack

● Filter extensions which might inject content

● Check if they have (at least) one unique path to a resource

● Check if they have (at least) one resource with unique content

How can one reset the random UUID?

No
No

No
No

No
No
No

Yes

Yes

Yes

How can one reset the random UUID?

No
No

No
No

No
No
No

Yes

Yes

Yes

How many extensions reveal themselves?

How many extensions reveal themselves?

● 3 sets of URLs
○ “real” URLs: derived from the matches attribute
○ “attackerhost” URLs: replace hostname with attacker.invalid

http://www.example.com/abc ⇒ http://www.attacker.invalid/abc
○ “buydns” URLs: for more fine-grained regexps, e.g. http://*.com/abc

http://www.example.com/abc ⇒ http://www.attacker.com/abc

How many extensions reveal themselves?

● 3 sets of URLs
○ “real” URLs: derived from the matches attribute
○ “attackerhost” URLs: replace hostname with attacker.invalid

http://www.example.com/abc ⇒ http://www.attacker.invalid/abc
○ “buydns” URLs: for more fine-grained regexps, e.g. http://*.com/abc

http://www.example.com/abc ⇒ http://www.attacker.com/abc

● Extract the regular expressions
○ 24,398 unique regular expressions

How many extensions reveal themselves?

● 3 sets of URLs
○ “real” URLs: derived from the matches attribute
○ “attackerhost” URLs: replace hostname with attacker.invalid

http://www.example.com/abc ⇒ http://www.attacker.invalid/abc
○ “buydns” URLs: for more fine-grained regexps, e.g. http://*.com/abc

http://www.example.com/abc ⇒ http://www.attacker.com/abc

● Extract the regular expressions
○ 24,398 unique regular expressions

● Performed crawling using CommonCrawl database
○ Contains ~4.57 billion URLs
○ For each regular expression: consider only first 100 matching URLs
○ For each extension: take random set of max 1000 URLs

How many extensions reveal themselves?

How many extensions reveal themselves?

Each of the 792,038 Firefox users are uniquely identifiable

Revealed and susceptible to revelation attack?

Measures: Latex Gloves

Measures: Latex Gloves

● Blacklists from browser vendors

Measures: Latex Gloves

● Blacklists from browser vendors

● Allow web pages to specify whitelists

Measures: Latex Gloves

● Blacklists from browser vendors

● Allow web pages to specify whitelists

● Users classify web pages

Sensitive Insensitive

Countermeasures

● Long term
○ Latex Gloves

Countermeasures

● Long term
○ Latex Gloves

● Short term
○ Re-generate the random UUID more often

■ When starting the browser
○ Re-generate the random UUID when entering private browsing mode
○ Randomize the full URL, including the path

■ Helps, but is not perfect...
○ Use data URIs

Thank you!
Questions?

